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Abstract

This paper proposes a macroscopic formulation of coupled heat and mass transfer that can con-
sider non-local equilibrium often encountered in biosourced buildingmaterials (wood- and plant-
fiber basedmaterials). Transferring dual-scale effects andmolecular relaxation at the macroscopic
level involves a kernel function acting in a convolution product. To ease the computational solu-
tion of the set of equations, the memory function is decomposed as a series of exponential func-
tions. Each function yields an internal variable that obeys a simple ordinary differential equation
(ODE). This paper first describes the macroscopic and dual-scale formulations used as reference
solutions. Subsequently, the modified macroscopic formulation of coupled transfer and its com-
putational solution are presented in detail. The major outcomes of the present study, validated
against reference solutions obtained with a comprehensive dual-scale model, are as follows:

• Dual-scale diffusion can be approached accurately by two exponential functions,

• Even though the dual-scale phenomenon andmolecular relaxation do not occur at the same
scale, both can be considered in the modified macroscopic formulation of coupled transfer
additively,

• The newmacroscopic formulation, together with the computational procedure proposed in
this study, can be applied to various configurations, namely coupled heat and mass transfer
in packed beds.

Keywords:
abnormal diffusion, building energy simulation, dual-scale modeling, molecular
relaxation, multiscale modeling, non-Fickian, packed bed, transient state, wood

1. Introduction

The thermal performance standards of buildings are becoming increasingly demanding
that designers and architects require simulation tools to achieve remarkable accuracy
[11, 49, 12]. In the meantime, as they offer good performances with a reduced ecological
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Figure 1: In lignocellulosic materials, memory effects during transient hydric changes arise owing to dual-
scale mechanisms and molecular relaxation. This study proposes a macroscopic formulation able to account
for both phenomena.

footprint, biosourced materials are used increasingly in construction. As these materials
exhibit an important moisture buffering effect, building energy simulation (BES) mod-
els must account for coupled heat and mass transfer, thus resulting in a strong demand
for mass transfer characterization. This includes mass diffusivity and sorption isotherms
[20, 18], but should also include more subtle effects that affect the moisture buffering ca-
pacity. For example, it is well known that the sorption behavior depends on the hydric
history of the materials [13, 7]. This sorption hysteresis affects the energy demand of
a building [21] and must be considered in BES models [14, 38]. Similarly, non-Fickian
behaviors of bound water diffusion in fibrous materials such as fiberboards have been
reported. This is revealed, for example, by a slow shift in moisture content during the
relative humidity (RH) plateau after a sudden change [22] or a dependence of the mass
diffusion coefficient with the sample thickness [37].

These abnormal behaviors are attributed to two phenomena arising at different spatial
scales (Fig. 1): dual-scaleMCfields at the fiber scale and relaxation at themacromolecular
scale:

• Dual-scale effects are likely to occur in heterogeneous materials structured as a
connected conductive phase and a storage phase. Depending on the sample size
and imposed conditions, thismicrostructuremay produce local equilibrium failures
[19, 24, 27, 28].

• Molecular relaxation in polymers has been reported more than six decades ago
[9]. Re-arrangement at the macromolecular state when a penetrant diffuses into a
polymer substance requires some time, depending on themacromolecular mobility.
Such effects exist in biomacromolecules [7, 46].

These problems of fading memory were indicated when simulating transfer in insula-
tionmaterials: the identified transfer parameters depend on the experimental information
used (local RH ormoisture content) [4]. Similarly, the dimensionless diffusivity identified
for LDF using the RH value at the back face of the sample was greater than that of the
unit, which is non-physical [34, 29]. The classical formulation of coupled heat and mass
transfer therefore cannot represent the experimental facts. Recently, a simple approach
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was proposed to address this question partially. The long delay required to reach the
equilibrium asymptotically has been represented well by modifying the boundary condi-
tions. A delayed relation between the external relative humidity and the surface moisture
content was introduced. The formulation involves an exponential function defined by a
time constant and a non-Fickian proportion [25, 26]. By modifying the formulation at the
boundary, one assumes implicitly that all points of the materials have the same history,
which is a strong assumption. Consequently, this representation is valid only if the time
constant for diffusion in the material thickness remains much smaller than the related
relaxation time constant.

The crucial need for a general and rigorous framework able to include non-local equilib-
rium in the macroscopic formulation of coupled heat and mass transfer is the primary
motivation of the present study. This paper is organized as follows. The comprehensive
macroscopic formulation of coupled heat and mass is presented first. The complete dual-
scale formulation, based on distributedmicro-models, is summarized as well. This model
will be used later for validation purposes. Subsequently, the central section of the paper
describes the development of the rigorous framework: a new formulation able to account
for non-Fickian effects in the set of coupled macroscopic equations. The related compu-
tational strategy is also presented in detail as this is mandatory for the formulation to be
used in computational codes, namely in BES models. This strategy includes a simple, yet
accurate, method to account for bound water diffusion inside the microscopic inclusions.

This framework is subsequently validated using the comprehensive dual-scalemodel. Us-
ing full dual-scale simulations as reference tools allowed for two important points to be
verified: the ability of the reduced model to account for diffusion in the inclusions and
the possibility to couple two mechanisms arising at different spatial scales. This last sec-
tion proves that both effects (dual-scale fields andmolecular relaxation) can be transferred
successfully and simultaneously at the macroscopic scale (the two arrows in Fig. 1).

2. Theoretical models

2.1. Macroscopic formulation

The comprehensive set ofmacroscopic equationswas derived using the volume averaging
procedure [42, 15, 47, 48]. The development of the volume-averaged transport equations
requires the existence of a representative elementary volume (REV) V that is sufficiently
large to smooth the microscopic fluctuations and sufficiently small to avoid macroscopic
variations. Two average operators are defined on this REV, namely, the superficial average
and the intrinsic average. For example, the superficial average of the density of the liquid
phase is given by

ρw =
1

V

∫
Vw

ρw dV (1)

and the intrinsic average is expressed as

ρww =
1

Vw

∫
Vw

ρw dV (2)

where Vw is the volume of the liquid phase contained in V . Further, the relationship
ρw = εwρ

w
w in which εw = Vw/V is the volume fraction of the liquid phase.
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The full set of equation, as proposed by [47, 48] and adapted to the case of hygroscopic
products [31, 32] reads as follows:

Moisture conservation
∂ (εwρw + εgρ

g
v + ρb)

∂t
+∇ · (ρwv̄w + ρgvv̄g + ρbvb) = ∇ · (ρgDeff · ∇ωv) (3)

Energy conservation

∂

∂t

(
εwρwhw + εg(ρ

g
vhv + ρgaha) + ρbhb + εsρshs − εgpg

)
+∇ · (ρwhwv̄w + (ρgvhv + ρgaha)v̄g + hbρbvb) + v̄w · ∇pw + v̄g · ∇pg

= ∇ · (ρgDeff (hv∇ωv + ha∇ωa) + λeff∇T ) (4)

The transport of enthalpy due to bound water migration must be treated with care. As
the differential heat of sorption depends on the bound water content, the averaged value
hb should be used in the time evolution (accumulation term), whereas the value at ρb (hb)
should be used in themigration term, as it is assumed that the less boundwatermolecules
are those likely to migrate.

Air conservation
∂ (εgρ

g
a)

∂t
+∇ · (ρgav̄g) = ∇ · (ρgDeff∇ωa) (5)

In these equations, the barycentric mass velocities are from the generalized Darcy’s law:

v̄g = −Kkg
µg

(∇pg − ρg∇ψg)

v̄w = −Kkw
µw

(∇pw − ρw∇ψg) with Pw = Pg − Pc(X,T ) (6)

The bound water flux is expressed using the bound water density as the driving force:

ρbvb = −Db∇ρb = −ρ0Db∇Xb

where Xb = min(X,Xfsp) (7)

Boundary conditions

Jv|x=0+ · n = hm cMv ln

(
1− x∞

1− xv|x=0

)
Jh|x=0+ · n = hh (T |x=0 − T∞)

Pg|x=0+ = Patm (8)

The first boundary equation assumes that only water vapor is exchanged between the
product and the surrounding air. The two first boundary equations are involved in the
enthalpy balance at the boundary.

This macroscopic formulation assumes that the porous medium is locally at equilibrium:
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A1 the temperature is the same for all phases Ts = Tw = Tg

A2 the partial pressure of water vapor inside the gaseous phase is related to the moisture
content X via, and the sorption isotherm pv = pvs(T ) × aw(T,X), where function
aw is the sorption isotherm of the product, also called water activity, namely in food
science.

Further assumptions allow this set of equations to have a more convenient form:

A3 the variation in partial densities inside the REV are negligible; therefore, the intrinsic
average is equal to the local value ρgv = ρv and ρga = ρa,

A4 the solid density is assumed to be constant ρs = constant,

A5 the moisture content X is used to consider the total amount of water present in the
porous medium ρ0X = εwρw + εgρ

g
v + ρb where ρ0 = εsρs,

A6 the effective diffusivity is expressed as a function of the binary diffusivity of vapor
in air: Deff = fDv, where f is a dimensionless diffusivity tensor (indeed, along
one given direction, f = 1/µwhere µ is the vapor resistance ratio used for building
materials),

A7 the study related to pressure variations can be omitted in the enthalpy balance.

With these additional assumptions, the set of equations becomes:

Moisture conservation

ρ0
∂X

∂t
+∇ · (ρwv̄w + ρvv̄g) = ∇ · (ρgfDv∇ωv + ρ0Db∇Xb) (9)

Energy conservation

∂

∂t

(
εwρwhw + εg(ρvhv + ρaha) + ρbhb + εsρshs

)
+∇ · (ρwhwv̄w + (ρvhv + ρaha)v̄g)

= ∇ · (λeff∇T + (hv − ha)ρgfDv∇ωv + hbρ0Db∇Xb) (10)

Air conservation
∂ (εgρa)

∂t
+∇ · (ρav̄g) = ∇ · (ρgfDv∇ωa) (11)

2.2. Dual-scale formulation

As already stated in the introduction, coupled transfer in heterogeneousmedia could lead
the failure of local equilibrium (assumptions A1 and A2 of the previous section). This is
particularly true when the medium consists of a connected conductive phase and a slow
storage phase. In the case of buildingmaterials, a low-density fiberboard (LDF) is a typical
example of such morphology regarding mass transfer. This is also required when a thick
bed of particles is involved [33]. In such cases, a dual-scale approach is mandatory: the
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Figure 2: Low-density fiber boards (LDFs) consist of a highly connected gaseous phase, a conductive phase,
and a highly hygroscopic solid phase that acts as the storage phase. In the dual-scale approach, the real
morphology of the LDF as observed bymicrotomography (left), is approached by a representative elementary
volume (REV) consisting of a set of long cylinders of the same radius r.

two spatial scales must be computed simultaneously, for example, using the concept of
distributed microstructure models [40].

Classical two-scale approaches for flow in porous media assume that at each point in the
macroscopic domain, a unit cell exists that is representative of the underlying pore geom-
etry at that point. A set of transport equations is proposed to describe the global (macro-
scopic) flow, and a separate set of equations is used to describe the local (microscopic)
flow. The typical two-scale coupling strategy [17, Ch. 9 by R. E. Showalter] and [3, 8, 43] is
to impose the macroscopic values on the microscopic field via Dirichlet boundary condi-
tions, and to include a source term at themacroscopic level that represents the exchange of
fluid (from the microscale to the macroscale) across the unit cell boundary. This so-called
distributed micro-model approach is well adapted provided that the storage phase does
not contribute to the macroscopic fluxes. Although more sophisticated approaches have
been proposed to account for the contribution of the storage phase to the macroscopic
fluxes [5], the classical formulation is used in this study, as it is well adapted to the LDF.
However, the formulations proposed in the literature cannot accommodate the coupling
between heat and mass transfers that is important when evaporation or condensation oc-
curs. To overcome this problem, we used a comprehensive formulation proposed by the
author [27, 28]. This formulation is suitable for distributed microstructure models in the
case of coupled heat andmass transfer, considering the total gaseous pressure through the
balance equation of dry air. Therefore, the proposed set of equations involves three inde-
pendent state variables, at both the macroscopic and microscopic scales. In the following
equations, superscript γ denotes the macroscopic scale, and superscript σ denotes the mi-
croscopic scale. In order to avoid the confusion with the intrinsic phase of the considered
scale, the scale superscript is shifted to the right when a superficial average is involved
(for example, v̄gσ instead of v̄σg ). Ω designs the macroscopic domain, Vσ is the part of the
REV V occupied by the storage phase, and ∂Vσ is the interface between the conductive
and storage phase inside V . Two space coordinates systems are involved: x denotes the
macroscopic position in Ω, and y is the position inside the REV V at point x.

Microscopic scale

Moisture conservation
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ρ0
∂Xσ

∂ t
+∇y · (ρσwv̄wσ + ρσv v̄g

σ)

= ∇y ·
(
ρσgD

σ
eff∇yωσv + ρσ0D

σ
b∇Xσ

b

)
y ∈ Vσ(x), x ∈ Ω (12)

Energy conservation

∂

∂ t

(
εσwρ

σ
wh

σ
w + εσg (ρσvh

σ
v + ρσah

σ
a) + ρbhb

σ
+ εσs ρ

σ
sh

σ
s − εσgP σg

)
+∇y · (ρσwhσwv̄wσ + (ρσvh

σ
v + ρσah

σ
a)v̄g

σ)

= ∇y ·
(
λσeff∇yT σ + (hσv − hσa)ρσgD

σ
eff∇yωσv + hσb ρ

σ
0D

σ
b∇Xσ

b

)
y ∈ Vσ(x), x ∈ Ω (13)

Air conservation

∂

∂ t

(
εσgρ

σ
a

)
+∇y · (ρσa v̄gσ) = ∇y ·

(
ρσgD

σ
eff∇yωσa

)
y ∈ Vσ(x), x ∈ Ω (14)

Macroscopic scale

In the following equations, moisture is assumed to be present only as water vapor in the
conductive phase.

Moisture conservation

∂

∂ t

(
εγgρ

γ
v

)
+∇x · (ργv v̄gγ) = ∇x ·

(
ργgD

γ
eff∇xω

γ
v

)
+Qv(t, x) x ∈ Ω (15)

Energy conservation

∂

∂ t

(
εγg (ργvh

γ
v + ργah

γ
a)
)

+∇x · ((ργvhγv + ργah
γ
a)v̄g

γ)

= ∇x ·
(
ργgD

γ
eff (hγv∇xωγv + hγa∇xωγa) + λγeff∇xT

γ
)

+Qh(t, x) + hγvQv(t, x) + hγaQa(t, x) x ∈ Ω (16)

Air conservation

∂

∂ t

(
εγ
g
ργa

)
+∇x · (ργav̄gγ) = ∇x ·

(
ργ
g
Dγ
eff∇xω

γ
a

)
+Qa(t, x) x ∈ Ω (17)

Coupling between scales
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A two-way coupling holds between the microscopic and macroscopic scales: the bound-
ary conditions applied at the local scale involve the macroscopic variables, and the inte-
gration of the fluxes on the contour of the micro-model builds up the source terms to be
supplied at the macroscopic level. These couplings are summarized hereinafter:

Moisture exchange

ρσgD
σ
eff∇yωσv · n = hσmρ

σ
g (ωσv (t, x, y)− ωγv (t, x)) y ∈ ∂Vσ(x), x ∈ Ω

Qv(t, x) =
1

|V |

∫
∂Vσ(x)

ρσgD
σ
eff∇yωσv · n dS x ∈ Ω (18)

Heat exchange

λσeff∇yT σ · n = hσh [T σ(t, x, y)− T γ(t, x)] y ∈ ∂Vσ(x), x ∈ Ω

Qh(t, x) =
1

|V |

∫
∂Vσ(x)

λσeff∇yT σ · n dS x ∈ Ω (19)

Air exchange

P γ(t, x) = P σ(t, x, y) y ∈ ∂V σ(x), x ∈ Ω (20)

Qa(t, x) =
1

|V |

∫
Vσ

∂ρσa
∂ t

dV x ∈ Ω

3. Macroscopic formulation of memory effects

Memory effects occurring at microscopic scales have important effects at the macroscopic
scale, and are typically revealed by a non-Fickian behavior: the macroscopic field does
not obey the Fickian law for moisture transport. The aim of this study is to propose, test,
and validate amacroscopic formulation able to consider thesememory effects. Twomajor
effects encountered in bio-based building materials are considered:

• Molecular relaxation: owing to the mobility of macromolecules, new sorption sites
appear with the reorganization of molecules after a change in bound water content
[9]. For lignocellulosic materials, this is particularly observable at high levels of
relative humidity or for thermally modified products [46, 26],

• Dual-scale effects: owing to the long characteristic time of diffusion in the secondary
cell wall, the local equilibrium sometimes fails. At the macroscopic level, this in-
duces a delay between the change in air characteristics and the moisture content of
the product, even at the extremely fine microscopic scale.
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Figure 3: Some possible shapes of the relaxation function.

3.1. Molecular relaxation

This phenomenon can be approached using a relaxation function, defined by applying
a sudden change in RH surrounding the product at the microscopic scale, from RHini

to RHfin, assuming the product to be at equilibrium at t = 0 (Xini = Xeq(RHini)). In
this case, the evolution of the local moisture content is simply the signature of molecular
relaxation:

X(t)−Xini = ∆Xeq × ϕ(t) (21)

where∆Xeq is defined by the sorption isothermvalues: ∆Xeq = Xeq(RHfin)−Xeq(RHini)
and ϕ a monotonic function such that limϕ(t)t→∞ = 1.

It is obvious from equation (21) that if ϕ is the casual function (the Heaviside function,
see figure 3), any memory effect vanishes.

In a more general case, the value of RH surrounding the product varies over time; there-
fore, a convolution product is required:

X(t)−Xini =

∫ t

0
ϕ(t− τ)

∂Xeq

∂τ
dτ (22)

where
∂Xeq

∂τ
dτ = dXeq (23)

represents the variation in equilibrium moisture content during the infinitesimal time
interval dτ .

In practice, the functionϕ can be determined experimentally by submitting aminute sam-
ple to a sudden change in the external relative humidity. For computational purposes, it
is convenient to approach the experimental function as a sum of exponential functions:
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ϕ(t) = 1−
N∑
i=1

αiexp(−t/τi) (24)

In practice, one single exponential function is sufficient to capture the trend determined
using relevant experiments [6].

3.2. Dual-scale effects

Similarmacroscopic effects can arise fromdual-scale phenomena: depending on the char-
acteristic time for the moisture field to equilibrate at the microscopic scale, a delay might
exist between the equilibrium moisture content and the actual moisture content. This is
known as the failure of the local thermodynamic equilibrium. For example, we can refer
to themass diffusion in a cylindrical fiber of radiusR. By neglecting the resistance tomass
transfer in the gaseous phase of the porousmedium, the equilibriummoisture contentXeq

can be used as the Dirichlet boundary conditions at the solid phase surface. In the case
of a perfectly cylindrical shape, for example, the corresponding analytical solution can be
used: [10]

X(r, t)−Xini = ∆Xeq ×

(
1− 2

R

∞∑
i=1

exp(−Dα2
i t)J0(rαi)

αiJ1(Rαi)

)
(25)

where the values of αn are the positive roots of

J0(Rαn) = 0 (26)

where J0(x) and J1 are the Bessel functions of the first kind of orders zero and one, re-
spectively.

The integration of equation (25) over the cylinder volume allows for the average moisture
content X̄ to be obtained:

X̄(t)−Xini = ∆Xeq ×

(
1−

∞∑
i=1

4

R2α2
i

exp(−Dα2
i t)

)
(27)

A function ϕ, similar to that proposed for molecular relaxation (21), can be deduced from
equation (27):

ϕ(t) = 1−
∞∑
i=1

4

R2α2
i

exp(−Dα2
i t) (28)

To compute sufficient terms in equation (28), an algorithm based on the Newton method
was written in R to obtain the roots of J0 with an accuracy of 1.10−10. Using 500 terms,
the error at origin, i.e., the worst case, is already good (ϕ(0) < 10−3). Similar expressions
are available for plates or spheres [10]. Figure 4 compares the solutions obtained for three
simple inclusion shapes (plate, cylinder, and sphere). Aswill be shown in the next section,
the form of the analytical solutions (infinite sum of exponential functions) is not suitable
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Figure 4: Dimensionless change in moisture content. Result obtained for different shapes using the first 500
terms of the respective analytical solutions [10].

Table 1: Parameter values to approach diffusion in a simple-shape inclusion with one exponential function
(the identification was performed over the dimensionless time interval [0, 1.2] and with 500 terms of the
analytical solutions).

Parameters Plate Cylinder Sphere
α1 0.85818 0.81243 0.80684

τ1/(a
2/D) 0.38373 0.14990 0.07921

Norm of residues 39.10−3 58.10−3 62.10−3

for computational algorithms. These solutions were therefore approached by one or two
exponential functions:

ϕ(t) = 1−
N∑
i=1

αiexp(−t/τi), withN = 1 or 2 (29)

A simple truncation of the infinite sum of the analytical solution (28) results in consid-
erable errors at short times. Consequently, the amplitudes αi and time constants τi were
determined by inverse analysis, using the mean square distance over the dimensionless
interval [0, 1.2]. Figure 5 depicts the quality of the best fit for a cylinder, with emphasis
over short times. The most important discrepancy between the analytical solution and
the reduced model always appears at extremely short times, but remains less than 3% in
relative error. Using two exponentials reduces this error slightly in amplitude, but signif-
icantly in time interval. Tables 1 and 2 present the full set of parameters together with the
residual errors, for the three geometries when using one or two exponential functions,
respectively.

11



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

Dimensionless time (t × D/a2)

R
el

ax
at

io
n 

fu
nc

tio
n 

ϕ

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−4

−2

0

2

4

6

E
rr

or
 (

%
)

●

●

Relaxation function ϕ
Fit 1 exponential
Fit 2 exponentials
Error 1 exp.
Error 2 exp.

Figure 5: Approaching the relaxation functionϕ obtained for cylindrical inclusions by one or two exponential
functions. For the reference solution to be accurate even at short times, 500 termswere considered in equation
(27).

Table 2: Parameter values to approach diffusion in a simple-shape inclusion with two exponential functions
(the identification was performed over the dimensionless time interval [0, 1.2] and with 500 terms of the
analytical solutions).

Parameters Plate Cylinder Sphere
α1 0.82014 0.72546 0.66819

τ1/(a
2/D) 0.40146 0.16732 0.09541

α2 0.16064 0.26074 0.32459

τ2/(a
2/D) 0.02218 0.01208 0.00784

Norm of residues 14.10−4 19.10−4 15.10−4
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4. Accounting for memory effects in the coupled formulation

To derive the coupled set of macroscopic equations with memory effects, we begin with
the conservation law for moisture. To account for the memory effect, X should be used
for mass balance while Xeq, the variable tied to water activity aw, should be used as the
driving force. For simplicity, equation (9) is written in a compact manner herein, where
qm represents the total convective flux of moisture, and jm is the total diffusive flux of
moisture. Both terms should be evaluated usingXeq instead ofX to obtain the local value
of Pv through the water activity aw or, for example, to compute the capillary pressure or
the gradient of bound water:

ρ0
∂X

∂t
+∇ · (qm(Xeq)) = ∇ · (jm(Xeq)) (30)

Combining equations (22) and (30) allows for a mass balance equation involving onlyXeq

to be obtained:

ρ0
∂

∂t

(∫ t

0
ϕ(t− τ)

∂Xeq(x, τ)

∂τ
dτ

)
+∇ · (qm(Xeq)) = ∇ · (jm(Xeq)) (31)

Integration by parts allows for a classical formulation with memory effects to be obtained
[41, 40]:

ρ0
∂

∂t

(
aXeq(x, t) +

∫ t

0
k(t− τ)Xeq(x, τ)dτ

)
+∇ · (qm(Xeq)) = ∇ · (jm(Xeq)) (32)

where
a = ϕ(0) and k =

∂ϕ

∂t

a represents the instantaneous response of the solid moisture content when Xeq varies.
It represents the part of the sorption behavior considered as highly rapid regarding the
process time, or the moisture part stored in the gaseous phase in the case of dual-scale
effects. Function k is a kernel function that tends towards 0 at t → ∞ and represents the
fading memory. It can be singular at t = 0, but must be sufficiently regular to exhibit a
smooth behavior in the convolution product [35]. Obviously, the fadingmemory vanishes
when function ϕ is the casual function. In this case, the convolution product disappears.

However, it is noteworthy that Equation (32) is not easy to handle for a multidimensional
computational solution of coupled heat andmass transfer. The numerical implementation
is much easier when the function ϕ can be developed as a series of decreasing exponential
functions. Such a series allows for the convolution product to be transformed into internal
variables, whose evolutions obey simple ODEs.

ϕ(t) = 1−
N∑
i=1

αi exp

(
− t

τi

)
(33)
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This expression is the sum of an instantaneous relaxationwith proportionϕ(0) = 1−
∑
αi

of the full change in equilibrium moisture content and a series of progressive relaxations
of magnitude αi, with relaxation time τi. In this case, equation (22) simplifies to

X(t) = Xeq(t)−
∑
i

(∫ t

τ=0
αi exp

(
− t− τ

τi

)
dXeq

)
= Xeq(t)−

∑
i

φi(t) (34)

Now,we need to derive an equation that can update each internal variableφi(t), as defined
in equation (34). Hence, we express the variation inφi between times t and t+dt as follows:

φi(x, t+ dt) = exp

(
−dt
τi

)
φi(x, t) + αi dXeq(x) (35)

The increment in equilibrium moisture content involved in this equation is the change
in equilibrium due to the change in water activity between t and t + dt: dXeq(x) =
Xeq(aw(x, t+ dt))−Xeq(aw(x, t)).

At each node of the computational domain, the values of the internal variables φi have to
be updated using equation (35). Regardless of the reason for the memory effect, the con-
cept of internal variable holds, provided that function ϕ is defined as a set of exponential
functions.

In a computational code, only one variable, X or Xeq, should be used for the mass bal-
ance. A full formulation in X , more relevant for a mass balance equation, is possible
provided a relation between dX and dXeq can be derived. Such a relation can be obtained
by combining equations (34) and (35):

dXeq(1−
∑
i

αi) = dX +
∑
i

φi(t)

(
exp

(
−dt
τi

)
− 1

)
(36)

This equation allows for the internal variables to be updated using the evolution of dX in
time. However, the condition ϕ(0) > 0 is required for the expression (36) to be inverted,
unless the averaged values over a finite time step were used. We can now propose the
new set of coupled heat and mass transfer equations allowing all memory effects to be
transferred at the macroscopic level:

14



Moisture conservation

ρ0
∂X

∂t
+∇ · (ρwv̄w + ρvv̄g) = ∇ · (ρgfDv∇ωv,eq + ρsDb∇Xb,eq) (37)

Energy conservation

∂

∂t

(
εwρwhw + εg(ρvhv + ρaha) + ρbhb + εsρshs

)
+∇ · (ρwhwv̄w + (ρwhv + ρaha)v̄g)

= ∇ · (λeff∇T + (hv − ha)ρgfDv∇ωv,eq + hbDb∇Xb,eq) (38)

Air conservation
∂ (εgρa)

∂t
+∇ · (ρav̄g) = ∇ · (ρgfDv∇ωa) (39)

Non local equilibrium

Xeq(x, t) = X(x, t) +
∑
i

φi(x, t)

Xb,eq = min(Xfsp, Xeq)

ωv,eq = ωv(aw(Xeq, T )) (40)

Updating memory effects

dφi = (exp(−dt/τi)− 1)φi + αi dXeq

with dXeq =
dX +

∑
i φi(t) (exp (−dt/τi)− 1)

(1−
∑

i αi)
(41)

This formulation represents the key theoretical outcome of the present study. It will be
used and validated on several case studies in the following sections.

5. Computational simulation

5.1. Computational strategy

The macroscopic formulation requires a set of strongly coupled and non-linear equations
to be solved. In the present study, simulations were computed using an in-house code,
TransPore, written in Fortran 95. A fully coupled strategy, with block matrices, was imple-
mented using aNewton–Raphson (NR) schemewith a variable time step. Temperature T ,
moisture contentX and air density ρga are selected as primary variables. The Jacobianma-
trix was evaluated by numerical derivation. One dimensional (1-D) to three-dimensional
versions of TransPore are available. Further details might be found in [31]. The 1-D ver-
sion allows for the entire simulation to be computed in less than one second on a classic
Intel-based computer (i7 at 3 GHz) for a mesh size of 50 CVs. Such a fast code allows
for the use of this computational tool as a physical engine in an inverse procedure [34].
Hence, this version has been embedded in a fully graphical interface, written with the
graphical library Winteracter. This application can be used either for simulation or for an
identification to fit experimental data or simulation data such as a reference dual-scale
modeling.

15



The task of solving the dual-scale formulation is more complicated for several reasons:

• Adual-scale approach requires the fields of allmicro-models (one permesh position
of the macroscopic domain) to be updated along the macroscopic time,

• The two-way coupling between scales (evolution of boundary conditions imposed
to the micro-models and source/sink terms transferred at the macroscopic level)
add strong coupling and non-linearities in comparison to the macroscopic model,

• The low moisture inertia of the macroscopic phase results in an extremely stiff cou-
pling between scales.

The first tests using an explicit coupling between the two scales confirmed the challenge.
Even by artificially increasing the moisture inertia of the macroscopic phase, a full sim-
ulation required one to three days of CPU time on a classic Intel-based computer (i7 at 3
GHz), depending on the configuration. Hence, a completely new code was re-engineered
(TransPore2). The master code solved the macroscopic solution. For the macroscopic ver-
sion, a fully coupled NR strategy was used to handle the non-linearities. Coupling be-
tween scales is implemented in this strategy. At each macroscopic time step, the variation
in the microscopic fields of all micro-models are computed along the macroscopic time
step for the actual macroscopic variable values, but also by shifting each macroscopic
variable. The fluxes supplied to the macro-model are averaged over the macroscopic time
step. This allows for the Jacobian matrix to fully include the dual-scale coupling. With
three variables, this implies that 4N calls to the micro-model are required for each non-
linear iteration of the NR procedure.

The macroscopic time-step evolves along the simulation depending on the global conver-
gence condition, whereas each micro-model continuously adapts its microscopic time-
step to advance by one macroscopic time-step. Owing to this full coupling strategy, the
CPU time was reduced to a few minutes (between 3 and 10 minutes depending on the
configuration) for 25 CVs at the macroscopic, and 21 CVs for each micro-model. This is
500 times faster than an explicit coupling between scales.

5.2. Model parameters

All tests proposed herein are sorption tests with the LDF. As the material remains in the
hygroscopic domain, all parameters related to liquidwatermay be discarded. In addition,
the medium morphology allows for us to assume that the migration of bound water is
negligible at the macroscopic level. The key parameters of the model are therefore

• the sorption isotherm defined by the Hailwood–Horrobin model [16], using the ad-
sorption envelop curve [2]: RH/X = 2.76 + 15.84×RH − 15.26×RH2,

• the thermal conductivity set at 0.05W.m−2.s−1 [30],

• the dimensionless effective water vapor diffusivity f set at 0.6 [23],

• the intrinsic permeability set atK = 6.6.10−11m2 [1]
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The medium permeability is supposed to be small enough for the air to be at rest in the
macroscopic phase. Therefore, the microscopic heat and mass exchange coefficients (hσh
and hσm) were evaluated by assuming a parabolic diffusion equation [28]. With the small
size of the pore, hence the short diffusion distances, these exchange coefficients are very
large and produce boundary conditions very close to Dirichlet conditions. As a conse-
quence, the parameters summarized in tables 1 and 2 are therefore valid to account for
diffusion in the new formulation.

In addition to these key parameters, the geometrical factors and bound water diffusivity
are required for the dual-scale model. The fiber diameter was determined from the mor-
phological observations of fiberboard samples with an environmental scanning electron
microscope (ESEM, FEI Quanta 200). These images show that the solid phase is primarily
composed of isolated fibers with a diameter in the range of 30 to 50 µm, together with
a few fiber aggregations [2]. The fibers are distributed randomly in the mat preparation
but, owing to the consolidation process, their orientation is preferentially parallel to the
panel face. The inclusion radius was set at 20µm.

The source terms Q are computed as the microscopic flux density q times Aσ, the surface
area of ∂Vσ. In the case of the vapor source term as follows:

Qv(t, x) =
Aσ
|V |

qv(t, x) x ∈ Ω (42)

the geometrical factor Aσ/ |Y | (m2/m3) involved in equation (42) is the area of the ex-
change surface between phases σ and γ per unit of macroscopic volume. For the cylin-
ders (the REV depicted in figure 2), the geometrical terms can be simply deduced from
the dimension and macroscopic porosity. Table 3 summarizes the parameter values used
in the simulations.

5.3. Dual-scale simulations

The dual-scale model TransPore2 was used to generate reference tests that will be used to
validate the new macroscopic formulation. Hence, simple sorption tests, similar to those
performed in our laboratory, were simulated:

• Uniform initial moisture content = 0.07 (water mass over dry mass),

• Uniform initial temperature = 33◦C,

• External dry bulb temperature = 33◦C,

• External dew point temperature = 27◦C.

With the sorption isotherm of the LDF, the corresponding equilibrium moisture content
is slightly higher than 0.11.

Simulations were performed using a wide range of values for the bound water diffusiv-
ity Dσ

b : 1, 3, 10, 30, and 100 ×10−14m2.s−1. Referring to the representative elementary
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Table 3: Values of key parameters used in the simulations

Apparent density ργ0 = 160kg.m−3

Macroscopic diffusivity Dγ
eff = 0.60×Dv

Macroscopic conductivity λγeff = 0.05W.K−1.m−1

Intrinsic permeability Kγ = 6.6.10−11m2

Macroscopic heat transfer coefficient hγh = 25W.K−1.m−2

Macroscopic mass transfer coefficient hγm = 0.025m.s−1

Radius of the microscopic particle r = 20µm

Density of the solid phase ρσ0 = 1200 kg.m−3

Macroscopic porosity εγg = 0.87

Geometrical factor Aσ/ |Y | =
2(1− φmac)

r
= 13340
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volume (VER) specified in figure 2, the simulation were performed in 1-D Cartesian coor-
dinates at the macroscopic scale and 1-D axisymmetrical coordinates at the microscopic
scale. The macroscopic mesh comprises 25 CVs, hence 25 micro-models, with each one
being defined by 21 CVs.

Figure 6 presents the two-scale moisture content fields for two contrasted values of bound
water diffusivity: (1.10−14m2.s−1 and 3.10−13m2.s−1) for a 20-mm-thick slab of the LDF.
The macroscopic values of moisture content are plotted on the y-axis while the colored
cylinders represent the microscopic field within each micro-model. For clarity, only one
micro-model out of three is represented herein. Consistently, the MC scale is the same
for the y-axis and for the color legend. In the case of fast diffusion in solid inclusions
(Dσ

b = 3.10−13m2.s−1, Fig. 6 top), the MC field equilibrates easily within the inclusion.
In this case, the fields are almost always uniform within each inclusion (uniform color)
and the macroscopic profiles in the sample thickness are classic diffusion profiles. When
the diffusion in the solid inclusions is significantly reduced (Dσ

b = 1.10−14m2.s−1, Fig.
6 bottom), the microscopic characteristic time is of the same order of magnitude as the
macroscopic one. In this case, steep MC fields are obtained inside the inclusions and
the macroscopic profiles are flatter. In particular, the moisture uptake near the exchange
surface is reduced significantly. A large part of water uptake is now controlled by the
resistance to the microscopic diffusion.

Figure 7 depicts the evolution of three variable values (temperature, moisture content,
and relative humidity) at the core of the slab (mid-thickness) for the five values of bound
water diffusivity. For comparison, the results obtained with the classical macroscopic
model are also plotted in these graphs. It is noteworthy that this was computed using a
completely different in-house computational code (TransPore) with the parameter values
of Table 3 and with the same initial and boundary conditions. For Dσ

b = 1.10−12m2.s−1,
the diffusion inside the fibers is sufficiently fast for the dual-scale model to be extremely
close to the macroscopic model. In this case, the full moisture inertia of inclusions acts
at a short time. As the bound water diffusivity decreases, the gap between the dual-
scale model and the classical macroscopic model increases. The difference between the
macroscopic model and the dual-scale model at mid-thickness can be explained by the
delaying effect of fiber inertia regarding the moisture:

• The initial temperature increase owing to reduced water condensation. At long
times, the curves cross each other because the delayed inertia produces a larger de-
mand for latent heat at long times, compared to the macroscopic model,

• As the resistances tomacroscopic diffusion in the gaseous phase and to boundwater
diffusion in the solid phase act in series, the evolution of moisture content deceler-
ates when the bound water diffusivity decreases. This effect becomes significant for
Dσ
b = 1.10−14m2.s−1,

• As a consequence of moisture inertia in the solid phase, a much faster transmission
of relative humidity change toward the sample core is observed. Again, this effect
becomes significant for the two largest values of Dσ

b .
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Figure 6: Dual-scale simulations for a 20-mm-thick LDF panel submitted to symmetrical boundary condi-
tions. The effect of microscopic diffusivity on the local (fiber) and global (slab thickness) moisture content
field: (top) Dσ

b = 3.10−13m2.s−1 and (bottom) Dσ
b = 1.10−14m2.s−1.
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Figure 7: Dual-scale simulations for a 20-mm-thick LDF panel. Effect of microscopic diffusivity on the evo-
lution of macroscopic variables at mid-thickness: temperature (top), moisture content (middle), and relative
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when Dσ
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6. Validation of the formulation with memory effects

6.1. Computational strategy

The new macroscopic formulation was implemented in the macroscopic version of the
code, TransPore, written in Fortran 95. The same fully coupled strategy, with block matri-
ces, together with a Newton–Raphson (NR) scheme with a variable time step is therefore
adopted. To ensure a fast convergence of the non-linear and coupled set of equations, two
major cautions were adopted to consider the new formulation:

• updating the memory effects (equation 28) was fully implemented in the NR proce-
dure

• the full exponential expression of this equation, instead of a first oder approxima-
tion, was used to avoid error when the time-step is not much smaller than the small-
est value of τi.

Thanks to this efficient computational strategy, the CPU time of the 1-D version remains
similar to the classical macroscopic model. One entire simulation ranges between one
and three seconds on a classic Intel-based computer (i7 at 3 GHz) for a mesh size of 50
CVs. The worse CPU time is obtained in the case of three internal variables (dual-scale
effects + molecular relaxation), with a small value of τ1 and a sum of three αi close to the
unit, which reduces dramatically the mass inertia of the medium. The new macroscopic
formulation therefore represents a dramatic reduction of the CPU time, by a factor 100,
compared to the full dual-scale model.

6.2. Dual-scale effects

The new formulation presented in the previous section has been validated using several
case studies. We first tested the ability of the formulation to capture the dual-scale effect
encountered in the case of storage inclusions placed in a conductive phase. Consistent
with section 4, the diffusion into the fibers was approached by one or two exponential
functions in the modified macroscopic formulation. The more severe dual-scale configu-
ration (Dσ

b = 1.10−14m2.s−1) was tested in this study. Figure 8 shows that studying dif-
fusion using only one exponential function can capture the dual-scale effects (error less
than 0.4◦C for temperature , 0.05% for MC, and 2% for RH). When using two exponen-
tial functions, the prediction is quasi-perfect, except at very short times, with the error
reduced to 0.1◦C for temperature , 0.01% for MC, and 0.5% for RH for times greater than
10 min. These simulations confirm that the dual-scale effect can be reproduced well by
the macroscopic formulation with memory effect. To obtain accuracy, we recommend the
diffusion inside inclusions to be represented by two exponential functions (Table 2).

6.3. Molecular relaxation

In the macroscopic formulation, the global memory effect is treated as the sum of the con-
tributions of each single exponential function. By incorporating molecular relaxation to
the dual-scale configuration, the question arises whether two phenomena occur at differ-
ent spatial scales (fiber and cell wall, as depicted in Fig. 1) can be considered as additive
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Figure 8: Ability of the novel formulation to approach the dual-scale effects using amacroscopic formulation.
The worst case of figure (7), Dσ

b = 1.10−14m2.s−1, was selected as a case study. The kernel function was
defined either by one or two exponential functions.
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effects. To address this question, the dual-scale model is mandatory. Therefore, we gener-
ated two reference solutions usingTransPore2. The parameter valueswere chosen to obtain
two contrasted values of characteristic times for fiber diffusion and molecular relaxation
(Table 4).

Table 4: Parameter values selected to test the additivity of dual-scale effect and molecular relaxation.

Parameter Case study 1 Case study 2

Non-Fickian part α 0.25 0.25

Characteristic time τ 105s 104s

Bound water diffusivity Dσ
b 1.10−13m2.s−1 1.10−14m2.s−1

In the dual-scale model, each phenomenon can be formulated at the appropriate spatial
level: fiber diffusion becomes non-uniform fields inside each inclusion, whereas molecu-
lar relaxation is considered at each point inside the inclusion of eachmicro-model. Hence,
the local time constant for molecular relaxation depends on both the position in the slab
thickness and the position inside the corresponding inclusion.

To simulate the sum of two effects in the modified macroscopic formulation, the propor-
tion of each exponential function must be changed accordingly. Because the contribution
of all effects is additive, the factors set for diffusion should be corrected by the proportion
of molecular relaxation. Using two exponentials for diffusion, the full expression reads

ϕ(t) = 1− (1− αrelax)

(
2∑
i=1

αi exp

(
− t

τi

))
− αrelaxexp

(
− t

τrelax

)
(43)

In equation (43),αrelax and τrelax are the parameters of functionϕ formolecular relaxation,
while αi and τi, for i = 1, 2, are the parameter values for diffusion, as defined in Table 2.

The corresponding simulations obtained with the full dual-scale model with molecular
relaxation and with the macroscopic model with memory effects are depicted in figure
9. Case study 1 uses parameter values typical of those measured on the LDF. In this
case, the time constant of molecular relaxation is much larger than the time constant of
bound water diffusion. Hence, within each micro-model, the history for molecular re-
laxation is quasi-uniform inside the inclusion. The two mechanisms occur subsequently
and are therefore perfectly additive. Consequently, it is not surprising to observe a perfect
agreement between the reference test (dual-scale model) and themacroscopic model with
memory effects (Fig. 9, blue curves). For case study 2, the model parameters were chosen
specifically to obtain similar time constants for both phenomena (time constant of molec-
ular relaxation divided by 10, and time constant of bound water diffusion multiplied by
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Figure 9: Ability of the novel formulation to account for memory effects arising at different spatial scales si-
multaneously. Two contrasted parameter sets were chosen for the time characteristics of molecular relaxation
much longer than or similar to the time characteristics of microscopic diffusion.
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Figure 10: Summary of the present work. When the local equilibrium is not guarantee, the classical formu-
lation of coupled heat and mass transfer fails. A full multi-scale approach is needed to account for non-local
equilibrium and molecular relaxation. The new macroscopic formulation proposed in the present work al-
lows these phenomena to be transferred at the macroscopic scale at a much reduced computational cost.

10). In this case, the macroscopic model no longer fits the dual-scale model ideally (figure
9, red curves). A small discrepancy is observed, namely for a MC between 5 and 15 h.
This proves the loss of full additivity for the two phenomena arising at different spatial
scales. However, the error remains extremely small: less than 0.2◦C, less than 0.1% MC,
and less than 0.3% RH. In conclusion, even for the extreme parameters’ values, assuming
both phenomena to be additive is still possible.

7. Summary

This paper presents a general and rigorous framework able to include non-local equilib-
rium effects in the macroscopic formulation of coupled heat and mass transfer in porous
media. Its content is summarised in Figure 10. In this figure, any classical balance equa-
tion (temporal variation resulting from the divergence of fluxes) at the macroscopic level
is schematised by arrows around a circle.

In the case of non-local equilibrium, several spatial scales must be considered simultane-
ously. A comprehensive way to do this is to use a dual scale formulation, based on the
concept of distributedmicro-models. Its formulation and computational strategy, needed
to deal with the coupling between scales, are presented in detail. Then, the dual-scale
computational model TransPore2 is used to compute reference solutions : configuration
without local equilibrium, but also multi-scale modelling, where molecular relaxation
is added to the dual-scale modelling at the right place (each location of the microscopic
field). The coupling between the scales is always two-way, as noticed by the double arrows
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in figure 10. The boundary conditions applied at a given scale comes from the variable
fields of the upper scale. This allows the resulting evolution of that scale to be computed
and then transferred at the upper scale as source/sink terms.

The new framework was then rigorously developed. The related computational strategy,
which embeds the local history in a memory function (figure 10), was also detailed to al-
low the reader to include this new formulation in existing macroscopic codes. This strat-
egy includes the development of the memory functions as a sum of exponential functions
and ODEs associated to the time-evolution of the internal variables tied to these exponen-
tial functions. A series of reference solutions, computed with the comprehensive multi-
scale model, allowed us to demonstrate the ability of the new formulation to accurately
report diffusion inside microscopic inclusions with only two internal variables. Finally,
the last section proved that twomicroscopic effects arising at different spatial scales (dual-
scale fields and molecular relaxation) can be transferred successfully and simultaneously
at the macroscopic level.

As final output of this paper, a decision tree was derived to help the reader choose the
right model in the sense of the right balance between complexity and precision (Fig. 11).

The classical, yet comprehensive, formulation of coupled heat andmass transfer in porous
media should be considered first. In this model, all balance equations arise at the same
spatial scale. Indeed, onemust have this framework inmind as backgroundof themost so-
phisticated approaches. When the assumption of local equilibrium applies, the 3-variable
model is comprehensive and allows a large range of configurations to be simulated, namely
any "high temperature" configuration which gives rise to a gradient of the total pressure
inside the medium. In some cases, this model can be simplified to the 2-variable model
which still accounts for the heat and mass coupling [29].

The failure of local equilibrium is not so obvious to evidence [45]. A simple rule con-
sists in comparing the characteristic time constants involved in the problem: time con-
stants of macroscopic phenomena (thermal conduction, mass diffusion, bulk flow related
to Darcy’s law...), similar phenomena involved at the microscopic scale (transfer in frac-
tured rocks, bound water diffusion in fibres, thermal diffusion in inclusions...) and spe-
cific phenomena such as molecular relaxation in polymers. The macroscopic phenomena
depends on the product size (typically as the squared size for diffusive phenomena) while
the others depend solely on the porousmediummorphology and its composition. The as-
sumption of local equilibrium requires that all macroscopic time constants bemuch larger
than all other time constants.

If local equilibrium does not hold, a multi-scale approach is mandatory. In this case, the
first question is wether the local phasemight be out of equilibriumANDparticipate to the
macroscopic fluxes. When such a situation arises, the multi-scale model should be even
more complex than the concept of distributed micro-models used in this work [5]. How-
ever, most non-local equilibrium configurations are explained by a slow phase (a storage
phase) generating source/sink terms. In order to apply the new framework proposed in
this work, the behavior of the storage phase must be represented by a constant memory
function. Indeed, if the memory function changes over time, it is no longer possible to
account for the local history via a convolution product. This is the case when the porous
morphology changes over time or when the microscopic boundary conditions affect the
memory functions and change over time (variable fluid velocity for example).
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Figure 11: Identification key to choose the most appropriate coupled heat and mass transfer model (level of
complexity adapted to the configuration).

The new formulation applies in the case of constant memory functions. It allows the cou-
pling between scales to be considered with accuracy at a much lower CPU cost, with a
typical gain of two orders of magnitude. However, once the decision tree goes up to the
new formulation, the relevant memory functions are still to be determined. This can be
done experimentally by performing experiments on very small samples. In fact, reduc-
ing the sample size allows the macroscopic time constants to become smaller than the
microscopic ones and therefore to focus the sample answer on microscopic effects. In ad-
dition, small samples impose almost the same conditions at any point, which allows the
memory functions to be obtainedwithout deconvolution by applying a step function. The
memory function could also be determined theoretically, either by analytical solutions in
simple cases (simple geometry, linear phenomenon, simple boundary conditions) or by
computational simulation. In this sense, the increasing performances of 3-D imaging and
High Performance Computation make it possible to perform simulation on actual pore
morphologies [23]. In the case of packed beds, the exchange between the liquid and solid
phase contributes to the global resistance to transfer [44] : the boundary conditions should
then be considered properly, which remains an open question. Solutions computed with
classical CFD tools on real or virtual bed morphologies [39, 36] are very promising.

8. Conclusion

The primary contribution of this study was a macroscopic formulation of coupled heat
and mass transfer that considered memory effects observed in lignocellulosic products.
Transferring at the macroscopic level dual-scale phenomena and molecular relaxation in-
volved amemory function that appeared as a convolution product. This new formulation
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is mid-way between the classical macroscopic set of coupled transfer equations and the
comprehensive, coupled, dual-scale formulation using the concept of distributed micro-
models. To ease the computational solution of the set of equations, the memory function
was decomposed as a series of exponential functions. Each one yielded an internal vari-
able that obeyed a simple ODE. The incremental procedure was described clearly for an
easy implementation by the reader. The threemajor results of the present study, validated
using a full dual-scale model, are as follows:

• The dual-scale effects can be approached accurately by two exponential functions,

• Even though dual-scale mechanisms and molecular relaxation do not occur on the
same scale, both can be considered at the macroscopic scale as the sum of the re-
spective memory functions.

• The newmacroscopic formulation allows relevant results to be obtained with a dra-
matic reduction of theCPU time (a factor 100) compared to the full dual-scalemodel.

The new macroscopic formulation together with the computational procedure proposed
in this study may be applied to various configurations involving coupled transfers be-
tween two spatial scales. In particular, it could be applied to processes involving coupled
heat and mass transfer in packed beds.
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9. Notations

The notations are summarized in tables (5 to 7)

References

[1] W. Ai, H. Duval, F. Pierre, and P. Perre. A novel device to measure gaseous permeability over
a wide range of pressures: characterisation of slip flow for Norway spruce, European beech,
and wood-based materials. Holzforschung, 71(2):147–162, 2017. doi: 10.1515/hf-2015-0264.

[2] G. Almeida, R. Rémond, and P. Perré. Hygroscopic behaviour of lignocellulosic materials:
Dataset at oscillating relative humidity variations. Journal of Building Engineering, 170:716–
724, 2018.

[3] T. Arbogast, Jr. J. Douglas, andU.Hornung. Derivation of the double porositymodel of single
phase flow via homogenization theory. SIAM Journal on Mathematical Analysis, 21(4):823–836,
1990.

[4] T. Busser, J. Berger, A. Piot, P. Pailha, and M. Woloszyn. Dynamic experimental method for
identification of hygric parameters of a hygroscopic material. Building and Environment, 131:
197—209, 2018.

[5] E. J. Carr, P. Perré, and I. W. Turner. The extended distributed microstructure model for
gradient-driven transport: A two-scale model for bypassing effective parameters. Journal of
Computational Physics, 327:810–829, 2016.

29



Table 5: List symbols (Latin letters)

Symbol Name Unit

aw sorption isotherm (water activity) -
c specific heat capacity J.kg−1.K−1

D diffusion coefficient m2.s−1

f dimensionless diffusion factor -
h specific enthalpy J.kg−1

hh heat transfer coefficient W.m−2.K−1

hm mass transfer coefficient m.s−1

∆hv specific enthalpy of evaporation J.kg−1

jk diffusive flux of component k kg.m−2; s−1

Jq heat flux W.m−2

K intrinsic permeability m2

K intrinsic permeability tensor m2

k relative permeability -
k relative permeability tensor -
M molar mass kg.mole−1

n normal unit vector -
P pressure Pa

r radius m

R gas constant J.kg−1.K−1

R inclusion radius m

T temperature K or ◦C
V averaging volume m3

v general velocity vector m.s−1

X solid moisture content (dry basis) -

bold font vector or tensor

30



Table 6: List of symbols (Greek letters)

Symbol Name Unit

α pre-exponential factor -
ε volume fraction -
λ thermal conductivity W.m−1.K−1

ϕ memory function -
φ internal variable -
µ dynamic viscosity kg.m−1.s−1

µ vapour resistance ratio -
ρ density kg.m−3

τ time constant s

∂ partial derivative -
∇ gradient -
∇· divergence -

Table 7: Subscripts and superscripts

Subscripts Meaning

a air
b bound water
c capillary
eff effective property
eq equilibrium
fsp fiber saturation point
g relative to the gaseous phase
relax molecular relaxtion
v water vapour
vs saturated water vapour
w liquid water
γ macroscopic scale
σ microscopic scale
∞ at large distance from interface

Superscript Meaning

ψ averaged of variable ψ over the REV
ψ
` intrinsic average of ψ over phase `

31



[6] A. Challansonnex, J. Casalinho, and P. Perré. Non-Fickian diffusion in biosourced materials:
prediction of the delay between relative humidity andmoisture content. Energy and Buildings,
in press, 2019.

[7] G.N. Christensen. Sorption and Swelling within Wood Cell Walls. Nature, 213:782–784, 1967.
[8] J.D. Cook and R.E. Showalter. Microstructure diffusion models with secondary flux. Journal

of Mathematical Analysis and Applications, 189:731–756, 1995.
[9] J. Crank. A theoretical investigation of the influence of molecular relaxation and internal

stress on diffusion in polymers. Journal of Polymer Science, 11(2):151–168, 1953.
[10] J. Crank. The mathematics of diffusion. Oxford University Press, 1975.
[11] D. Crawley, L. Lawrie, F. Winkelmann, W. Buhl, Y. Huang, C. Pedersen, R. Strand, R. Liesen,

D. Fisher, M. Witte, et al. Energyplus: creating a new-generation building energy simulation
program. Energy and buildings, 33:319–331, 2001.

[12] J.M.P.Q. Delgado, N.M Ramos, E. Barreira, and V.P. De Freitas. A critical review of hygrother-
mal models used in porous building materials. Journal of Porous Media, 13, 2010.

[13] J.G. Downes and B.H. Mackay. Sorption kinetics of water vapor in wool fibers. Journal of
Polymer Science, 28:45–67, 1958.

[14] L.H. Frandsen, S. Svensson, and L. Damkilde. A hysteresis model suitable for numerical
simulation of moisture content in wood. Holzforschung, 61:175–181, 2007.

[15] W.G. Gray. A derivation of the equations for multiphase transport. Chemival Engineering
Science, 30:229–233, 1975.

[16] A.J. Hailwood and S. Horrobin. Absorption of water by polymers: analysis in terms of a
simple model. Transactions of the Faraday Society, 42B:84–102, 1946.

[17] U. Hornung, editor. Homogenization and porous media. Springer–Verlag, New York, 1997.
[18] J. Jacques, M. Labat, and M. Woloszyn. Dynamic coupling between vapour and heat transfer

in wall assemblies : Analysis of measurements achieved under real climate. Building and
Environment, 87:129–141, 2015.

[19] K. Krabbenhoft and L. Damkilde. Double porosity models for the description of water infil-
tration in wood. Wood Science and Technology, 38:641–659, 2004.

[20] H.M.Künzel, A.Holm, D. Zirkelbach, andA.N.Karagiozis. Simulation of indoor temperature
and humidity conditions including hygrothermal interactions with the building envelope.
Solar Energy, 78:554–561, 2005.

[21] J. Kwiatkowski, M. Woloszyn, and J.J. Roux. Influence of sorption isotherm hysteresis effect
on indoor climate and energy demand for heating. Applied Thermal Engineering, 31:1050–1057,
2011.

[22] D. Lelievre, T. Colinart, and P. Glouannec. Hygrothermal behavior of bio-based building ma-
terials including hysteresis effects: Experimental and numerical analyses. Energy and Build-
ings, 84:617–627, 2014.

[23] M. Louërat, M. Ayouz, and P. Perré. Heat and moisture diffusion in spruce and wood panels
computed from 3-D morphologies using the Lattice Boltzmann method. International Journal
of Thermal Sciences, 130:471–483, 2018.

[24] U. Nyman, P.J. Gustafsson, B. Johannesson, and R. Hägglund. A numerical method for the
evaluation of non-linear transient moisture flow in cellulosic materials. International Journal
for Numerical Methods in Engineering, 66:1859–1883, 2006.

[25] W. Olek, P. Perré, and J. Weres. Implementation of a relaxation equilibrium term in the con-
vective boundary condition for a better representation of the transient boundwater diffusion
in wood. Wood science and technology, 45:677–691, 2011.

[26] W. Olek, R. Romain, J. Weres, and P. Perré. Non-fickian moisture diffusion in thermally mod-
ified beech wood analyzed by the inverse method. International Journal of Thermal Sciences,
109:291–298, 2016.

[27] P. Perré. Multiscale aspects of heat andmass transfer during drying. Transport in PorousMedia,
33:2463–2478, 2007.

[28] P. Perré. Multiscalemodelling of drying as a powerful extension of themacroscopic approach:
application to soid wood and biomass processing. Dryng Technology, 28:944–959, 2010.

[29] P. Perré. The proper use of mass diffusion equations in drying modeling: Introducing the
drying intensity number. Drying Technology, 33:1949–1962, 2015.

[30] P. Perré and A. Challansonnex. On the importance of heat and mass transfer coupling for the

32



characterization of hygroscopic insulation materials. International Journal of Heat and Mass
Transfer, 133:968–975, 2019.

[31] P. Perré and I. W. Turner. A 3D version of Transpore: a comprehensive heat andmass transfer
computational model for simulating the drying of porousmedia. International Journal for Heat
and Mass Transfer, 42:4501–4521, 1999.

[32] P. Perré, R. Remond, and I. W. Turner. Comprehensive drying models based on volume aver-
aging: Background, application and perspective. In E. Tsotsas and A. S. Mujumdar, editors,
Modern Drying Technology, volume 1. Wiley-VCH, 2007.

[33] P. Perré, R Rémond, and I Turner. A comprehensive dual-scale wood torrefaction model:
Application to the analysis of thermal run-away in industrial heat treatment processes. Inter-
national Journal of Heat and Mass Transfer, 64:838–849, 2013.

[34] P. Perré, F. Pierre, J. Casalinho, andM. Ayouz. Determination of themass diffusion coefficient
based on the relative humidity measured at the back face of the sample during unsteady
regimes. Drying Technology, 33:1068–1075, 2015.

[35] M. Peszynska. Analysis of an integro–differential equation arising from modelling of flows
with fading memory through fissured media. Journal of Partial Differential Equations, 8:159–
173, 1995.

[36] Victor Pozzobon, Julien Colin, and Patrick Perré. Hydrodynamics of a packed bed of non-
spherical polydisperse particles: A fully virtual approach validated by experiments. Chemical
Engineering Journal, 354:126–136, 2018.

[37] R. Rémond and G. Almeida. Mass diffusivity of low-density fibreboard determined under
steady- and unsteady-state conditions : Evidence of dual-scale mechanisms in the diffusion.
Wood Material Science & Engineering, 6:23–33, 2011.

[38] R. Rémond, G. Almeida, and P. Perré. The gripped-box model: A simple and robust formu-
lation of sorption hysteresis for lignocellulosic materials. Construction and Building Materials,
170:716–724, 2018.

[39] K. Salem, E. Tsotsas, and D.Mewes. Tomographic measurement of breakthrough in a packed
bed adsorber. Chemical engineering science, 60:517–522, 2005.

[40] R. E. Showalter. Distributed microstructured models of porous media. International Series of
Numerical Mathematics, 114:155–163, 1993.

[41] R.E. Showalter. Diffusion Models with Microstructure. Transport in Porous Media, 6:567–580,
1991.

[42] J.C. Slattery. Momentum, Energy and Mass Transfer in Continua. McGraw-Hill, New York, 1972.
[43] A. Szymkiewicz and J. Lewandowska. Micromechanical approach to unsaturated water flow

in structured geomaterials by two-scale computations. Acta Geotechnica, 3:37–47, 2008.
[44] E. Tsotsas. Low péclet number transient heat transfer in packed beds: re-evaluation of the

data of donnadieu. Chemical Engineering Science, 48:3434–3437, 1993.
[45] Albert J Valocchi. Validity of the local equilibrium assumption for modeling sorbing solute

transport through homogeneous soils. Water Resources Research, 21:808–820, 1985.
[46] L.Wadsö. Describing non-Fickianwater-vapour sorption inwood. Journal ofMaterials Science,

29:2367–2372, 1994.
[47] S. Whitaker. Simultaneous heat, mass and momentum transfer in porous media: a theory of

drying. In J. P. Hartnett and T. F. Irvine, editors, Advances in Heat Transfer, volume 13, pages
119–203. Elsevier, 1977.

[48] S. Whitaker. Coupled transport in multiphase systems: a theory of drying. In Y. I. Cho
J. P. Hartnett, T. F. Irvine and G. A. Greene, editors, Advances in Heat Transfer, volume 31,
pages 1–104. Elsevier, 1998.

[49] M. Woloszyn and C. Rode. Tools for performance simulation of heat, air and moisture con-
ditions of whole buildings. In Building Simulation, volume 1, pages 5–24. Springer, 2008.

33



1Macroscopic
scale

Microscopic
scale

Molecular
scale

2

1

1Macroscopic
scale

Memory	
functions

2

LOCAL	EQUILIBRIUM ABSENCE	OF	LOCAL	EQUILIBRIUM

Multiscale modelling
ü Comprehensive
ü CPU	intensive
ü References solutions

Classical macroscopic
formulation
ü Accounts for	heat and	mass	

coupling
ü Comprehensive when

equilibrium stands

Macroscopic
scale

New	macroscopic formulation
ü Accurate for	a	storage phase
ü CPU	efficient
ü Validated thanks to	the	full	

multiscale modelling




