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Introduction

For metallic materials, even though the ratio between the fatigue crack initiation life and the propagation life depends on both the material properties and the loading conditions, crack initiation is usually considered to be the dominant part of the total fatigue life in the High Cycle Fatigue (HCF) regime in the absence of large surface or volume defects. For single phase metallic alloys, fatigue crack nucleation is closely related to the localization of plastic deformation in Persistent Slip Bands (PSBs) [START_REF] Broom | Fatigue of zinc single crystals[END_REF][START_REF] Klesnil | Dislocation arrangement in surface layer of alpha-iron grains during cyclic loading[END_REF][START_REF] Thomson | The origin of fatigue fracture in copper[END_REF]. As observed by [START_REF] Laufer | Dislocations and persistent slip bands in fatigued copper[END_REF], PSBs possess a characteristic structure with ladder-like dislocation arrangements being embedded in a matrix containing dipolar dislocation bundles. For metallic polycrystals, because PSBs preferably develop in grains being optimally oriented for slip [START_REF] Chan | Roles of microstructure in fatigue crack initiation[END_REF], the nucleation of fatigue cracks is largely influenced by crystallographic orientation [START_REF] Mu | Influence of the crystalline orientations on microcrack initiation in low-cycle fatigue[END_REF][START_REF] Signor | Influence of local crystallographic configuration on microcrack initiation in fatigued 316LN stainless steel: Experiments and crystal plasticity finite elements simulations[END_REF]).

Several attempts have been made at using polycrystalline elasto-plasticity models to describe the cyclic strain localization process leading to fatigue crack nucleation. In the context of HCF, these models can be classified into two different categories. The first category includes models that are based on an a posteriori approach where some indicators are computed to define whether or not the conditions for initiation and growth of a microstructurally short crack are achieved [START_REF] Castelluccio | Microstructure-sensitive small fatigue crack growth assessment: Effect of strain ratio, multiaxial strain state, and geometric discontinuities[END_REF][START_REF] Guerchais | Micromechanical study of the loading path effect in high cycle fatigue[END_REF][START_REF] Guilhem | Investigation of the effect of grain clusters on fatigue crack initiation in polycrystals[END_REF][START_REF] Mcdowell | Microstructure-sensitive computational modeling of fatigue crack formation[END_REF][START_REF] Przybyla | Microstructuresensitive modeling of high cycle fatigue[END_REF][START_REF] Signor | Influence of local crystallographic configuration on microcrack initiation in fatigued 316LN stainless steel: Experiments and crystal plasticity finite elements simulations[END_REF]. The indicators, which are generally inspired by fatigue criteria [START_REF] Crossland | Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel[END_REF][START_REF] Van | Sur la résistance à la fatigue des métaux[END_REF][START_REF] Fatemi | A critical plane approach to multiaxial fatigue damage including out-of-phase loading[END_REF], are calculated from stress, strain and/or energy quantities and are often space-averaged for purposes of regularization and length scale consideration [START_REF] Mcdowell | Microstructure-sensitive computational modeling of fatigue crack formation[END_REF]. The second category [START_REF] Huyen | A critical plane fatigue model with coupled mesoplasticity and damage[END_REF][START_REF] Luo | Prediction of fatigue crack initial stage based on a multiscale damage criterion[END_REF][START_REF] Monchiet | Plasticity-damage based micromechanical modelling in high cycle fatigue[END_REF][START_REF] Sistaninia | Prediction of damage-growth based fatigue life of polycrystalline materials using a microstructural modeling approach[END_REF][START_REF] Zghal | A crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materials[END_REF]) use continuum damage mechanics [START_REF] Lemaitre | A course on damage mechanics[END_REF] to explicitly describe the degradation of mechanical properties. These models introduce a specific set of internal variables, that is damage variables, whose values represent the progression of fatigue damage. Though they require additional constitutive relations, damage mechanics-based models provide a natural way of evaluating the number of cycles to failure for given loading conditions.

The aim of this work is to develop a damage mechanics-based model for studying the HCF behavior of metallic polycrystals. The final objective is to evaluate the ability of such models to correctly describe the influence of different loading conditions on the development of fatigue damage. The first part of this paper is dedicated to the description of the constitutive model. It is developed at the grain scale using the general framework of crystal plasticity. The constitutive relations are then incorporated within a self-consistent model to consider the intergranular interactions associated with polycrystalline elastoplasticity. In the second part of the paper, the proposed model is used to investigate the HCF behavior of polycrystalline copper. Special attention is given to the influence of loading conditions (e.g. mean stress state, multiaxiality, phase shift) on the development of fatigue damage.

Model description

In this section, a model for describing the development of HCF damage in metallic polycrystals is proposed. The model consists of (i) a set of constitutive equations, which are established at the grain scale, and (ii) a self-consistent method, which captures intergranular interactions. In the following, the constitutive equations, which are developed within the context of crystal plasticity, are first presented. The implementation of the constitutive relations within a self-consistent model is then detailed.

Constitutive relations

For the purpose of establishing the constitutive relations, only a single grain is considered for now. In the following, the average stress and strain states for such a grain are represented by the stress tensor σ and the infinitesimal strain tensor . Also, plastic deformation solely results from crystallographic slip on a set of n slip systems. In the context of crystal plasticity, each slip system α is defined using two unit vectors: the slip plane normal n α and the slip direction m α . For convenience, a third unit vector k α = n α × m α is introduced as well.

Composite model

The cyclic behavior of metallic alloys is largely influenced by the development of intragranular dislocation structures. For instance, such structures have been observed in copper [START_REF] Lukas | Dislocations and persistent slip bands in copper single crystals fatigued at low-stress amplitude[END_REF][START_REF] Mughrabi | Fatigue Mechanisms[END_REF], austenitic and ferritic stainless steels [START_REF] Kruml | Fatigue softening of X10CrAl24 ferritic steel[END_REF][START_REF] Li | Cyclic response and dislocation structures of AISI 316L stainless steel. Part 1. Single crystals fatigued at intermediate strain amplitude[END_REF][START_REF] Li | Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304[END_REF]) and iron [START_REF] Lukás | Cyclic plasticity and substructure of metals[END_REF]. Though different spatial configurations can be adopted by the dislocations (e.g. walls and channels, cells, labyrinths), dislocation structures often consist of a soft phase (superscript s), with a low dislocation density, and a hard phase (superscript h), with a high dislocation density. For instance, for fatigued copper single crystals, the dislocation density reaches 10 15 m -2 within the walls of PSBs while it is about 10 13 m -2 within the channels [START_REF] Grosskreutz | Constitutive Equations in Plasticity[END_REF][START_REF] Mughrabi | Long-Range Internal Stress Field in the Dislocation Wall Structure[END_REF].

The internal stress field produced by dislocation structures is often calculated from the application of homogenization theory [START_REF] Langlois | Overall softening and anisotropy related with the formation and evolution of dislocation cell structures[END_REF][START_REF] Lemoine | Texture of microstructure in BCC metals for various loading paths[END_REF][START_REF] Pedersen | Mechanism maps for cyclic plasticity and fatigue of single phase materials[END_REF][START_REF] Sauzay | Analytical modelling of intragranular backstresses due to deformation induced dislocation microstructures[END_REF]. Indeed, following the idea of [START_REF] Mughrabi | Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals[END_REF], the intragranular dislocation structure of an individual grain can be treated as a composite material composed of a hard region, with volume fraction w, and a soft region, with volume fraction (1w). As a result, within the general framework of homogenization theory, the stress tensor σ and the strain tensor associated with a given grain are determined from the following averaging relations:

σ = wσ h + (1 -w) σ s (1) = w h + (1 -w) s (2)
Because the above two-phase description is adopted in the present work, the mechanical behavior of a given grain requires a set of constitutive relations for both phases and an appropriate strategy for partitioning the average stress and strain tensors between both phases. In this work, both plasticity and damage are assumed to be controlled by the soft phase while the hard phase is given an elastic behavior. These aspects are discussed in the following paragraphs.

Soft phase For the soft phase, an elastic-plastic type of behavior is considered. Within the framework of infinitesimal transformations, the corresponding strain tensor s is additively decomposed into an elastic contribution e,s and a plastic contribution p,s :

s = e,s + p,s (3) 
The introduction of the elastic compliance tensor S s (with the corresponding stiffness tensor C s = S s -1 ) makes it possible to relate the elastic strain tensor to the stress tensor:

e,s = S s : σ s (4)

To include the influence of fatigue damage, the idea of Abdul-Latif and [START_REF] Saanouni | Damaged Anelastic Behavior of FCC Polycrystalline Metals with Micromechanical Approach[END_REF], which consists of introducing a damage variable d s α with a value between 0 and 1 for each slip system, is adopted. This concept is particularly well-suited for HCF for which the initiation of microcracks from PSBs represents an important proportion of the total fatigue life. In the present work, the elastic compliance tensor depends on the damage variables according to:

S s = S + α d s α 1 -d s α u (σ s α ) 1 Ẽn α N α + 1 4 Gmn α M α + 1 4 Gkn α K α ( 5 
)
where S is the initial elastic compliance tensor corresponding to an undamaged configuration, u is the unit step function * and σ s α = n α • σ s • n α is the normal stress acting on slip plane α. The fourth-order tensors N α , M α and K α are defined for each slip system as follows:

N α = n α ⊗ n α ⊗ n α ⊗ n α (6) M α = (n α ⊗ m α + m α ⊗ n α ) ⊗ (n α ⊗ m α + m α ⊗ n α ) (7) 
K α = (n α ⊗ k α + k α ⊗ n α ) ⊗ (n α ⊗ k α + k α ⊗ n α ) (8) 
The initial (i.e. for an undamaged configuration) Young's modulus Ẽn α as well as the shear moduli Gmn α and Gkn α are obtained for each slip system from the following projections:

Ẽn α = N α :: S -1 (9) 
Gmn α = M α :: S -1

(10)

Gkn α = K α :: S -1 (11) 
The main assumption behind equation ( 5) is that fatigue cracks initiate and propagate along slip systems. This approach is thus valid for describing the nucleation and propagation of fatigue cracks along PSBs but would be inapproppriate for some other crack initiation mechanism (e.g. inclusion cracking). Equation ( 5) is constructed in such a way that, when a slip system is fully damaged (i.e. d s α = 1), no force can be transmitted through the corresponding slip plane, the sole exception being the case when closure effects are activated (i.e. σ s α < 0). For this specific case, a fully damaged slip system allows transmitting forces in the normal direction n α only. According to equation ( 5), the elastic compliance tensor S s is necessarily symmetric and positive-definite. Also, whatever the stress state is, the continuity of the relation between the stress and elastic strain tensors is guaranteed.

To better illustrate the impact of damage on the stiffness properties, one may consider the specific case of a single slip system. For such a situation, the actual (i.e. for a possibly damaged configuration) Young's modulus E n α and shear moduli G mn α and G kn α are:

E n α = Ẽn α (1 -d s α ) (1 -d s α + d s α u (σ s α )) -1 (12) 
G mn α = Gmn α (1 -d s α ) (13) 
G kn α = Gkn α (1 -d s α ) (14) 
The above relations emphasize the progressive decrease of the stiffness properties resulting from the development of damage. Within the context of crystal plasticity, the plastic strain tensor is given by:

p,s = 1 2 α (m α ⊗ n α + n α ⊗ m α ) γ s α ( 15 
)
where γ s α is the plastic shear strain associated with slip system α A yield function f α is introduced for each slip system to determine whether the conditions for plastic flow are met or not. The yield function f α is given by:

f α = |τ s α | -r s α (16) 
In the above equation, τ s α and r s α are respectively the resolved and critical shear stresses associated with slip system α. The resolved shear stress τ s α acting on the αth slip system is given by the following projection of the stress tensor:

τ s α = m α • σ s • n α (17)
The critical shear stress r s α represents the resistance opposing plastic slip. For a given slip system, the resistance to plastic slip is assumed to be governed by the evolution of the corresponding dislocation density ρ s α . However, rather than the dislocation density ρ s α , an alternative variable q s α is introduced for each slip system to represent isotropic hardening. The internal variable q s α is connected to the dislocation density ρ s α according to the following equation:

q s α = b ρ s α ( 18 
)
where b is the norm of the Burgers vector. In the present work, a simple linear relation between the critical shear stress r s α and the corresponding internal variable q s α is assumed:

r s α = Q β H αβ q s β ( 19 
)
where Q is the hardening modulus and the H αβ coefficients form a matrix that makes it possible to consider the interactions between different slip systems. The plastic shear strain rate γs α is determined from the yield function f α with a simple viscoplastic powerlaw flow rule:

γs α = f α K N sgn (τ s α ) (20) 
where K and N are viscosity parameters. Also, the evolution of the isotropic hardening variable q s α is given by:

qs α = (1 -Bq s α ) | γs α | (21)
where B is a material parameter characterizing the non-linearity of the isotropic hardening rule, the asymptotic value of q s α being 1/B. Following the classical approach of continuum damage mechanics [START_REF] Lemaitre | A course on damage mechanics[END_REF], the driving force for damage y s α is given by the derivative of the elastic energy density w s e regarding the corresponding damage variable d s α . The elastic energy density w s e is expressed as follows:

w s e = 1 2 σ s : S s : σ s (22)
Hence, the driving force for damage y s α can be written as:

y s α = ∂w s e ∂d s α (23) = 1 2 σ s : ∂S s ∂d s α : σ s (24) = 1 2 u (σ s α ) σ s 2 α Ẽn α + τ s 2 α Gmn α + π s 2 α Gkn α (1 -d s α ) -2 (25) 
where π s α is the shear stress obtained from the following projection:

π s α = k α • σ s • n α (26)
Expression (25) emphasizes that the development of fatigue damage on a slip plane is controlled by the joint effect of both the normal stress σ s α and the shear stresses τ s α and π s α . It should be noticed that the presence of the shear stress π s α in the definition of the driving force for damage is needed to ensure that no tangential force is transmitted in any direction for a fully damaged slip system. Also, according to the above equation, only the elastic strain energy contributes to the driving force for damage. An alternative proposition, which is not explored here, would be to include all or part of the stored energy associated with lattice defects.

By analogy with the viscoplastic flow rule (20), the evolution of the damage variable associated with the αth slip system is described with a power-law type of relation:

ḋs α = y α L M (1 -d s α ) (27) 
where L and M are viscosity parameters. In the above equation, the factor (1d s α ) is introduced to ensure that d s α does not exceed the maximum value of one. Because the damage evolution rule is based on a rate-dependent formalism, the present approach allows considering the possible influence of the loading frequency on the HCF behavior of metallic materials [START_REF] Papakyriacou | Influence of loading frequency on high cycle fatigue properties of b.c.c. and h.c.p. metals[END_REF][START_REF] Marti | Investigating fatigue frequency effects on single phase ductile materials[END_REF]. The importance of frequency effects can be controlled with the M parameter, the specific case of M = ∞ corresponding to a rate-independent situation.

Hard phase For the hard phase, which occupies the dislocation rich region of the studied grain, a purely elastic behavior is assumed. This assumption is consistent with the experimental results of [START_REF] Tabata | The relationship between flow stress and dislocation behaviour in [111] aluminium single crystals[END_REF] who observed dislocations to glide much faster in the soft phase than in the hard phase in aluminium single crystals. Also, on a modelling perspective, a similar assumption is used by [START_REF] Sauzay | Analytical modelling of intragranular backstresses due to deformation induced dislocation microstructures[END_REF] to evaluate the internal stresses associated with dislocation structures. As a result, the strain tensor h is linearly connected to the corresponding stress tensor σ h according to:

h = S h : σ h (28) 
where S h (with

C h = S h -1
) is the elastic compliance tensor. Since no damage is considered for the hard phase, the elastic compliance tensor is given by:

S h = S ( 29 
)
Voigt model To partition the strain tensor of a given grain between both phases, different strategies, usually relying on the Eshelby inclusion formalism [START_REF] Langlois | Overall softening and anisotropy related with the formation and evolution of dislocation cell structures[END_REF][START_REF] Lemoine | Texture of microstructure in BCC metals for various loading paths[END_REF][START_REF] Pedersen | Mechanism maps for cyclic plasticity and fatigue of single phase materials[END_REF][START_REF] Sauzay | Analytical modelling of intragranular backstresses due to deformation induced dislocation microstructures[END_REF], have been proposed. In the present work, the approach originally proposed by [START_REF] Mughrabi | Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals[END_REF], which is based on the Voigt approximation, is followed. It consists of assuming that the strain state is uniform within both phases. Thus, for a given grain, the strain tensors h and s associated with the hard and soft phases are:

s = h = (30)
In the original version of [START_REF] Mughrabi | Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals[END_REF], the composite model is developed for an individual slip system while a grain scale formulation is preferred in the present work.

For the specific case of single slip, whether the Voigt model is applied for an individual slip system or at the granular level is not important as both strategies lead to the exact same results. However, for multiple slip, when working at the slip system level, the determination of the internal stress tensor corresponding to a given set of internal shear stresses is generally not possible. In the present work, the Voigt model is therefore applied at the granular level to avoid the aforementioned difficulties.

While the implementation of the Voigt approximation is straightforward, it completely ignores the influence of the spatial configuration adopted by dislocations. Also, because it provides an upper bound estimation of the effective behavior [START_REF] Bornert | Homogénéisation en mécanique des matériaux, Tome 2 : Comportements non linéaires et problèmes ouverts[END_REF], the adoption of the Voigt approximation generally leads to an overestimation of the internal stresses.

For a given grain, the adoption of the elastic-plastic decomposition leads to:

= e + p (31) 
The elastic strain tensor is determined from the elastic compliance tensor S as follows:

e = S : σ (32)
The effective properties of a composite grain are obtained from the application of homogenization theory (Nemat-Nasser and Hori 1998). More specifically, the averaging relations ( 1) and ( 2) together with the strain localization equation (30) allow determining the elastic stiffness tensor C (with C = S -1 ):

C = wC h + (1 -w) C s (33) 
The plastic strain tensor p , which is deduced from (1), is given by:

p = (1 -w) S : C s : p,s (34) 
According to the above relations, the internal stress tensor x s associated with the soft phase, which controls the development of plasticity, is such that:

x s = σ -σ s (35) = (I -C s : S) : σ + C s : (I -(1 -w) S : C s ) : p,s (36) 
where I is the fourth-rank identity tensor. The above relation shows that the adoption of the Voigt approximation leads to a description of kinematic hardening which is quite similar to the linear hardening rule of [START_REF] Prager | The Theory of Plasticity: A Survey of Recent Achievements (James Clayton Lecture)[END_REF]. Indeed, when damage is not significant (C s : S ≈ I), the internal stress tensor x s ≈ wC s : p,s changes linearly with the plastic strain tensor p,s . The hard phase volume fraction w is progressively modified during a cyclic deformation process. Following the idea of [START_REF] Estrin | A dislocation-based model for all hardening stages in large strain deformation[END_REF], the evolution of the hard phase volume fraction is governed by the following evolution rule:

ẇ = A (W -w) α | γs α | (37)
where W represents the asymptotic value of w and A is a material parameter controlling the evolution rate. Based on TEM observations, [START_REF] Evrard | Polycrystalline modeling of the cyclic hardening/softening behavior of an austeniticferritic stainless steel[END_REF] found that the above equation provides a correct description of the hard phase volume fraction evolution in cyclic plasticity. Also, because of the development of internal stresses is directly connected to the evolution of the hard phase volume fraction, the W and A parameters govern intragranular kinematic hardening.

Self-consistent model

Because the constitutive relations have been developed at the grain scale, an appropriate method for considering the intergranular interactions resulting from the polycrystalline aspect of metallic materials is needed. In the present work, the method proposed by [START_REF] Mareau | An affine formulation for the self-consistent modeling of elastoviscoplastic heterogeneous materials based on the translated field method[END_REF], which is only briefly described here, is used. This approach aims at estimating the effective behavior of a representative volume element being formed by different constituents with an elastic-viscoplastic behavior. For the specific case of polycrystalline materials, each constituent corresponds to the set of grains sharing the same crystallographic orientation and the same shape.

The effective behavior of the representative volume element is given by the relation between the macroscopic stress rate tensor Σ and the macroscopic strain rate tensor Ė. The macroscopic quantities Σ and Ė are connected to their microscopic counterparts σ and ˙ according to:

Σ = 1 V V σdV = σ (38) Ė = 1 V V ˙ dV = ˙ (39) 
The first step for the estimation of the effective behavior consists of writing the local constitutive relations in the following rate form:

˙ = ˙ e + ˙ p (40) 
= S : σ + α + M : σ + β (41)

with:

S = ∂ ˙ e ∂ σ , C = S -1 and α = ˙ e -S : σ (42) M = ∂ ˙ p ∂σ , B = M -1 and β = ˙ p -M : σ (43) 
where C (respectively B) is the elastic (respectively viscoplastic) tangent moduli tensor, α (respectively β) is the elastic (respectively viscoplastic) back-extrapolated strain rate. The self-consistent approximation [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF][START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den konstanten des Einskristalls[END_REF]) is then used to obtain independent estimations of the effective properties associated with either a purely elastic or a purely viscoplastic behavior. The effective elastic stiffness tensor C and the effective back-extrapolated strain rate Ȧ are given by the application of the self-consistent approximation to the purely elastic problem:

C = C : A C (44) S = C -1 (45) Ȧ = S : A C T : C : α (46)
When the grains are assumed to have an ellipsoidal shape, the elastic strain localization tensor A C is calculated for each constituent from the elastic Eshelby tensor T C according to:

A C = I + T C : S : (C -C ) -1 (47) 
In a similar fashion, the effective viscoplastic properties, which are represented by the effective viscosity tensor B and the effective viscoplastic back-extrapolated strain rate Ḃ are obtained from the application of the self-consistent approximation to the purely viscoplastic problem:

B = B : A B (48) M = B -1 (49) Ḃ = M : A B T : B : β (50)
where A B is the viscoplastic strain localization tensor which depends on the viscoplastic Eshelby tensor T B :

A B = I + T B : M : (B -B ) -1 (51)
Finally, the solutions to the purely elastic and purely viscoplastic problems are combined to obtain the strain localization rule:

˙ = Ė + T C : ˙ e -Ȧ + T B : ˙ p -Ḃ -T C : S : C ˙ e -α -A C : S : Σ + Ȧ -˙ e -T B : M : B : ˙ p -β + A B : M : Σ + Ḃ -˙ p + T C -T B : ˙ p -A B : ˙ p -A B : T B : M : B : β -B : Ḃ (52)
The above relation makes it possible to connect the local strain rate ˙ to the prescribed macroscopic strain rate Ė without using a complex numerical procedure. Indeed, only the self-consistent solutions of the purely thermoelastic and viscoplastic heterogeneous problems are needed to estimate the interactions between the different constituents.

Application to polycrystalline copper

In this section, the proposed model is used to describe the development of HCF damage in pure polycrystalline copper. For this application, the representative volume element consists of 500 equiaxed grains with random crystallographic orientation. Crystallographic slip is assumed to occur on the twelve {111} 110 slip systems. In this section, the strategy used for parameter identification is first presented. Some results concerning the influence of the loading conditions are then exposed. shear (Σ 12 ) stresses. The loading frequency, which is denoted by f , is fixed to 10 Hz for the application of stress-controlled loading conditions.

In order to build a fracture criterion, the macroscopic damage variable D is now introduced. The macroscopic damage variable D is defined from the initial (i.e. undamaged) elastic compliance tensor S and the current (i.e. damaged) stiffness tensor C according to:

D = ||I -C : S || (53) 
For the present application, fracture is assumed to occur when the macroscopic damage variable D reaches a critical value D c of 0.5.

Material parameters

The material parameters for copper are presented in Table 2. The strategy used to identify the model parameters is as follows. First, the elastic constants have been taken from Méric et al. (1994) † . For the interaction matrix H, the proposition of [START_REF] Asaro | Texture development and strain hardening in rate dependent polycrystals[END_REF], which consists of distinguishing between coplanar and non-coplanar systems, is adopted. Second, the parameters associated with the viscoplastic flow rule, the isotropic hardening rule and the kinematic hardening rule (i.e. the composite model) have been determined from the different strain-controlled cyclic tests performed by [START_REF] Mahato | Grain Size Effect on LCF Behavior of Two Different FCC Metals[END_REF] (see Figure 1). It should be mentioned that the initial dislocation density was assumed to be negligible so that the isotropic hardening variables q s α were initially assigned a zero value. Third, as shown in Figure 2, the damage-related † For a {110} 111 slip system, the corresponding Young's modulus Ẽn α is 202 GPa and the shear moduli Gmn α and Gkn are both equal to 24.9 GPa. For comparison purposes, the effective Young's modulus Ẽ of the polycrystalline aggregate is 125 GPa and the effective shear modulus G is 46. parameters have been adjusted to reproduce the experimental results of [START_REF] Lukás | Effect of mean stress on cyclic stress-strain response and high cycle fatigue life[END_REF] who conducted fully reversed tension stress-controlled fatigue tests (R σ = -1) on polycrystalline copper. 

Cyclic behavior

The macroscopic behavior of the polycrystalline aggregate for reversed tension is first discussed. The evolution of the macroscopic damage variable D as a function of the number of cycles N is plotted in Figure 3 for different stress amplitudes. The evolution of the hard phase volume fraction as a function of the number of cycles N is shown in Figure 4. For all stress amplitudes, the hard phase volume fraction tends rapidly to the asymptotic value of 5%, which is given by the W parameter. The transient regime, which corresponds to the progressive development of dislocation structures, therefore corresponds to only a small fraction of the total fatigue life. Also, according to the estimations made by [START_REF] Mughrabi | Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals[END_REF] for copper single crystals, the hard phase volume fraction is about 10% in PSBs. The hard phase volume fraction could therefore be underestimated by the present model, likely because intragranular internal stresses are not accurately evaluated with the Voigt model.

As shown in Figure 5, the progressive development of damage results in a decrease of the effective Young's modulus. Nevertheless, because of closure effects, the decrease is more significant for tension than for compression.

Influence of mean stress

The proposed model has been used to investigate the influence of mean normal and shear stresses on the HCF behavior of polycrystalline copper. As shown in Figure 6, for the case of fully reversed torsion (R τ = -1), model previsions are found to be in good agreement with the experimental data of [START_REF] Agbessi | Approches expérimentales et multi-échelles des processus d'amorc ¸age des fissures de fatigue sous chargements complexes[END_REF]. More specifically, the fatigue limit at 10 6 which is about 60 MPa for fully reversed torsion, is correctly predicted by the model.

Also, to evaluate the influence of the mean stress, the model predictions for repeated tension (R σ = 0) are shown in Figure 2 together with the experimental results of [START_REF] Lukás | Effect of mean stress on cyclic stress-strain response and high cycle fatigue life[END_REF]. The decrease observed for the fatigue limit at 10 6 cycles for R σ = 0 is correctly described by the model. However, the slope change observed for the S-N curve is largely underestimated by the model. Such discrepancies are possibly explained by the cross section reduction observed as a consequence of cyclic creep. Indeed, as mentioned by [START_REF] Lukás | Effect of mean stress on cyclic stress-strain response and high cycle fatigue life[END_REF], the cross section reduction associated with the application of a positive mean stress may cause a progressive increase in the true stress amplitude. This aspect, which is important for high maximum stresses, is not considered in the present model as it relies on the infinitesimal deformation theory where no distinction is made between the nominal and true stresses.

The model previsions for repeated torsion (R τ = 0) are displayed in Figure 6. When comparing to the case of reversed torsion (R τ = -1), the S-N curve is almost unchanged, which is consistent with the work of [START_REF] Sines | Behaviour of metals under complex static and alternating stresses[END_REF]) who concluded that the fatigue limit of metals subjected to cyclic torsion is not affected by a superimposed mean shear stress.

It should be mentioned that differences regarding the influence of mean normal and shear stresses are correctly captured thanks to the composite model. To highlight this specific aspect, the average stress and strain tensors have been computed for the soft phase for both tension and torsion. As shown in Figure 7, the stress state of the soft phase, which governs the development of fatigue damage, is unaffected by the application of a macroscopic mean shear stress to the polycrystalline aggregate. However, the cyclic behavior of the soft phase is found to be significantly affected by the application of a macroscopic mean normal stress.

Influence of phase shift

To evaluate the influence of a phase shift on the HCF behavior of polycrystalline copper, the case of combined tension and torsion is now examined. The normalized S a -T a diagram showing the evolution of the fatigue limit at 10 5 cycles is presented in Figure 8 for both in-phase and out-of-phase combined tension and torsion. The experimental results of [START_REF] Pejkowski | High-Cycle Fatigue Behavior of Austenitic Steel and Pure Copper under Uniaxial, Proportional and Non-Proportional Loading[END_REF], who conducted multiaxial fatigue tests on ETP copper for various T a /S a ratios, have been used to obtain estimations of the fatigue limit at 10 5 cycles. For in-phase loading modes, the quantitative agreement between experimental and numerical data is correct. Also, when a 90 • phase shift is introduced, the beneficial influence on fatigue strength is correctly reproduced by the polycrystalline model. The beneficial effect of a phase shift is however quantitatively overestimated. This overestimation is possibly explained by the definition of the driving force for damage. According to expression (25), for a given system, the driving force y s α depends on the corresponding damage variable d s α but is independent on the other damage variables. The interactions between different damage variables are therefore not considered here though they could impact damage development, especially for non-proportional loadings. Indeed, for such loading conditions, different systems can be activated during one loading cycle and the resulting interactions may facilitate the development of fatigue damage.

Conclusions

In this work, a polycrystalline model for describing the development of HCF damage in metallic polycrystals has been proposed. The constitutive relations are written at the grain scale using the general framework of crystal plasticity. A damage variable is attached to each slip system to include the anisotropic aspect of fatigue damage. Also, a two-phase composite model is used to evaluate the internal stresses associated with the formation of intragranular dislocation structures. Constitutive relations have finally been implemented within a self-consistent model to account for intergranular interactions.

The proposed approach has been used to model the HCF behavior of a copper polycrystal. The two-phase composite model is found to be a key ingredient for capturing the effect of mean normal and shear stresses. Also, although a limited number of damagerelated parameters have been introduced, the influence of a phase shift is qualitatively well reproduced. Further work should focus on the description of the interactions between damage variables. Indeed, such interactions are likely to play an important role in the development of HCF damage for complex cyclic loading paths. The extension of the proposed constitutive relations to finite strain elasto-plasticity will also be explored. This aspect is important for investigating the role of pre-straining, such as encountered in metal forming, on the HCF behavior of metallic materials. 
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 1 Figure 1. Evolution of the stress amplitude as a function of the number of cycles for different strain-controlled cyclic tests. The experimental results have been obtained by Mahato et al. (2016).

Figure 2 .

 2 Figure 2. S-N curves for polycrystalline copper for reversed tension (Rσ = -1) and repeated tension (Rσ = 0). The experimental results have been obtained for reversed and repeated tension by Luk ás and Kunz (1989).
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 3 Figure 3. Evolution of the macroscopic damage variable as a function of the number of cycles for reversed tension for different stress amplitudes.
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 4 Figure 4. Evolution of the hard phase volume fraction as a function of the number of cycles for reversed tension for different stress amplitudes.

Figure 5 .Figure 6 .

 56 Figure 5. Evolution of the Young's modulus as a function of the number of cycles for reversed tension (Sa = 140 MPa).

Figure 7 .

 7 Figure 7. Cyclic behavior of the soft phase for reversed and repeated torsion (Ta = 80 MPa, top) and for reversed and repeated tension (Sa = 120 MPa, bottom). The stress-strain curves have been obtained for the 1000th loading cycle.

Figure 8 .

 8 Figure 8. Evolution of the fatigue limit at 10 5 cycles for combined tension and torsion. The results of Pejkowski et al. (2014) have been used to obtain experimental estimations of the fatigue limit at 10 5 cycles.

Table 1 .

 1 The stress-controlled loading conditions being examined in the following are listed in Table1. These conditions correspond to different combinations of normal (Σ 11 ) and List of loading conditions applied to the copper polycrystalline aggregate. The corresponding references for experimental data are also given.

	Name	Normal stress Σ 11	Shear stress Σ 12
	Reversed tension	S a sin (2πf t)	0
	(Lukás and Kunz 1989)		
	Repeated tension	S a + S a sin (2πf t)	0
	(Lukás and Kunz 1989)		
	Reversed torsion	0	T a sin (2πf t)
	(Agbessi 2013)		
	Repeated torsion	0	T a + T a sin (2πf t)
	Reversed tension-torsion (in-phase)	S a sin (2πf t)	T a sin (2πf t)
	(Pejkowski et al. 2014)		
	Reversed tension-torsion (out-of-phase)	S a sin (2πf t)	T a sin (2πf t + π/2)
	(Pejkowski et al. 2014)		

Table 2 .

 2 Material parameters for pure copper.

	2 GPa