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Abstract 

Biomass feeding problems greatly hinder the industrialization of entrained-flow gasification systems for 

production of 2nd generation biofuels. Appropriate DEM modelling could allow engineers to design 

solutions that overcome these flow problems. This work shows the application of a DEM calibration 

framework to produce a realistic, calibrated and efficient material model for lignocellulosic biomass.  A 

coarse (500-710 µm) and a fine (200-315 µm) sieving cuts of milled poplar were used in this study. The 

elongated shape and the cohesive behavior were respectively simulated using a coarse-grained multisphere 

approach and a cohesive SJKR contact model. Measurements of three physical responses (angle-of-repose, 

bulk density, a retainment ratio) allowed calibration of the sliding (µs) and rolling friction (µr) coefficients 

and the cohesion energy density (CED). Using a statistical analysis, the most influential calibration 

parameters for each bulk response were identified. A Non-Dominated Sorting Genetic Algorithm was used 

to solve the calibration multi-objective optimization problem. Several sets of optimal solutions reproduced 

accurately the three physical responses and the experimental shear responses were closely reproduced by 

simulations for the population of coarse particles. The DEM calibration framework studied here aims to 

produce material models useful for assessing flow behavior and equipment interaction for biomass particles.  

 

Keywords: Woody biomass powder, Discrete Element Method, Parameter calibration, Multi-objective 

optimization, Cohesion 

 

Highlights 

 A realistic and calibrated DEM model for cohesive biomass powder is obtained. 

 A multisphere representation reproduces the elongated shape of particles. 

 A coarse-graining approach is used to reduce simulations runtime. 

 Three contact parameters are calibrated using a genetic algorithm of optimization. 

 Optimal solutions reproduce accurately the experimental physical responses. 
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1. INTRODUCTION 

Entrained-flow biomass gasification appears one of the most suitable technology for production of 

second-generation biodiesel, mainly because of its great flexibility for treating a variety of biomass feedstock 

and because it generates the purest syngas [1,2]. This process requires lignocellulosic biomass to be fed in 

sub-millimetric powder form. However, a major technical obstacle for a cost-effective industrialization of 

this technology is related to the feeding, handling and transport of biomass particles. Unsteady flow and 

equipment blockages are linked to the fibrous and cohesive characteristics of biomass powders, as well as 

to their relatively low weight per unit volume. Despite the importance of achieving trouble-free flow and 

the frequency of feeding problems, much more attention has been devoted typically to reactor design and 

operation than to biomass feeding and flow characterization [3]. 

Evaluation and design of biomass feeding systems need a full comprehension of the effects of biomass 

intrinsic properties such as particle size and shape on the flow characteristics. For this purpose, the use of 

numerical simulations constitutes a powerful alternative to experimental approaches, which are often limited 

regarding the exploration domain of influential variables, the presence of intrinsic sample variability, or as 

for the experimental difficulty of isolating individual parameter effects.  

The discrete element method (DEM) is the most frequently implemented method when designing and 

modelling particulate bulk solid handling systems. The particulate system is modelled as an assembly of 

singular discrete and interacting particles. Particle positions, velocity and forces acting on each particle are 

calculated at small intervals based on a force-displacement contact law and Newton’s second law of motion 

[4].  Whilst DEM simulations are being used more and more extensively in a wide range of applications, the 

question of whether DEM is capable of producing quantitative predictions, rather than only qualitative 

representations of a granular solid remains largely unanswered. Therefore, one of the main constraints for 

application of DEM in an industrial context is the determination of the input parameters needed to 

adequately simulate the behavior of particulate systems.   

Due to the disparity between physical properties obtained via traditional tests and the simulation 

parameters such as stiffness, sliding and rolling friction, calibrations tests are essential. Though scarce, 

research in the area of calibrating and modelling biomass particles includes the determination of physical 
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properties of briquettes to be used in DEM models by Ramirez-Gomez et al. [5] and the study through 

DEM of feeding systems for wood-chips by Rackl et al. [6]. More research remains to be done regarding 

measurements or calibrations of biomass particles at a sub-millimetric and powder scale. 

Calibration of biomass feedstocks can be complicated by the elastic, fibrous or stringy bulk behavior 

related to individual particle characteristics and requires adaptation of existing contact models [7]. 

Integration of realistic shape models remains also of major concern. Indeed, previous DEM investigations 

have primarily focused on spherical particles. However, non-spherical powders such as biomass powders 

are more often encountered in industrial applications. Recent advances in computing speed and power have 

opened the way to more complex approaches for non-spherical particles representation. Possible shape 

descriptors in two and three dimensions are multi-sphere approaches, ellipses or ellipsoids, super-quadric 

bodies, discrete functions, shape combinations, composite particles and flexible fibers models. An overview 

of possible methods for DEM particles representation is given in [8–11].  

Another major challenge for DEM simulations is the limitation regarding the number of particles that 

can be modelled in a reasonable time period Most of DEM simulations considers a restricted number of 

particles (in the order of hundreds of thousands) with diameters in the order of some millimeters to achieve 

a reasonable computing time [12]. In industrial practice, however, it is often necessary to deal with billions 

of particles within a wide range of particle sizes. For this reason, it is unavoidable to upscale the particle size 

to reduce the total number of particles and thus the computational time. Several approaches of particles 

scale-up have been developed and can be generally sorted as: “exact scaling” [13–15], “coarse-graining” [16–

19]  and “cutting-off” [19,20]. Exact scaling has no advantage regarding the reduction of the number of 

particles, so the computation time can be reduced, as scaling factors are applied to both the equipment 

geometries and the particles size. Coarse-graining is defined as the reduction of computational cost by 

replacing actual particles by scaled representative models [17]. The scaling factor in the coarse-graining 

approach is only applied to the radius or volume of the particle, while the geometries of the equipment are 

not scaled. Coarse-graining approaches has been widely applied to spherical cohesionless materials 

[16,17,21,22] but, besides works by Thakur et al. [23], little research about its relevance on simulation of 

elongated and cohesive particles has been made.  
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The main aim of this paper is to describe the application of a calibration framework proven successful 

for spherical materials [24–26] to biomass powders which are constituted of sub-millimetric elongated 

particles and have cohesive characteristics. In addition, other subjacent goals are: (i) to explore the usefulness 

of a coarse-graining approach for simulation of a large number of elongated biomass particles (ii) to assess 

the influence of DEM calibration parameters on the bulk properties of the material (iii) to illustrate the 

trade-offs encountered when dealing with multiobjective calibration and the multiplicity of valid solutions. 

In a broader perspective, this work intends to establish calibrated, realistic and efficient material models 

allowing the assessment of the effects of biomass particle properties on bulk behavior. This will allow the 

study of efficient design strategies of handling equipment for powdered lignocellulosic biomass.  

 

2. MATERIALS AND METHODS 

2.1. Samples preparation and particle size and shape characterization 

Poplar was chosen as a representative for lignocellulosic biomass as it is a promising energy crop, namely 

due to its fast growth in temperate climates. Additionally, the development of poplar genotypes with 

improved yield, higher pest resistance, increased site adaptability and easy vegetative propagation has made 

poplar a commercially valuable energy crop [27,28]. The poplar tree selected for the present study came 

from a forest located in La Suippe valley in Auménancourt-le-Petit (France). The tree was shopped and cut 

in boards that were subsequently dried. 

Samples of 60x80x15 mm3 were cut from the boards and ground using a Retsch SM300 cutting mill 

with a bottom sieve of 1 mm trapezoid holes at the outlet. The powders obtained after grinding were sieved 

to obtain two well differentiated sieving cuts representative of coarse and fine particles. A vibratory sieve 

shaker Retsch AS 200 at a frequency of 60 Hz for 20 minutes was used along with sieves of opening 500 µm 

and 710 µm for the coarse cut and 200 µm and 315 µm for the fine cut.  

A Sympatec-QICPIC morphological particle size analyzer was used to obtain biomass particles size 

distribution (PSD) after sieving [29]. The values of the descriptors of particles size distribution and shape 

distribution are listed in Table 1. The minimum value of the Feret diameters over all orientations of the 

particle is used as the magnitude characterizing particles size. The 50th centile of the cumulative volume 
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distributions (x50) was taken as a mean size descriptor of each size distribution. PSD span (Sx) was calculated 

from values of the 90th and 10th centiles as: 

   90 10 90 10/xS x x x x    (1) 

Particle shape was characterized through the aspect ratio, a, which is defined as the ratio between the 

minimum and the maximum Feret diameters for a given particle. Mean values of the aspect ratio, a50 were 

calculated as the 50th centile of the cumulative aspect ratio distributions, and the aspect ratio span Sa is 

defined by: 

   90 10 90 10/aS a a a a    (2) 

where a90 and a10 correspond to the 90th and 10th centiles of the aspect ratio distribution, respectively. 

Table 1. Samples nomenclature and size/shape characteristics. 

Sample Sieving cut (µm) x50 (µm) x90 (µm) x10 (µm) Sx a50 Sa 
1 (Coarse sieving cut) 500-710 746 1092 519 0.36 0.38 0.49 
2 (Fine sieving cut) 200-315 352 513 243 0.36 0.42 0.53 

 

2.2. Bulk behavior tests 

The first stage in the DEM calibration procedure consists of choosing an adequate number of bulk 

experiments that characterize particles bulk behavior. Suitable calibration measurements should: (i) be easy 

to implement in laboratory tests and time-efficient, (ii) produce sufficiently discriminating values from 

variations in material properties and (iii) be highly reproducible and repeatable. From this point of view, the 

bulk setups described hereafter have been proven suitable for cohesive materials such as biomass powders, 

according to preliminary tests made as part of this work.  

2.2.1. Angle-of-Repose from bulk solid heaps 

Angle-of-repose measurements have been extensively used in previous research for calibration of DEM 

models for bulk materials [22,30–32], with special focus on non-cohesive materials.  

Conventional methods for measuring the AoR such as the lifting cylinder test [19] were tested in the 

preliminary stages of this work. Due to the cohesive strength and interlocking effects within biomass 
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samples, stable structures were formed regardless of the filling method or the cylinder size. As a result, this 

method was unsuccessful to obtain a heap from which the AoR could be calculated.  

A poured AoR method adapted from [33,34] was used in this work. Repeatable measurements of the 

AoR were attained by pouring 40 g of the powders manually over a stainless steel inclined surface, and then 

measuring the slope of the heap formed over a flat paper surface by the particles flowing out of the ramp 

(Figure 1). The inclination of the surface was fixed to be θ = 40° for the coarse samples and θ = 50° for the 

finer. The inclination was measured using a calibrated angle-meter fixed to the inclined surface. Flow rate 

was controlled manually to avoid accumulation of the particles on the surface and set to be around 0.5 g/s. 

A camera taking images from a side view of the heap was placed always at the same position during the 

experiments. Each measurement was repeated seven times. 

Image analysis using ImageJ [35] allowed heap’s profile extraction and AoR determination by linear 

regression. Shape and symmetry of the heap were occasionally influenced by flow intermittencies, so values 

of AoR were calculated from the left side of the heap as it was the region less sensitive to abrupt 

perturbations. 

 

Figure 1. AoR setup: a. Heap formation and main setup dimensions; b. Examples of biomass powders heaps. 

For calculation of the AoR, a direct linear regression procedure using the heap’s surface line instead of 

an indirect measurement from the heap’s diameter and height [36] was preferred. Indeed, several authors 
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have shown that there could be significant differences in AoR measurements depending on the chosen 

method of calculation, especially for asymmetric heaps [37–39]. Indirect methods can be very sensitive to 

the choice of the extreme points of the heap, while a calculation including the entire profile line represents 

better the pile shape. In all cases, relatively symmetric heaps were obtained and determination coefficients 

(r2) of linear regressions were always over 0.95.  

2.2.2. Bulk density 

Loose bulk density, ρb in kg/m3, refers to the ratio of the mass of bulk sample ml over its aerated volume 

Vl ( /b l lm V  ). It represents the most loosely packed density of the material. Around 50 ml of oven-dried 

samples were smoothly poured into a graduated plastic vessel, and the mass of solid was then recorded. 

Each measurement was repeated for six refills using different oven-dried powder of the same sample. 

2.2.3. Rectangular container test 

Preliminary studies showed that calibrated parameters for biomass powders using only information 

from AoR and bulk density measurements did not represent a realistic cohesive flow behavior when particles 

settled inside a container. Rectangular containers, also called “shear box” or “ledge test”, have been used in 

previous research for DEM calibration tests [19,32,40]. Therefore, a rectangular container with adjustable 

walls was used in this work for complementary calibration (Figure 2). Walls were adjusted to adapt to the 

available volume of sample, so that the final dimensions of the container were 25 cm (height) x 6 cm (length) 

x 5.7 cm (width). The bulk material was poured in the volume and the powder’s surface was carefully kept 

flat at the end of the pouring. The final height of the stack was 7 cm. The cabin lid of the container was 

then lifted, and particles were allowed to flow out of the volume. 
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Figure 2. Rectangular container device. a. Container. b. Example of a sample inside a volume reduced by the adjustable walls. 

For simulation purposes, the retainment ratio p is defined by: 

0

rm
p

m
  (3) 

where rm is the mass remaining in the volume after the cabin lid is lifted, and 0m corresponds to the mass 

initially poured inside the container. 

2.2.4. Ring shear tester 

A RST-XS Schulze ring shear tester [41,42] was used to assess the flow properties of the biomass 

powders. The ring shear tester is a widely-used device to measure flow properties of powders, including 

unconfined yield strength, angle of internal friction and wall friction. The standard procedure leads to results 

with low variability [41]. A consolidation stress σpre = 5 kPa, considered as representative of the stress range 

for industrial applications, was tested [43]. Three shear points at 25%, 50% and 75 % of σpre were used to 

determine the yield locus of each sample. The yield locus curves were regressed from experimental points 

by a linear regression. 

2.3. DEM simulations setup 

This section contains an overview of the DEM contact model used in this work as well as the procedure 

for representing particles characteristics through a multisphere and coarse-graining approach. Then the 

simulation setup for each bulk test is presented. 
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2.3.1. DEM contact model 

In this study, simulations were run using the public version of LIGGGHTS 3.8.0 DEM code [44], on 

a E5-2620 v4 2.10 GHz Intel® Xeon® machine with 125.8 GB of RAM, and with parallelization on 8 cores. 

A Hertz-Mindlin contact model along with an elastic-plastic spring-dashpot (EPSD2) rolling friction model 

and a simplified Johnson-Kendall-Roberts (SJKR) cohesion model were used. The Hertz-Mindlin model 

stands as the most commonly used contact model due to its efficient and accurate force calculations. A 

representation of the contact model, accounting for a spring elastic force, a viscous damping and a frictional 

slider in the tangential direction, is shown in Figure 3 [45]. At any time t, the equations governing the 

translational and rotational motion of particle i of mass mi and radius Ri can be written as: 

 e d cohi
i j ij ij ij i

d
m m

dt
    

v
F F F g  (4) 

and 

 t ri
i j ij ij

d
I

dt
  

ω
T T  (5) 

Where iv and iω are the translational and rotational velocities of particle i, and iI  is the moment of inertia 

of the particle. The forces involved are: the gravitational force img and the forces between particles (and 

between particles and walls) which include the an elastic force e
ijF , a viscous damping component d

ijF  and 

cohesive contributions through the c o h
i jF  term. The torque acting on particle i due to particle j includes two 

components: t
i jT  which is generated by the tangential force and causes particle i to rotate, and r

ijT , the 

rolling friction torque generated by asymmetric distribution of normal contact force and slows down the 

relative rotation between particles in contact [46]. If particle i undergoes multiple interactions, the individual 

interaction forces and torques sum up for all particles interacting with particle i. The equations for 

calculation of the particle-particle interaction forces within the Hertz-Mindlin contact model are listed in 

Table 2. 
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Table 2. Equations for calculations of forces and torques on particle i according to the Hertz-Mindlin model. 

Force or torque contribution Equation 

Normal elastic force, 
,

e
ij nF  3/2

, ,
4

3n ij n eff eff ij nk Y R δ δ  

Normal damping force, 
,

d
ij nF   1/2

, , ,2 2

2 5 / 6 ln(e)
2

ln (e)
n ij n eff eff ij n eff ij nY R m 


 


v v  

Tangential elastic force, 
,

e
ij tF  

, , ,8t ij t eff eff ij n ij tk G R δ δ  

Tangential damping force, 
,

d
ij tF   1/2

, , ,2 2

2 5 / 6 ln(e)
8

ln (e)
t ij t eff eff ij n eff ij tG R m 


 


v v  

Coulomb friction limit 
,ij tδ  truncated to satisfy , , , ,

e e d coh
ij t s ij n ij n ij nµ  F F F F  

Torque by tangential forces, t
i jT   , ,

e d
ij ij t ij t R F F  

Torque by rolling friction, r
ijT  EPSD2 model 

Where 1 1 1m m meff i j  , 1 1 1R R Reff i j  ,    2 21 1 1Y Y Yeff i i j j     ,      1 2 2 1 2 2 1G Y Yeff i i i j j j         ,    R R Rij i j i i j  R r r , 

e : coefficient of restitution, Y : Young’s modulus, G : shear modulus, ν: Poisson’s ratio. 

Regarding rolling friction modelling, the alternative elastic-plastic spring-dashpot model EPSD2 

[47] adds an additional torque contribution to the particles motion given by: 

,
,

r r k
ij ij r r ijk   T T θ  (6) 

Where ,r k
i jT is a torque component modelled as a mechanical spring, rk is the rolling stiffness and ,r ijθ  is the 

incremental relative rotation between two particles. The torque contribution is truncated so:  

, , maxr k r
ij ij r eff nµ R T T F  (7) 

Where rµ is the rolling friction coefficient, effR  the effective radius and , m a xr
i jT being the limiting spring torque 

which is achieved at a full mobilization rolling angle m
r . In the EPSD2 model, the rolling stiffness rk is 

defined as: 

2
r t effk k R  (8) 

Where tk  corresponds to the tangential (i.e. shear) stiffness. Figure 3b shows the mechanism of rolling 

resistance and the physical meaning of the coefficient of rolling friction rµ, which is a scalar value that 

represents the eccentricity of the resulting normal force exerted by a surface on a rolling particle. In the 

EPSD2 model rµ does not appear explicitly in the expression for the rolling stiffness (as for CDT or EPSD 

models) but instead is used for restricting the maximum spring torque.  
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Figure 3.Schematic representation of the contact model used in this study: a) Hertz-Mindlin contact model; b) Mechanism of rolling resistance; c) rolling 

resistance angle [48] 

The simplified Johnson-Kendall-Roberts model (SJKR) [49], used to simulate cohesion between particles, 

adds an additional normal force 
,

c o h
i j nF  tending to maintain the contact between two particles, given by: 

,
coh
ij n CED A F  (9) 

Where CED is the Cohesive Energy Density in J/m3 and A  is the particle contact area. 

2.3.2. Particles representation 

The biomass powders were modelled as monodispersed populations of clumps of spheres (multi-sphere 

method). Spheres comprising a multi-sphere particle are fixed in position relative to each other and may 

overlap to approximate more closely to the actual particle shape [50].  The multi-sphere method stands as 

one of the most general and most efficient method for representing shape within DEM. By using a multi-

sphere approach it is possible to ensure computational efficiency for contact detection and force calculation 

and it is widely implemented in many DEM codes [51,52]. Multi-sphere representations have previously 

been used for describing flow in silos of agricultural resources such as maize and rice grains [53,54]. When 

using a multisphere approach, finding a trade-off between particles representation accuracy and DEM run 

time is essential. For instance, in their study with maize grains, Markauskas et al. [53] found that models 

with 6 sub-spheres successfully reproduced discharging time in silos, but similar results could be obtained 

with 4 sub-spheres using another set of calibration parameters. 

In order to reduce the number of spheres needed to represent one single particle, in this study individual 

spheres were oriented over one single longitudinal axis, so the particles were needle-shaped (Figure 4). To 

approximate the true morphology obtained by PSD measurements, a simplified model for particle 
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representation was proposed. In this model, the number of spheres in a clump, nsph, is function of the 

particles mean size (x50), the mean aspect ratio (a50) and an overlapping factor c. 

The overlapping factor can be expressed as 50/c x , where λ is the overlapping distance between 

adjacent spheres in µm (Figure 4a). A value of c = 0 means two spheres touching each other at one single 

point and c = 1 represents a total overlap between two contiguous spheres. As c increases the effective 

roughness of the particle decreases. Previous work [52] suggested that reducing surface roughness by 

increasing the number of spheres per clump did not necessarily lead to a better approximation of particles 

behavior. A value of c of 20% was chosen as it is considered a good trade-off between the accuracy of 

particles representation and the number of spheres needed. 

The diameter of each sphere is set to be equal to the mean minimum Feret diameter of the population, 

x50. Therefore, the length of the clump (lclump), which corresponds to the mean maximum Feret diameter, 

can be calculated as follows: 

 50 50 50/clump sphl x a n x        (10) 

So, from the definitions of a50 and c, the number of spheres needed per clump is: 

50

1

1sph

ca
n

c





 (11) 

The calculated values were rounded to the closest integer and the length of the clump recalculated 

accordingly.  

Calculation of bulk density from simulations needs the value of the mass of each clump, which is 

computed from the clump’s volume, given by: 

  3 2
14

6 2 4
3 12

sph
clump sph

sph

n
V n r c c

n


 
    

 
 (12) 

Where r is the spheres radius 50 / 2r x .  Table 3 shows the model parameters used for particles 

representation. For the sake of comparison with spherical models for particle representation, the equivalent 

radius of a sphere having the same volume as one individual clump (
eqR ) is also reported. 
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Table 3. Parameters of multispheres model for particles representation 

 Sample 1 Sample 2 
s p hn  3 3 

r (µm) 373 176 
clumpl (µm) 1940 915 

clumpV (mm3) 0.6282 0.0658 

eqR (µm) 531 251 
 

 

Figure 4. Particles representation for biomass samples. a. Nomenclature of main dimensions in a clump. b. Samples multispheres models (true relative 

size). c. Representation of a collision between spheres k and i within two multi-sphere particles ( ijklt


: tangential unit vector, ijkln


 : normal unit vector of 

contact zone) [55]. 

2.3.2.1. Scaling up particle size 

Since parameters calibration commonly involves running an extensive amount of simulations, the 

representation of the actual number of particles used during the bulk tests would not be possible within a 

realistic frame time. A scaling factor, SF, can be defined as the ratio between the simulated particle radius 

and the actual value from PSD. As shown in Figure 5a, the computational time required to simulate one 

real-time second of heap formation for sample 1 significantly decreases by increasing the scaling factor, as 

the number of particles (nparticles) decreases. A series of test runs were performed to assess the effect of scaling 

particle size up on the AoR of the heap formed using non-calibrated parameters (µs = 0.9, µr = 0.5 and 

CED = 0 J/m3). Testing values of SF over 7 leads to high uncertainty on the value of AoR as the number 

of particles is not enough to form a proper heap. The linear downward trend showed in Figure 5b clearly 

indicates that scaling effects on the AoR are not negligible.  This is in contrast with results by Roessler and 

Katterfeld [19] who found AoR to be scale-independent. However, their conclusions referred to the case of 
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quasi-static formation of a heap using lifting cylinder setups, which is hardly the flow condition of particles 

forming the heap in this work. 

 In the aim of reducing computing time, a coarse-graining approach was followed and a trade-off 

between the actual representation accuracy and the calculation effort was made by scaling particles size up 

by a factor of 4. Since the effect of the scaling factor on the bulk responses could vary depending on the 

values of the calibrated parameters, calibration was made using the actual values from experiments (instead 

of, for example a value corrected by the SF using the trend of Figure 5b). This allowed to run a typical heap 

formation simulation in approximately 1 hour for coarse particles and in 8 hours for fine particles, while 

several weeks would be needed to run a single simulation of fine particles at their actual size.  

 

Figure 5. Influence of scaling particles size up for sample 1: a. Number of particles and simulation time. b. Angle-of-repose value. 

2.3.3. Time-step 

Because of the explicit numerical scheme used for DEM integration, only relatively small time-step 

values ( t ) guarantee stable simulations. A common strategy to fix a value for t  is based on the 

Rayleigh ( RT ) and Hertz ( HT ) critical time-steps, calculated as [56]: 
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Where r is the minimum particle radius in the system and m axV  is the maximum relative velocity. The 

other parameters correspond to those defined previously in Section 2.3.  In this work, both critical time-

steps were calculated during DEM integration and the simulation time-steps were fixed to be lower than 

10% of RT  and HT . Values for both samples are reported in Table 4. 

2.3.4. Angle-of-Repose and bulk density determination from simulations 

The experimental test shown in Figure 1 was numerically replicated using LIGGGHTS. To reduce the 

simulation time, the simulated conveyor length is reduced to a half of the experimental length. The angle-

of-repose and bulk density were calculated using the positions of the particles in the heap at the end of the 

simulation when all the particles are in a stable state. To avoid underestimation of those two bulk values, 

the particles non-connected to the heap were not considered in the calculation. 

As for the experiments, the angle of repose in the xz-plane was calculated for the left side of the heap. 

At first, the positions of the particle at the top and the particle at the leftmost of the heap were identified to 

determine the domain of the angle-of-repose slope. The particles in this domain were then binned into 20 

equally-spaced horizontal layers. For each layer, the x and z coordinates of the top particle on the slope 

were identified. The angle of repose was then determined using linear regression of these 20 x-y coordinates 

on the slope.  The number of layers = 20 was chosen as it is high enough to produce stable values of AoR 

and high correlation coefficient values for all calculations.     

The bulk density of the heap was calculated from its bulk mass divided by its aerated volume. The bulk 

mass is equal to the mass of one clump multiplied by the number of clumps in the heap. The concept of 

numerical integration in volume calculation was implemented in a C++ algorithm to estimate the aerated 

volume of the heap (analytically as the left-hand side of Eq. 15, and numerically “discretized”, as the right-

hand side of the Eq. 15): 

max, max

min, min 1 1

( , ) ( , )
yx

nnx y

i i
x y

h x y dxdy h x y x y     (15) 
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where xmin, xmax, ymin, ymax are the minimum and maximum of the x and y coordinates of particles inside the 

heap, respectively, nx and ny are the number of discretization intervals in the x and y directions, ∆x and ∆y 

are the distances between two adjacent sample points corresponding to x and y directions and h(xi,yi) is the 

height of the heap at the coordinate xi,yi. The choice of nx and ny is a trade-off between the numerical 

accuracy and the computational time. It should be high enough to mitigate the estimation error and as the 

same time it should be as low as possible for quick calculations and less consuming use of computer 

memory. In the present work, nx and ny were set to 10000. This number of sample points guarantees that 

each calculation takes only few seconds on a normal desktop computer and the results of bulk volume 

converge.  

2.3.5. Ring shear tester simulations 

The simulated geometry of a ring shear tester cell (Figure 6) is analogous to the experimental device 

described in Section 2.2.4. Previous research [57] has shown that the yield stress was independent of the 

shear cell size in simulations. However, a high particle-to-cell size ratio inside the shear cell could lead to 

erroneous values of the shear measurements [58], so the geometry was also scaled up by a SF = 4. A servo-

control functionality of LIGGGHTS was applied to the top lid so the vertical component of the applied 

stress was continuously updated and maintained constant during the simulation. As in experiments, a pre-

shear stage at σpre = 5 kPa followed by a shear at σ = 2.5 kPa was simulated. Shear stress is calculated from 

the z-component of the torque exerted over the top lid surface as follows [41]: 

D

m D

M

r A
   (16) 

Where DM is the torque acting during shear on the top of the lid,     3 3 2 22 /3m out in out inr r r r r   is the 

moment arm and  2 2

D out inA r r   is the area of the lid, with and the outer rout  and inner rin radii of the top 

lid, respectively. Other input parameters needed for the ring shear tester simulations are listed in Table 4. 
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Figure 6. Geometry of the simulated ring shear tester. a. Top lid. b. Bottom cell. 

2.4. Calibration approach 

The flowchart of the calibration approach is presented in Figure 7. Regarding the choice of the 

parameters to be calibrated, a minimization of their number is desired since each additional parameter 

increases the complexity of the calibration. The previous research highlighted the high influence of the 

sliding and rolling friction coefficients on the angle-of-repose obtained in DEM simulations [19,22,59]. As 

the particle to wall interactions are very specific to each industrial or scientific problem, in this research only 

interparticle interaction parameters are calibrated: the sliding friction coefficient µs, the rolling friction 

coefficient µr and the cohesion energy density CED. All the other input values needed for the DEM model 

are shown in Table 4 and were set based on literature values for woody materials [6]. Preliminary simulations 

did not show significant effects of the particles’ density on the AoR nor the void fraction inside the heap, 

so the value is set to 1000 kg/m3 for the fine samples in order to increase the time-step allowing stable 

simulations. 
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Figure 7. Flowchart of the calibration procedure. 

 

2.4.1. Selection and range of values of parameters to be calibrated 

The tested values of each calibration parameter are shown in Table 5. If 5 values for each variable were to 

be tested, 53 = 125 simulations would be needed using a full factorial combination of variables. This is 

feasible in a practical time-frame for coarse samples (Sample 1) but for fine powders (Sample 2), even if 

using a coarse-graining approach, the high computation time required imposed a reduction of the number 

of values of the calibrated parameters from 5 to 3 (27 simulations). These values are the maximum, minimum 

and mean values written in bold type in Table 5. The full experimental plan of this work is presented in 

Appendix 1. 
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Table 4. DEM simulation parameters for particles and walls 

Parameter Sample 1 Sample 2 
Poisson’s ratio (particle-particle) 0.3 
Poisson’s ratio (particle-walls) 0.3 
Particles density, kg/m3 350 1000 
Young’s modulus (particle-particle), Pa 5×106 
Young’s modulus (particle-wall), Pa 5×106 
Coefficient of restitution (particle-particle) 0.1 
Coefficient of restitution (particle-walls) 0.1 
Coefficient of sliding friction (particle-steel) 0.4 
Coefficient of sliding friction (particle-paper surface) 0.5 
Coefficient of rolling friction (particle-walls) 0.5 
Cohesion Energy Density (particle-walls), J/m3 0 
Time-step (s) 1×10-5 7×10-6 
Total number of particles (3 particles/clump) 10638 81309 
Factory mass flow, heap AoR test, kg/s 5×10-4 
Ring shear tester simulations  
External radius, top lid, mm 127 
Internal radius, top lid, mm 65 
Depth, bottom cell, mm 52 
Total number of particles (3 particles/clump) 15000 150000 
Rotational speed, top lid, deg/s 18 

 

Table 5. Set of calibration parameters tested. 

Parameter Variable values 

Coefficient of sliding friction (µs) 0.1 0.3 0.5 0.7 0.9 
Coefficient of rolling friction (µr) 0.1 0.3 0.5 0.7 0.9 

Cohesion Energy Density, CED (J/m3) 0 10000 20000 50000 80000 
 

2.5. Optimization problem setup (genetic algorithm) 

The optimization was carried out using a multiobjective evolutionary algorithm (Non-dominated 

Sorting Genetic Algorithm II, NSGA-II) [60] proven successful for DEM calibration [24,25]. Input 

parameters for the genetic algorithm are listed in Table 6. By using 10 bits for encoding each calibration 

parameter, the number of possible values for each parameter is 210 = 1024. Since 3 parameters are being 

optimized, each “individual” in the population is encoded by a binary string of length 30 bits. This leads to 

the numerical precision listed in Table 6 for each parameter. 

Table 6. Input parameters of NSGA-II 

Population size 2000 
Chromosome length (bit) 30 
Maximum number of generations 100 
Crossover probability 0.9 
Mutation probability 0.01 
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Two specific objective functions were defined for the minimization of the discrepancy between 

numerical and experimental results. The first objective function O1 is defined as the total relative error 

between the simulation results and the experimental measurements of AoR and bulk density: 

1
ex sim ex sim

ex ex

AoR AoR
O

AoR

 


 
   (17) 

In this optimization function, the weights of the two error components are equally contributing to 

the total simulation error.  

The second objective function O2 is based on the rectangular container output and aims to reduce the 

difference between the simulated and the experimental p factor: 

2
ex sim

ex

p p
O

p


  (18) 

Table 7. Numerical precision of binary encoded factors. 

Parameter Interval Numerical precision 
µs [0.1, 0.9] 7.81×10-4 
µr [0.1, 0.9] 7.81×10-4 

CED [0, 80000] 78.125 
 

3. RESULTS AND DISCUSSION 

3.1. Bulk behavior tests 

3.1.1. Bulk density 

The experimental results in the Table 8 show an effect of particle characteristics on bulk density of the 

samples. Interestingly, regarding the particle size, smaller values of bulk density were systematically found 

for powders with the lowest granulometry. Finer samples had a bulk density 10 % lower than coarse samples. 

When dealing with non-cohesive materials, a better spatial arrangement of particles is obtained for finer 

particles so, generally, a decrease of particle size is accompanied by an increase in bulk density. The opposite 

trend observed for biomass samples would be due to cohesion effects: the presence of fine cohesive particles 

creates bigger void spaces which reduces bulk density.  Similar results were observed by Mani et al. [61] for 

wheat and barley straws, corn stover and switchgrass samples. 
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3.1.2. Angle of Repose tests 

The mean values of the angles of repose are reported in Table 8. The values of the standard deviation 

are also reported and show that error was always below 4 %, meaning a relatively good reproducibility. 

There is an obvious effect of the sample characteristics on the AoR of the heaps formed. The finer sieving 

cut (sample 2) formed steeper heaps with values of AoR 67 % greater than the coarse cut (sample 1). 

Table 8. Bulk behavior experiments results (standard deviation is reported in parentheses). 

Sample 1 (Coarse sieving cut) 2 (Fine sieve cut) 
ρb (kg/m3) 184.2 (5.7) 165.6 (5.1) 
AoR (°) 27.7 (0.7) 46.3 (1.6) 

 

Following the classification criteria based on the AoR established by Ileji et al. [62] for lignocellulosic 

plant biomass, coarse poplar powders could be classified as free flowing, while fine powders are rather poor 

flowing. 

3.1.3. Rectangular container test  

No biomass particles were observed to flow when the lid of the rectangular container was lifted. Indeed, 

very stable stacks of particles were formed for all the samples. This is the result of the combined effect of 

particles shape and size that trigger interlocking and interparticle cohesive forces. As result of this, the 

retainment ratio p (Eq. 3) was found to be 1 for both samples. 

3.2. DEM simulations 

Figure 8 shows some typical heaps and rectangular containers obtained by DEM modelling for both 

samples, along with the values of the calibration parameters used.  Visually, the effect of modifying contact 

model parameters is evident. The situations represented on the left side of the Figure 8 show a material with 

a rather free flowing behavior, while images on the right side of Figure 8 represent rather a very cohesive 

behavior, with greater angles of repose and the formation of a stable stack of particles inside a container.  
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Figure 8. Examples of heaps obtained and rectangular container test from DEM simulations. 

3.2.1. Pareto chart analysis 

Determining if variation of DEM parameters produce discriminative effects in bulk responses is 

important to reduce the number of calibration inputs. For this purpose, a statistical analysis using Pareto 

charts was used in this work. 

A Pareto chart allows to compare the relative magnitude and the statistical significance of effects 

of tested variables on the measured responses. Details on the elaboration and interpretation of the Pareto 

charts can be found in [63].  
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Figure 9. Pareto charts of the standardized effects. 

For the coarse samples, the CED has the biggest effect on the values of AoR (Figure 9a).  In a lower 

degree, sliding friction, rolling friction and the combined effect of sliding friction and CED also influenced 

the AoR. In the case of the bulk density (Figure 9c), all the 3 factors seem to have the same level of influence 

on the response, as well as the combined effects of µs- CED. Regarding the retainment ratio, although CED 

and µs and their interactions had the greater effect, rolling friction also played a role in controlling the 

number of particles remaining in the container after the lid is opened (Figure 9c). 

For the fines sample, CED was the predominant influential factor for both bulk density and p ratio 

responses (Figure 9b,d), while in the case of AoR, µs had a greater effect (Figure 9f). 
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These results suggest that the three chosen calibration parameters were important in controlling the 

measured responses and determined the main effects that influence the system. In addition, the relative 

effects were different depending on the analyzed response. Therefore, their calibration is required.  

3.2.2. Heap angle of repose and bulk density 

Figure 10 and Figure 11 show 2D contour surface representations of the effects of the calibration 

parameters on the AoR, the bulk density and the retainment ratio p. For clarity reasons, only surfaces for 

CED = 0, 20 and 80 kJ/m3 are presented. Contour surfaces of the p ratio for CED = 80 kJ/m3 are not 

shown as all simulations led to p≈1, regardless of µs and µr values. These representations clearly show the 

coupled effects that sliding and rolling friction coefficients as well as cohesion have on the three responses 

analyzed.  

From the contours of Figure 10 it is noticeable that a single value of the bulk responses can be achieved 

from a wide range of parameters (each contour line spans over a wide range of both sliding and rolling 

friction coefficients and the same colors in the color scale can be found in two or more different graphs). 

This highlights the importance of choosing enough bulk setups and responses for a robust DEM calibration.  

In the case of the AoR response, changing cohesion level affects the trends of the surfaces, showing 

that effects of µs and µr are dependent on each other but also on CED magnitude. This is especially 

noticeable for the highest values of CED. For non-cohesive simulations (Figure 10a), rolling friction effects 

are more important when sliding friction is increased, and maximum values of AoR are attained for the 

highest values of µs and µr. This is in agreement with previous results by Wensrich and Katterfeld [64] who 

stated that the only way in which a large angle of repose could be achieved was if both of these mechanisms 

(rolling and sliding) worked together. However, interestingly, when cohesion is included, even if AoR tends 

to increase with increase in µs and µr values, maximum AoR values do not necessarily correspond to the 

highest values of µs and µr; instead, they are located at intermedium values of µs and µr. Figure 10c shows 

that effects of rolling and sliding friction follow a less monotonous trend when CED is 80 kJ/m3. A reason 

for this is that, for values of CED over 50 kJ/m3, particles flowing over the conveyor tend to form relatively 

stable agglomerates that are spread over the heap’s surface, forming heaps with a rougher and more irregular 

surface (Figure 8b). Therefore, AoR determination for very cohesive simulations could lead to values with 
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higher uncertainty as heap profiles are less well-described by linear regressions. This can be quantified 

through the calculation of the average coefficient of determination (r2) as function of the CED values (Figure 

12). Indeed, a downward trend which is more marked for the sample 1 (coarse particles) than for sample 2 

(fine particles) was observed.  

As for the AoR, effects of calibration parameters on bulk density go hand-in-hand. Bulk density 

decreases when friction and cohesion are increased or when the rolling is more restricted (so a less “spherical 

behavior”). This is the result of a higher void created between particles when normal forces are allowed to 

dissipate to a bigger extent through bigger µs values. Increasing the rolling resistance and cohesion also 

prevent particulates from finding a more compact spatial arrangement, so void fraction could be reduced.  

Bulk density seems to be sliding dominated for the values on top left of the contour figures (µs < 0.3) and 

rolling dominated for the values at the bottom right corner on those representations. This accentuates when 

cohesion is increased.  

For sample 1, experimental values of AoR and bulk density (AoR = 27.7°, ρb = 184.2 kg/m3) can only 

be found for the lower values of cohesion, but a high p ratio needs a high value of CED. Thus, a trade-off 

through optimization has to be found.  

Regarding sample 2, small effects of cohesion on the AoR were found within the range 0 to 

20 kJ/m3. Unlike sample 1, a more gradual increase of AoR with rolling resistance increase was found for 

CED = 80 kJ/m3. Regarding bulk density, similar trends were found between both samples. Target values 

(AoR = 46.3°, ρb = 165.6 kg/m3) can be found on Figure 11c and Figure 11e, but as for sample 1,  a p value 

of 1 is only possible for the most cohesive sets of simulations.  
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Figure 10. Contour surface responses for sample 1. 

In order to reach values of p ratio close to 1, a particle’s shape representation that strengths particles 

spatial interlocking could reduce the need for high CED values (e.g. through non-axial or hooked shapes). 

Nevertheless, this would typically require a particle’s model including more spheres per clump, as well as a 

highly polydisperse system, which would reduce simulation performances beyond a practical interest. 
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Globally, when comparing simulations for samples 1 and 2 with low-mid cohesion, relatively similar 

values of AoR and bulk density were found for the two samples when calibration parameters were the same. 

On the contrary, the experimental results for samples 1 and 2 were significantly different. 

 

Figure 11. Contour surface responses for sample 2. 
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Figure 12. Average coefficients of determination of heaps profiles. 

3.2.3. Main effects of calibrated parameters 

Using MINITAB’s tool for analysis of factorial designs [65], the main effects plots presented in 

Figure 13 were obtained. These plots are useful for quantitatively assessing the influence of each level 

of µs, µr and CED on the mean responses of AoR, bulk density and p ratio.  
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Figure 13. Main effects plots. The dotted horizontal line represents the overall mean. 

Globally, similar trends were found for both samples, both qualitatively and quantitatively, with a 

greater resolution for sample 1 than that for sample 2 as more parameters values could be tested. In the case 

of the coarse sample 1, a sharp increase (21%) of AoR was observed as µs increased from 0.1 to 0.3. In 

average, higher values of AoR were obtained for µs = 0.5. Sliding friction governs the translational motion 

of the particles by defining the magnitude of normal force that it is dissipated as a tangential component. 

This means that a large sliding friction coefficient can tolerate a large magnitude of the elastic deformation 

in the tangential direction and enhance the stability of the individual contacts amongst particles. However, 

sliding friction defines only a truncation parameter of the tangential force and not its absolute value when 

the truncation criteria is not met. This could explain the important gap of AoR observed when µs is increased 

AoR

Bulk density

Retainment ratio p

Sample 1 Sample 2

0.90.70.50.30.1

47.5

45.0

42.5

40.0

37.5

35.0

0.90.70.50.30.1 800005000020000100000

µs
M

ea
n o

f A
oR

 (°
)

µr CED (J/m3)

0.90.50.1

40

38

36

34

32

30

28

26
0.90.50.1 80000200000

µs

M
ea

n o
f A

oR
 (°

)

µr CED

0.90.70.50.30.1

190

180

170

160

150

140

130

120
0.90.70.50.30.1 800005000020000100000

µs

M
ea

n o
f B

ulk
 d

en
sit

y (
kg

/m
3)

µr CED

0.90.50.1

190

180

170

160

150

140

130
0.90.50.1 80000200000

µs

M
ea

n o
f B

ulk
 de

ns
ity

 (k
g/

m3
)

µr CED

0.90.70.50.30.1

1.00

0.95

0.90

0.85

0.80

0.90.70.50.30.1 800005000020000100000

µs

M
ea

n o
f p

µr CED

a. b.

c. d.

e. f.

0.90.50.1

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.90.50.1 80000200000

µs

M
ea

n o
f p

µr CED



31 
 

from 0.1 to 0.3 and the low AoR variation when µs is increased above 0.3. For very low values of µs the 

tangential displacement is highly constrained and corresponds to the value defined by the product of µs and 

the normal force on particles (Coulomb’s friction limit). For higher values of µs the probability of normal 

forces exceeding the truncation criteria is reduced and therefore further increase of µs would have a lower 

effect on the variation of the tangential dissipation and therefore on the angle of repose. 

Increasing rolling friction from µr = 0.1 to µr = 0.7 gradually increased the mean AoR by +15 % as 

shown in Figure 13a. A large rolling friction coefficient means a large resistance force to the rotational 

movement of the spheres clump, which provides and effective mechanism to consume the kinetic energy 

and reduce the rotational motion, leading to the formation of heaps with higher potentials and AoR [66]. 

The greatest variation of AoR was observed when the CED effect is analyzed: AoR below 35° were 

obtained for non-cohesive simulations while the highest values of CED led to AoR over 46° (+36 %).  

Regarding bulk density, the downward trends of Figure 13c-d summarize the observations made for the 

contour surfaces presented in section 3.2.2. The increase of sliding and rolling friction coefficients triggered 

a less compacted settlement of particles inside the heap, thus creating more void spaces and reducing bulk 

density. For values of µs, µr > 0.7 bulk density seems to reach a low plateau.  As for CED effect, an important 

decrease of ρb by 36% and 30% for sample 1 and sample 2 respectively was observed when non-cohesive 

and highly cohesive simulations (CED = 80 kJ/m3) are compared.  

For both samples, there is a peak of p ratio when varying µs values from 0.1 to 0.9. Interestingly, in the 

case of the coarse sample, increasing sliding friction coefficient to 0.9 lead to much more particles flowing 

out of the container. This is probably because when increasing friction, particles at the border of the stack 

are more likely to be dragged by particles flowing out the silo, which, together with the effects of cohesion, 

will lead to smaller values of the retainment ratio. For CED = 80 kJ/m3, however, cohesion is strong enough 

to hold particles together and conceal the effects of µs or µr.  

For both samples, limiting particles rotation tended to generate more stable stacks as can be seen from 

the slight increase of the p ratio with increase of µr. Finally, increasing values of the CED was directly related 

with the number of particles staying in the container after the lid was opened. Among the variables studied, 
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CED increase is therefore the best approach to simulate particle interlocking and to numerically reproduce 

the particles cohesion observed in experiments. 

3.3. Calibration and selection of optimal values 

3.3.1. Pareto fronts, 3D representation of optimal values 

The evolution of the two objective functions for sample 1 over 100 generations are shown in the Figure 

14. The 2000 individuals constituting the initial population are spread over a relatively wide range of the 

objective function values that gradually narrows with successive iterations. The number of individuals stay 

constant, so the Pareto fronts shrink around the optimal values with the evolution of the population. 

Through the iteration process, the fronts converged to an optimum where no further improvement was 

observed in succeeding generations. For both samples, a convergent front was obtained from the 50th 

generation.  

 

Figure 14. Pareto front evolution over 100 generations of NSGA-II optimization. 

As observed through the Pareto fronts, multiobjective optimizations lead to results in which trade-

offs between the objective functions were encountered. The optimal solutions that allowed to obtain values 

of AoR and bulk density closer to the experimental measurements yielded low p values and vice versa. In 

order to have a comprehensive view of the sets of calibrated parameters that better adjust the bulk 

experimental properties of each sample, the optimal values for the last generation of NSGA-II optimizations 

are presented in Figure 15. A color and size scale were used to highlight the values of the total error, 

calculated as the sum of the values of the objective functions O1 + O2. For sample 1, sets of optimal 

calibration parameters with a relatively broad range of solutions were obtained, especially for CED values 

which could vary between 10 and 50 kJ/m3. For sample 2, a narrower range of optimal sets is shown in 
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Figure 15. The solutions giving the lowest value of O1 + O2 were input in the LIGGGHTS program and the 

simulation results are presented and compared against the experimental values in Table 9. 

  

 

Figure 15. Sets of optimal calibrated parameters for sample 1 and 2. Size and color scale indicate the sum of O1 + O2 values corresponding to each set 

of µS, µr and CED. 

The calibrations based exclusively on the angle of repose and the bulk density would not lead to a 

material having enough interparticle cohesion to hold particles together inside a container. Therefore, 

including the rectangular container test as a bulk response for calibration was decisive to expose the cohesive 

character of biomass particles. Incorporating the retainment ratio response adds a cohesive feature to the 

material that could more realistically simulate blocking problems on feed systems for biomass particles. 

Additionally, calibration using the p ratio sensibly reduced the diversity of the optimal values of µs, µr and 

CED. Thus, it is clear that separate calibration test from different macroscopic responses can yield different 

results and that calibration based on a large number of parameters and bulk responses is preferable. 

Table 9. Optimized values of µs, µr and CED and comparison of simulated responses (Sim.) against experimental measurements (Exp.). e: relative 

error between experimental and DEM responses. 

Sample µs µr 
CED 

(kJ/m3) 
 

O1 + O2 

AoR (°) ρb (kg/m3) p 

Sim. Exp. 
e 

(%) Sim. Exp. 
e 

(%) Sim. Exp. 
e 

(%) 
1 0.2298 0.1000 10.01 0.27 30.0 27.7 8.3 192.2 184.2 4.3 0.80 1 20.0 
2 0.1000 0.5004 80.00 0.17 42.3 46.3 8.7 157.1 165.6 5.1 1.00 1 0.0 
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From Table 9 it can be seen that there was little discrepancy between the simulated and the 

experimental AoR, bulk density and p ratio for both samples. In the case of sample 1, even if the AoR and 

bulk density values were better adjusted than those of sample 2, optimization led to particles without enough 

cohesive strength to form a stable stack in the rectangular container simulations. The optimized values of 

CED reflect a much more cohesive behavior for finer samples, which corresponds to the experimental 

observations.  

3.3.2. Ring shear tester simulations 

Values presented in Table 9 were used to simulate a shear sequence in a ring shear tester. Figure 16 

compares the simulation results against the experimental evolution of shear stress. Two shear cycles are 

represented, starting by a preshear step at σpre = 5 kPa and followed by a shear at σsh = 2.5 kPa. This preshear-

shear sequence is repeated for σsh = 3.75 kPa. Stresses are plotted against rotation angle defined as the 

product of time and shear velocity. Although simulation results are relatively noisy (due to the scaled 

particles and the oscillation of the servo-controlled normal force), it is encouraging that simulation results 

for sample 1 were very close to experimental shear stress profiles in terms of evolution of the curve shape 

and the average yield stresses.   

 

Figure 16. Simulated (DEM) and experimental (Exp) evolution of shear (τ) and consolidation stresses (σ) for sample 1. 

Yield stresses of preshear and shear for both samples are listed in Table 10. Values of shear stress 

were slightly underestimated in DEM simulations for sample 1. A greater gap between the experimental and 
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simulations results was yet observed for sample 2. This can be related to the fact that responses shown in 

Section 3.3.1 for sample 2 were less well predicted using the calibrated parameters than those of coarse 

powders. 

Table 10. Simulation (Sim.) and experimental (Exp.) results for ring shear tester tests. 

 Preshear stress at σpresh = 5 kPa Shear stress at σsh = 2.5 kPa 
 Exp. Sim. e (%) Exp. Sim. e (%) 
Sample 1 4.31 3.94 8.6 2.45 2.32 5.3 
Sample 2 4.81 3.49 27.4 2.87 2.51 12.5 

 

The under-estimation of the experimental results from simulations for sample 2 shows that these results 

should be treated with caution. Indeed, as highlighted by [67], calibration should take into account the nature 

of the actual simulated process. Calibration using angle of repose, bulk density and shear box tests might 

therefore not be sufficient for simulation of materials under a consolidated state, as is the case in shear 

testers. Furthermore, the use of JKR cohesion models has recently been shown not to adequately capture 

the stress behavior of some cohesive powders, particularly at relatively high consolidation stresses [68]. This 

has led to the development of new cohesion contact models that consider contact plasticity. Additional 

work will therefore evaluate the relevance of JKR models compared to cohesive elasto-plastic models for 

biomass particles. 

 

4. CONCLUSION 

Biomass powders characteristics – such as small particles size, cohesive behavior, low particle density 

and elongated shape – make bulk simulations highly challenging considering the current DEM state of 

development. This work aimed at producing a realistic, calibrated and efficient material model for 

lignocellulosic biomass powders to be eventually used in feeding systems for entrained-flow gasification. 

We successfully developed a DEM material model for biomass powders by using a coarse-grained 

multisphere representation of shape and size distributions of particles along with a Hertz-Mindlin-EPDS2-

SJKR cohesive force model. 

The application of a calibration procedure that uses a NSGA-II optimization algorithm was successful in 

determining the coefficients of sliding friction, rolling friction and a cohesive energy density term for two 
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biomass powder populations: a coarse sieving cut between 500 µm and 710 µm, and a fine cut between 200 

and 315 µm. The results presented here showed that the calibrated contact-law parameters fitted the physical 

responses accurately, and a validation using a ring shear tester showed promising results. The application of 

a typically used trial-and-error approach for calibration would have been highly time-consuming compared 

to the systematic approach used in this work. 

This research highlighted the importance of adequately selecting bulk experiments for calibration: only 

taking results from angle-of-repose and bulk density measurements would not replicate the cohesive 

behavior of biomass particles to their actual extent. Including additional bulk responses such as a rectangular 

container test (shear box) reduced the diversity of optimal calibrated parameters and allowed to obtain a 

material model that represents better blocking problems in feeding systems. 

With the aim of improving the predictive capability of the DEM model for biomass powders, future research 

could include additional bulk setups that discriminate between different cohesive strengths of biomass 

powders, as well as validation under a variety of stress and flow conditions.  

The findings presented here showed a scale-dependency of the simulations for the AoR test. The prospect 

of being able to apply at an industrial scale the calibrated parameters found using the framework described 

here serves as a stimulus for future research on the scalability of the calibration setups. This remains an 

important issue to be addressed in future studies, especially regarding cohesive and elongated materials such 

as biomass particles. Future work should also address the relevance of using flexible particle models that 

might be more suitable for biomass particles. 
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Appendix A. Experimental plan 

The Table A-1 contains the experimental plan used in this work. 

Table A-1. Experimental plan of this work. 

Sample 1 Sample 2 
Run 
N° 

µs µr 
CED 

(kJ/m3) 
Run 
N° 

µs µr 
CED 

(kJ/m3) 
Run 
N° 

µs µr 
CED 

(kJ/m3) 
Run 
N° 

µs µr 
CED 

(kJ/m3) 
1 0.1 0.1 0 43 0.5 0.7 10 85 0.9 0.3 50 1 0.1 0.1 0 
2 0.3 0.1 0 44 0.7 0.7 10 86 0.1 0.5 50 2 0.5 0.1 0 
3 0.5 0.1 0 45 0.9 0.7 10 87 0.3 0.5 50 3 0.9 0.1 0 
4 0.7 0.1 0 46 0.1 0.9 10 88 0.5 0.5 50 4 0.1 0.5 0 
5 0.9 0.1 0 47 0.3 0.9 10 89 0.7 0.5 50 5 0.5 0.5 0 
6 0.1 0.3 0 48 0.5 0.9 10 90 0.9 0.5 50 6 0.9 0.5 0 
7 0.3 0.3 0 49 0.7 0.9 10 91 0.1 0.7 50 7 0.1 0.9 0 
8 0.5 0.3 0 50 0.9 0.9 10 92 0.3 0.7 50 8 0.5 0.9 0 
9 0.7 0.3 0 51 0.1 0.1 20 93 0.5 0.7 50 9 0.9 0.9 0 

10 0.9 0.3 0 52 0.3 0.1 20 94 0.7 0.7 50 10 0.1 0.1 20 
11 0.1 0.5 0 53 0.5 0.1 20 95 0.9 0.7 50 11 0.5 0.1 20 
12 0.3 0.5 0 54 0.7 0.1 20 96 0.1 0.9 50 12 0.9 0.1 20 
13 0.5 0.5 0 55 0.9 0.1 20 97 0.3 0.9 50 13 0.1 0.5 20 
14 0.7 0.5 0 56 0.1 0.3 20 98 0.5 0.9 50 14 0.5 0.5 20 
15 0.9 0.5 0 57 0.3 0.3 20 99 0.7 0.9 50 15 0.9 0.5 20 
16 0.1 0.7 0 58 0.5 0.3 20 100 0.9 0.9 50 16 0.1 0.9 20 
17 0.3 0.7 0 59 0.7 0.3 20 101 0.1 0.1 80 17 0.5 0.9 20 
18 0.5 0.7 0 60 0.9 0.3 20 102 0.3 0.1 80 18 0.9 0.9 20 
19 0.7 0.7 0 61 0.1 0.5 20 103 0.5 0.1 80 19 0.1 0.1 80 
20 0.9 0.7 0 62 0.3 0.5 20 104 0.7 0.1 80 20 0.5 0.1 80 
21 0.1 0.9 0 63 0.5 0.5 20 105 0.9 0.1 80 21 0.9 0.1 80 
22 0.3 0.9 0 64 0.7 0.5 20 106 0.1 0.3 80 22 0.1 0.5 80 
23 0.5 0.9 0 65 0.9 0.5 20 107 0.3 0.3 80 23 0.5 0.5 80 
24 0.7 0.9 0 66 0.1 0.7 20 108 0.5 0.3 80 24 0.9 0.5 80 
25 0.9 0.9 0 67 0.3 0.7 20 109 0.7 0.3 80 25 0.1 0.9 80 
26 0.1 0.1 10 68 0.5 0.7 20 110 0.9 0.3 80 26 0.5 0.9 80 
27 0.3 0.1 10 69 0.7 0.7 20 111 0.1 0.5 80 27 0.9 0.9 80 
28 0.5 0.1 10 70 0.9 0.7 20 112 0.3 0.5 80     
29 0.7 0.1 10 71 0.1 0.9 20 113 0.5 0.5 80     
30 0.9 0.1 10 72 0.3 0.9 20 114 0.7 0.5 80     
31 0.1 0.3 10 73 0.5 0.9 20 115 0.9 0.5 80     
32 0.3 0.3 10 74 0.7 0.9 20 116 0.1 0.7 80     
33 0.5 0.3 10 75 0.9 0.9 20 117 0.3 0.7 80     
34 0.7 0.3 10 76 0.1 0.1 50 118 0.5 0.7 80     
35 0.9 0.3 10 77 0.3 0.1 50 119 0.7 0.7 80     
36 0.1 0.5 10 78 0.5 0.1 50 120 0.9 0.7 80     
37 0.3 0.5 10 79 0.7 0.1 50 121 0.1 0.9 80     
38 0.5 0.5 10 80 0.9 0.1 50 122 0.3 0.9 80     
39 0.7 0.5 10 81 0.1 0.3 50 123 0.5 0.9 80     
40 0.9 0.5 10 82 0.3 0.3 50 124 0.7 0.9 80     
41 0.1 0.7 10 83 0.5 0.3 50 125 0.9 0.9 80     
42 0.3 0.7 10 84 0.7 0.3 50         
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Appendix B. Individual simulation results 

Figure 17 shows the totality of results from simulations. Each run number corresponds to a set of 

µs, µr and CED values. 

 

Figure 17. Simulation results of AoR, bulk density and p ratio for Sample 1 and 2. 
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