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Abstract

In this paper, we propose an innovative formulation of the "well-known" thermal lattice Boltzmann
method for solving transient conduction heat transfer problems in heterogeneous media : the DD-
CHT LB method for Double Distribution - Conjugate Heat Transfer. The main idea of this new
formulation is to bring out a second distribution function that represent the effect of thermal inertia
and its variation in a heterogeneous media. By adopting this original formulation we achieved sev-
eral goals, mainly conservation of local properties of the studied media and ensuring the stability
of the proposed formulation by avoiding any alteration of the "well-known" TLBM collision step.
Validation of the formulation is fulfilled through three different benchmark conduction heat trans-
fer problems in heterogeneous media. All results are compared with those obtained by the Control
Volume Method (CVM) and excellent agreements were found.

1. Introduction

Conjugate Heat Transfer (CHT) takes place when heat is transferred between two materials

with different transport properties. The major difficulty when solving CHT is the necessity

of satisfying two fundamental conditions: the temperature continuity and the normal heat

flux continuity.

Generallywhen adopting conventional Computational FluidDynamic (CFD) solvers in solv-

ingCHTproblems, extrapolations and iterative schemes have to be applied. As a result extra

computational cost and complex codes are to be expected.

In earlier researches trying to solve CHT with the LB method, most of the proposed solu-

tions are based on solving the convection-diffusion equation in heterogeneous media based
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on temperature as a dependent variable (Chen and Han, 2000; Meng et al., 2008; Hu et al.,

2015). In these works precautions must be taken regarding tracking and correcting for the

presence of interfaces. By doing so, the overall solution procedure become more complex

especially in case of curved interfaces, moving or evolving interfaces over time.

Wang et al. (Wang et al., 2017) extended a previous work of Le et al. (Le et al., 2015) in

order to include the interface discontinuity. By presenting their model they proposed a so-

lution for treatment of discontinuity at interfaces. Their solution is opting for the Counter-

extrapolationmethodwhich provides extrapolations of the computed transport scalar along

the local normal direction of the conjugate interface and combining that with bilinear inter-

polations. Patel et al. (Patel et al., 2016) presented a spectral element discontinious Galerkin

thermal LB model for fluid-solid conjugate heat transfer problems. The authors employed

a double distribution thermal LB model for solving flow field and CHT problems on un-

structured non-uniform grids. The results presented are mostly at the steady state. Overall

comparisons are made with finite difference and continuous Spectral elements solutions.

Recently Pareschi et al. (Pareschi et al., 2016) proposed a CHTmodel based on the two pop-

ulations entropic LBmethod. In their study, the authors chose the entropic multi-relaxation

LB method and validated their formulation by solving a pure conduction transfer problem,

a CHT problemwith a backward facing step flow and finally tested their model with a three

dimensional turbulent flow around a heated mounted cube.

Someother researchers opted for an enthalpy basedLB formulation to recover the convection-

diffusion equation under its enthalpic form. Lately Huang et al. (Huang and Wu, 2016)

proposed a total enthalpy based MRT LB model associated with an adaptive mesh refine-

ment near the solid-liquid phase change interface where thermodynamic properties vary

significantly. Several melting problems in a square cavity with different values of Prandtl

number and Rayleigh number were simulated. More recently Liu et al. (Liu et al., 2017)

simulated solid-liquid phase change heat transfer problem in metal foam. Their formu-

lation comes under the form of an enthalpic MRT LB model used with the local thermal

non-equilibrium (LTNE) condition. The authors implicitly tracked the moving liquid-solid

interface by mean of the liquid fraction expression.

Another attempt to solve CHT problems with the LB method was performed by Hamila et

al. (Hamila et al., 2017). In their work, the authors proposed a general formulation of the

convection-diffusion equation in multicomponent media at its enthalpic form. The main

idea of the their work is to introduce an extra source term to the enthalpic form of the con-
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vection diffusion equation. The same idea was also tested in the three dimensional case

(Nouri et al., 2017).

In this paper we propose a completely different approach from what we mentioned above.

The basic idea of the proposed formulation is a double distribution approach of thermal

transfer, in other words the concept is an internal reformulation of the lattice Boltzmann

equation. Without any further calculations of term source or specific interface tracking

method, the proposed model aim to solve CHT problems in heterogeneous media with

local properties conservation and stability of the model proposed.

2. Mathematical formulation

2.1. Thermal Lattice Boltzmann formulation

The Thermal Lattice Boltzmann formulation for heat transfer problems based on BGK col-

lision operator takes the following form:

fk(r + ekδt, t+ δt) = fk(r, t)−
δt

τ
[fk(r, t)− f (eq)

k (r, t)] (1)

where fk is the distribution function, denoting the number of particles at lattice node r and

time t, τ is the relaxation time, f (eq)
k is the equilibrium distribution function, and δt is the

time step. In two dimensional problems, when using the D2Q9 lattice scheme τ and f (eq)
i

are as below :

τ =
2α

|ek|2
+
δt

2
(2)

f
(eq)
k = wkT (r, t)

[
1 +

ek · U
c2s

]
(3)

where α = k
ρCp

is the thermal diffusivity, k and ρCp are thermal conductivity and heat

capacitance, respectively. The nine velocities ~ek and their corresponding weights wk in the

D2Q9 lattice scheme are the following:

e0 = (0, 0) · U e1,3 = (±1, 0) · U e2,4 = (0,±1) · U ; e5,6,7,8 = (±1,±1) · U (4)

w0 =
4

9
, w1,2,3,4 =

1

9
w5,6,7,8 =

1

36
(5)
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once the values of population fk are known, temperature T is calculated as follows:

T (~r, t) =
∑
k

fk (~r, t) (6)

Equation 1 based on Chapmann-Ensgok expansion and BGK collision model recover the

following macroscopic equation
∂T

∂t
= ∇ · (α∇T ) (7)

When analyzing the macroscopic energy equation recovred by thermal lattice Boltzmann

formulation, we notice that the method can only provide correct results in homogenous

media or in heterogenous media with identical heat capacity in either sides of the existing

interfaces (Hamila et al., 2017; Karani and Huber, 2015). Indeed, as the distribution func-

tion is used to compute both the flux between points of the lattice and the temperature via

equation (6), temperature and enthalpy are equal in this approach, which implicitly imposes

ρCp = 1.

2.2. The double distribution lattice Boltzmann equation for unsteady heat conduction in heteroge-

neous media

In this paper we propose amore generalized formulation of the thermal LBM. The formula-

tion allows to distinguish temperature and enthalpy when solving heat transfer problems.

To do so, a second distribution function is added. This function is very simple to compute

as it contains only one component. Through these changes we will be able to correctly sim-

ulate thermal transfer in heterogeneous media without further considerations of heat flux

and temperature continuities at the interface.

Writing the energy equation in the enthalpy form is as following:

∂h

∂t
= ∇ · (k∇T ) (8)

with h = ρCpT , and k represent the conductivity.

By operating a slight change on Eq. 8 , we aim to express this equation with temperature

as a dependent variable. So by adding in both sides of equation ∂T
∂t

the equation takes the

4



following form:
∂(ρCpT − T )

∂t︸ ︷︷ ︸
II

+
∂(T )

∂t
= ∇ · (k∇T )︸ ︷︷ ︸

I

(9)

Eq. 9 can be seen as the sum of two parts. Part I resolves the energy equation for a reference

medium in which the volumetric heat capacity is equal to unity ρCp = 1 and Part II account

for the actual thermal inertia.

In order to distinguish temperature and enthalpy, we introduce a second distribution g

which contains a unique component g0 with a zero velocity. g is defined to obtain the en-

thalpy :

T =
∑

fi

h = ρCpT = g0 +
∑

fi (10)

These expressions tell us that a simple relation relies g0 and
∑
fi:

g0 = (ρCp− 1)
∑

fi (11)

At each time-iteration, from t to t + 1, solving Part I using Eq. 1 accounts for the right

heat flux, driven by the temperature field, but estimates a wrong temperature change as

this equation assumes the heat capacity to be equal to unit ρCp = 1. Let’s name the new

temperature fields obtained after the streaming-collision steps T ∗(t+1) =
∑
f
∗(t+1)
i . At this

stage, g didn’t change as the single component of this distribution is at rest and g is not

involved in the collision step. For this reason, the set g(t)0 and f ∗(t+1)
i do not respect equation

13. A correction is therefore needed at constant enthalpy :

h(t+1) = g
(t)
0 +

∑
i

f
∗(t+1)
i = g

(t+1)
0 +

∑
i

f
(t+1)
i (12)

Together with the definition of the enthalpy :

g
(t+1)
0 = (ρCp− 1)

∑
i

f
(t+1)
i (13)
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This leads to the following expression :

T (t+1) = β × T ∗(t+1) (14)

Where :

β =
1 + g

(t)
0 /T ∗(t+1)

ρCp
(15)

This correction is applied to each component of distribution f (Fig. 1):

f
(t+1)
i = β × f ∗(t+1)

i (16)

The value of g0 at t+1, g(t+1)
0 is then updated using equation 12. The algorithm to be imple-

mented is detailed hereafter :

Algorithm 1 The DD-CHT LBM algorithm

Initialize Lattice Boltzmann distribution f (t=0)
i

Initialize thermal inertia g(t=0)
0 ← (ρCp− 1)×

∑
i f

(t=0)
i

loop
Streaming step1)

Collision step1)

Correct temperature distribution f (t+1)
i ← β × f ∗(t+1)

i

Update inertia distribution g(t+1)
0 ← g

(t)
0 + T ∗ × (1− β)

end loop
1)Boundary nodes need the same treatment as for the classical LBM.

3. Numerical simulations

3.1. Transient heat conduction in a two-layer medium with inclined interface

To demonstrate the ability of the proposed formulation to solve conjugate conduction heat

transfer problems in heterogeneous media, a transient heat transfer problem in a two-layer

mediumwith an inclined interface is proposed first. Initially themedium is uniformly at the

initial temperature Tint. At (t>0), a Dirichlet condition at the hot temperature T0 is applied

to all sides (Fig.2a). Simulation is carried out on a (250×250)mesh. The same problemwas

solved using the control volume method for validation purposes. Different sets of thermo-

physical properties were tested for the two sub-domains 1 and 2 to obtain contrasted values
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of the thermal diffusivity either due to the heat capacity or to the thermal conductivity. The

values used are : ρCp1 = 20, ρCp2 = 1, k1 = 1, k2 = 6 for the first simulation (Fig.2b) and

ρCp1 = ρCp2 = 2, k1 = 1, k2 = 4 for the second simulation (Fig.2c). The results obtained

with the new LBM formulation and the CVM solutions are depicted as isotherms after 30

seconds. We also plotted in (Fig. 2d) and (Fig.2e)the dimensionless temperature profile

along the diagonal for a set of selected times for case 1 and case 2, respectively. Excellent

agreements were found for the two case studies.

3.2. Unsteady conduction heat transfer problem inside a square medium with a circular inclusion

The problem investigated in this part of the paper is a 2D unsteady conduction heat transfer

problem inside a square medium with circular inclusion. The two mediums have different

values of thermophysical properties. Initially the temperature of the entire medium is set

to Tini. At (t>0), the left-hand side of the square medium is heated to T0 while the other

sides are kept insulated. In this test case we choose to perform two different simulations,

in other word in the first simulation we imposed similar thermal conductivity values of the

sub-domains and imposed non unitary ratio between the heat capacity’s values, while in the

second simulationwe chose to impose non unitary ration between the heat capacity’s values

and between the thermal conductivity’s values (Fig.3a) . Both simulations were carried out

on a (150× 150)mesh.

(Fig.3b -3c) present the results as computed with the new LBMmethod for the first simula-

tion case. In this figure, the isotherm lines are compared with the same solution computed

with a the control volumes method(CVM). We can see that excellent agreement are found

both in transient period (750 s) and at steady-state.

In the second configuration, the conduction heat transfer problem is solved in a square

medium with a circular inclusion, the values of thermophysical properties are k1/k2 = 20

and ρCp2/ρCp1 = 20. We intentionally selected the same ratio of properties to obtain the

same thermal diffusivity even though the medium is heterogeneous. The first validation

for this set of thermophysical properties is plotted as isotherms at t=100s (Fig. 3d).
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4. Conclusion

In this paper, a rigorous reformulation of the "well-known" thermal lattice Boltzmannmethod

is detailed. The proposed approach aim to correctly simulate thermal transfer in heteroge-

neous media which obviously mean dealing with both different conductivities and heat

capacities on both sides of the interface. Mainly the basic idea of the paper involve a second

distribution function, with a single component, that allows distinguishing temperature and

enthalpy in the TLBMalgorithm. The new formulation offer an innovativemethod for treat-

ment of unsteady conduction heat transfer problems in heterogeneous media. The method

is presented as a novel LBM algorithmwhich is easy to implement and works without need

to track the interface of the heterogeneities. After showing the ability of the presented for-

mulation to simulate conduction heat transfer in homogeneousmedia, themethod has been

tested and validated with three unsteady conduction heat transfer problems in heteroge-

neous media.
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Figure 1: Modified distribution functions with the DD-CHT LBM algorithm.
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Figure 2: (a):Heterogeneous configuration; Isotherms computed at 30 seconds for two contrasted sub-dmains
(b): ρCp1 = 20, ρCp2 = 1, k1 = 1, k2 = 6 and (c):ρCp1 = ρCp2 = 2, k1 = 1, k2 = 4; Dimensionless temperature
profile along the diagonal at selected elapsed times for (d):case 1, (e):case 2; (symbols) for CVM and (solid
line) for the DD-CHT of LBM.
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Figure 3: (a):heterogeneous media; Comparison of isotherms for (Configuration-1) k1/k2 = 1 , ρCp2/ρCp1 =
250 (b):Isotherm at t=750s, (c):Isotherm at steady state; for (Configuration-2):k1/k2 = 20 , ρCp2/ρCp1 =
20 at t=100s (d):Isotherm computed with DD-CHT-CVM (e):Isotherm computed with LBM-CVM - for
Fig.3 (b),(c),(d):(symbols) stands for CVM and (solid line) for the DD-CHT solution,and for Fig.3(e):(solid
line)stands for conventional LBM
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