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Landscape-Aware Performance Prediction for
Evolutionary Multi-objective Optimization

Arnaud Liefooghe, Fabio Daolio, Sébastien Verel, Bilel Derbel, Hernán Aguirre, Kiyoshi Tanaka

Abstract—We expose and contrast the impact of landscape
characteristics on the performance of search heuristics for
black-box multi-objective combinatorial optimization problems.
A sound and concise summary of features characterizing the
structure of an arbitrary problem instance is identified and re-
lated to the expected performance of global and local dominance-
based multi-objective optimization algorithms. We provide a
critical review of existing features tailored to multi-objective
combinatorial optimization problems, and we propose additional
ones that do not require any global knowledge from the land-
scape, making them suitable for large-size problem instances.
Their intercorrelation and their association with algorithm
performance are also analyzed. This allows us to assess the
individual and the joint effect of problem features on algorithm
performance, and to highlight the main difficulties encountered
by such search heuristics. By providing effective tools for multi-
objective landscape analysis, we highlight that multiple features
are required to capture problem difficulty, and we provide further
insights into the importance of ruggedness and multimodality to
characterize multi-objective combinatorial landscapes.

Index Terms—Evolutionary multi-objective optimization,
black-box combinatorial optimization, problem difficulty and
landscape analysis, feature-based performance prediction.

I. INTRODUCTION

EVOLUTIONARY Multi-objective Optimization (EMO)
algorithms and other multi-objective randomized search

heuristics have to face a lot of difficulties. Apart from the
typical issues encountered in single-objective optimization,
multi-objective landscapes exhibit additional challenges such
as the identification of multiple (Pareto) optimal solutions,
corresponding to different tradeoffs between the objectives.
A large number of EMO algorithms has been designed in the
last thirty years, ranging from dominance-based approaches
to scalarization- and indicator-based refinements; see e.g. [1],
[2], [3]. Despite the significant progress in recent years, we
argue that most EMO algorithms continue to be designed on
the basis of intuition, that they require a significant effort to
be tailored to a particular optimization scenario, and that there
is a lack of understanding about what makes them efficient or
not when solving a particular problem instance.

In single-objective optimization, however, landscape anal-
ysis has emerged as a valuable set of tools to characterize
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problem difficulty [4]. Contrary to problem-specific structural
properties such as the average vertex degree in the minimum
vertex cover problem [5] or the maximum cost between two
cities in the traveling salesman problem [6], landscape analysis
aims at designing general-purpose features that do not depend
on a specific problem class or problem domain. Instead, it
tries to characterize the topology of black-box problems in the
eye of the challenges that stochastic local search algorithms
have to face when tackling them. Of particular interest is the
number and distribution of local optima in the landscape,
i.e. multimodality and ruggedness [7], [8], [9], [10], [11].
These features are empirically related to instance hardness and
algorithm efficiency, and provide significant insights into the
interplay between the problem structure and the behavior of
search algorithms and their working components. Pioneering
works on multi-objective landscape analysis include Knowles
and Corne [12], Paquete and Stützle [13], [14], Garrett and
Dasgupta [15], [16], as well as the authors own previous
works [17], [18], [19], [20]. We build upon those by con-
sidering general-purpose problem features defined therein. In
addition, we derive new landscape features that our analysis
reveals as highly impactful for multi-objective search.

The purpose of designing features to characterize search dif-
ficulty is two-fold: (i) gathering a fundamental understanding
of optimization problems and algorithms, eventually leading
to a better algorithm design, and (ii) automatically predicting
performance or selecting algorithm based on relevant fea-
tures. More particularly, feature-based performance predic-
tion consists of modeling the expected runtime or solution
quality of a given algorithm applied to a problem instance
exhibiting particular features. This, in turn, might also lead
to algorithm selection [21], [22] and configuration [23], [24],
where the best-performing algorithm or configuration is to be
selected from a set of competitors. This issue is not specific
to optimization, and is known as the algorithm selection
problem [25]. A statistical or machine learning regression
or classification model is constructed by means of extensive
experiments on a training set of instances, and this model is
later used to predict the performance or to select between algo-
rithms for previously-unseen instances. This research area has
received a growing attention in recent years, mainly by relying
on features that require a specific domain knowledge from
the target combinatorial optimization problem; see e.g. [6],
[26], [27]. Few exceptions can be found in [28], [29], [30],
[31], where the selection among an algorithm portfolio is
performed using general-purpose landscape features related
to local optimality, ruggedness and multimodality. Research
in this line can also be found for black-box continuous
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single-objective optimization [32], [33], [34]. However, to
our knowledge, black-box landscape features have never been
used for performance prediction or algorithm recommendation
in the context of multi-objective combinatorial optimization.
Although the statistical and machine learning models used
in the single-objective case can be applied, multi-objective
landscape features need to be carefully designed and analyzed,
since existing single-objective features are not relevant for
multi-objective optimization.

This is precisely the purpose of the current study. Particu-
larly, we first review and extend general-purpose features to
characterize the different facets of difficulty encountered in
multi-objective combinatorial optimization. Features include
problem descriptors, as the solution and objective space di-
mensions, global measures, that require the knowledge of all
or part of the solution space, and local measures, that are
computed from an affordable sample of solutions. Then, we
analyze features interrelation as well as their impact on the
performance of two canonical EMO algorithms, namely the
global simple evolutionary multi-objective optimizer [35] and
the Pareto local search [13]. We selected a global and a local

simple elitist dominance-based EMO algorithms, respectively,
for the sake of clarifying the understanding of core EMO algo-
rithm components. Experiments are conducted on a family of
multimodal pseudo-boolean optimization problems known as
multi-objective nk-landscapes with objective correlation [18].
By paying a particular attention to the computational cost
induced by these features, we finally analyze their ability to
predict algorithm performance and to select among a small
algorithm portfolio. A sound statistical analysis allows us to
highlight the main difficulties that dominance-based EMO
algorithms have to face, as well as the main differences
induced by global and local EMO search approaches.

The paper is organized as follows. In Section II, we
present the main concepts from multi-objective combinatorial
optimization, and we introduce the multi-objective algorithms
and multi-objective nk-landscapes considered in the paper. In
Section III, we identify a substantial number of existing and
original features that characterize black-box multi-objective
landscapes. In Section IV, based on a set of small-size multi-
objective nk-landscapes, we analyze the correlation among
features, and we measure their ability to predict algorithm
performance as well as their impact on search efficiency. In
Section V, we extend our analysis to large-size instances by
focusing on local features, i.e. features that can be computed
efficiently. In Section VI, we experiment with feature-based
algorithm selection for both multi-objective nk-landscapes
and quadratic assignment problems. In the last section, we
conclude the paper and discuss further research.

II. MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION

A. Definitions

Let us consider a black-box objective function vector
f : X 7! Z to be maximized. Each solution from the solution
space x 2 X maps to a vector in the objective space z 2 Z,
with Z ✓ IRm, such that z = f(x). In multi-objective
combinatorial optimization, the solution space X is a discrete

set. We here assume that X := {0, 1}n, where n is the problem
size, i.e. the number of binary (zero-one) variables. Given two
objective vectors z, z0 2 Z, z is dominated by z0 iff for all
i 2 {1, . . . ,m} zi 6 z0i, and there is a j 2 {1, . . . ,m} such
that zj < z0j . Similarly, given two solutions x, x0 2 X , x is
dominated by x0 iff f(x) is dominated by f(x0). An objective
vector z? 2 Z is non-dominated if there does not exist any
z 2 Z such that z? is dominated by z. A solution x? 2 X
is Pareto optimal (PO), or non-dominated, if f(x) is non-
dominated. The set of PO solutions is the Pareto set (PS);
its mapping in the objective space is the Pareto front (PF).
One of the main challenges in multi-objective optimization is
to identify the PS, or a good approximation of it for large-size
and difficult black-box problems.

B. Algorithms

We consider two randomized multi-objective search heuris-
tics: (i) the Global Simple Evolutionary Multi-objective Op-
timizer (G-SEMO) [35], a simple elitist steady-state global

EMO algorithm; and (ii) Pareto local search (PLS) [13], a
population-based multi-objective local search. Both algorithms
maintain an unbounded archive A of mutually non-dominated
solutions. This archive is initialized with one random solution
from the solution space. At each iteration, one solution is
selected at random from the archive x 2 A. In G-SEMO,
each binary variable from x is independently flipped with
a rate of 1/n in order to produce an offspring solution x0.
The archive is then updated by keeping the non-dominated
solutions from A [ {x0}. In PLS, the solutions located in
the neighborhood of x are evaluated. Let N (x) be the set of
solutions located at a Hamming distance 1. The non-dominated
solutions from A [ N (x) are stored in the archive, and the
current solution x is tagged as visited in order to avoid a
useless revaluation of its neighborhood. This process is iterated
until a stopping condition is satisfied. While G-SEMO does
not have any explicit stopping rule, PLS naturally stops once
all solutions from the archive are tagged as visited. For this
reason, we consider a simple iterated version of PLS (I-PLS),
that restarts from a solution randomly chosen from the archive
and perturbed by stochastic mutation [36]. While PLS is
based on the exploration of the whole 1-bit-flip neighborhood
from x, G-SEMO rather uses an ergodic operator, i.e. an
independent bit-flip mutation. Hence, every iteration has a non-
zero probability of reaching any solution from the solution
space. This makes G-SEMO a global optimizer, in contrast
with a local optimizer as PLS.

C. Pseudo-Boolean Multi-objective Benchmark Instances

We consider ⇢mnk-landscapes [18] as a problem-inde-
pendent model used for constructing multi-objective mul-
timodal landscapes with objective correlation. They extend
single-objective nk-landscapes [8] and multi-objective nk-
landscapes with independent objectives [17]. Candidate so-
lutions are binary strings of size n. The objective function
vector f = (f1, . . . , fi, . . . , fm) is defined as f : {0, 1}n 7!
[0, 1]m such that each objective fi is to be maximized. As
in the single-objective case, the objective value fi(x) of a
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solution x = (x1, . . . , xj , . . . , xn) is an average value of
the individual contributions associated with each variable xj .
Given objective fi, i 2 {1, . . . ,m}, and each variable xj ,
j 2 {1, . . . ,n}, a component function fij : {0, 1}k+1 7! [0, 1]
assigns a real-valued contribution for every combination of xj

and its k epistatic interactions {xj1 , . . . , xjk}. These fij-
values are uniformly distributed in [0, 1]. Thus, the individual
contribution of a variable xj depends on its value and on the
values of k < n variables {xj1 , . . . , xjk} other than xj . The
problem can be formalized as follows:

max fi(x) =
1

n

nX

j=1

fij(xj , xj1 , . . . , xjk) i 2 {1, . . . ,m}

s.t. xj 2 {0, 1} j 2 {1, . . . ,n}
In this work, the epistatic interactions, i.e. the k variables
that influence the contribution of xj , are set uniformly at
random among the (n� 1) variables other than xj , following
the random neighborhood model from [8]. By increasing the
number of epistatic interactions k from 0 to (n� 1), problem
instances can be gradually tuned from smooth to rugged. In
⇢mnk-landscapes, fij-values additionally follow a multivariate
uniform distribution of dimension m, defined by an m ⇥ m
positive-definite symmetric covariance matrix (cpq) such that
cpp = 1 and cpq = ⇢ for all p, q 2 {1, . . . ,m} with p 6= q,
where ⇢ > �1

m�1 defines the correlation among the objectives;
see [18] for details. The positive (respectively, negative) objec-
tive correlation ⇢ decreases (respectively, increases) the degree
of conflict between the different objective function values.
Notice that the correlation coefficient ⇢ is the same between
all pairs of objectives, and the same epistatic degree k and
epistatic interactions are set for all the objectives.

III. CHARACTERIZING MULTI-OBJECTIVE LANDSCAPES

In this section, we present the set of multi-objective land-
scape features considered in our analysis. We start with
global features, that, in order to be computed, require the
knowledge of all solutions and/or Pareto optima. This makes
them impractical for performance prediction and algorithm
selection. However, we decided to include them in order to
measure and understand their impact on search performance.
Next, we introduce a number of local features, which are based
on a reasonable subset of solutions sampled during random
and adaptive walks, making them affordable in practice for
performance prediction. The whole set of features is listed
in Table I, together with the parameters of ⇢mnk-landscapes
described above, i.e. ⇢, m, n, and k.

As in single-objective optimization, we define a multi-
objective landscape as a triplet (X,N , f), where X is a
solution space, N : X 7! 2X is a neighborhood relation, and
f : X 7! Z is a (black-box) objective function vector.

A. Global Features

Let us start with the subset of global features illustrated
in Fig.1. In multi-objective combinatorial optimization, the
number of Pareto optimal (PO) solutions is considered as
an important aspect of difficulty. Generally speaking, the
larger the PS, the smaller the chance to identify all PO

solutions in an efficient manner. In that sense, most multi-
objective combinatorial optimization problems are known to
be intractable, i.e. the number of PO solutions typically
grows exponentially with the problem size [37]. As such, the
proportion of PO solutions in the solution space (#po) is one
of the most obvious facet to characterize problem difficulty;
see e.g. [12], [15], [17]. For ⇢mnk-landscapes, #po is known
to grow exponentially with the number of objectives and with
their degree of conflict [18]. PO solutions can further be
classified into two categories: supported and non-supported
solutions. A supported solution is an optimal solution of a
weighted-sum aggregation of the objectives, and is mapping
to an objective vector that is located on the convex hull of the
PF [37]. Although dominance-based approaches are consid-
ered in our analysis, the proportion of supported solutions in
the PS (#supp) might impact the general convexity of the PF,
as illustrated by previous studies on multi-objective landscape
analysis [12]. Similarly, the hypervolume (hv) covered by the
(exact) PF is shown to relate to the expected performance of
EMO algorithms [17]. The hypervolume is one of the few
recommended indicators for comparing solution-sets in EMO.
It gives the portion of the objective space that is dominated
by a solution-set [38].

Other relevant characteristics from the PS deal with the
distance and connectedness between PO solutions. Knowles
and Corne [12] study the maximal distance, in the solution
space, between any pair of PO solutions (podist_max).
They denote this as the diameter of the PS. For ⇢mnk-
landscapes, the distance measure is taken as the Hamming
distance between binary strings, which is directly related to the
bit-flip neighborhood operator. Similarly, the average distance
between PO solutions (podist_avg) can also be taken into
account [19]. Another measure capturing the dispersion of
solutions is the entropy of the PS [12], here measured as the
entropy of (binary) variables from PO solutions (po_ent).
Extensions of the fitness-distance correlation, a widely ac-
knowledged landscape measure [39], to multi-objective op-
timization is discussed in [12], [15]. We here consider the
correlation between the (Hamming) distance between PO solu-
tions and their Manhattan distance in the objective space [12].
Another important property of the PS topology is connected-

ness [40], [41]. The PS is connected if all PO solutions are
connected with respect to a given neighborhood structure. This
makes it possible for local search to identify the whole PS
by starting with one PO solution. Let us define a graph such
that each node corresponds to a PO solution, and there is an
edge between two nodes if the corresponding solutions are
neighbors in the landscape. Arguing that the degree of con-
nectedness impacts the performance of multi-objective local
search [14], [42], we here consider the following landscape
features, illustrated in Fig. 2: the proportion of connected
components in this Pareto graph (#cc) [14], the proportion
of isolated nodes (#sing) [14], the proportional size of the
largest connected component (#lcc) [18], [42], as well as the
average distance between pairs of nodes (lcc_dist) and the
proportion of hypervolume covered by the largest connected
component from the Pareto graph (lcc_hv).

The characteristics of the PS and the PF, however, are
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Fig. 1. Illustration of global features extracted
from the PS, the PF, and the solution space.
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ƒ2

Fig. 2. Illustration of global features extracted
from the connectedness properties of the PS.
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Fig. 3. Illustration of Pareto local optima (PLO)
and single-objective local optima (SLO).

not the sole factors that impact the performance of EMO
algorithms. In [16], [17], the authors analyze how the land-
scape affects the number of non-dominated fronts, and how
this relates to search performance. As illustrated in Fig. 1,
the whole set of solutions from the search space is divided
into different layers of mutually non-dominated solutions,
following the principles of non-dominated sorting used, e.g.,
in NSGA-II [1]. To cater for this, we measure both the
proportion of non-dominated fronts in the solution space
(#fronts) [16], [17], and the entropy of the non-dominated
front’s size distribution (front_ent). Finally, one of the
main landscape features in single-objective optimization is
the number of local optima [8]. Although multimodality is
still largely overlooked in the multi-objective optimization
literature, where the number of objectives is seen as the main
source of difficulty, few recent studies have revealed its impact
on multi-objective search performance [13], [18], [20], [11].
Following [13], we define a Pareto local optimum (PLO) as a
solution x 2 X for which there does not exist any neighboring
solution x0 2 N (x) such that x is dominated by x0, and we
measure the proportion of PLO in the solution space (#plo).
Additionally, we also consider the average number of single-
objective local optima (SLO) with respect to each separate
objective function, proportional to the size of the solution
space (#slo_avg). In other words, #slo_avg corresponds
to the proportion of local optima per objective, all m values
(i.e. one per objective) being averaged. The definitions of PLO
and SLO are illustrated in Fig. 3. We expect #slo_avg to
increase with the number of variable interactions k, as in
single-objective nk-landscapes [8]. However, we conjecture
that #plo is not only affected by k, but also by the number
of objectives and their degree of conflict. Both features might
then capture different facets of multi-objective multimodality.

B. Local Features

Unfortunately, computing the global features introduced
above requires the solution space, or the PS, to be exhaustively
enumerated, which makes them impractical. Therefore, we
consider local features, computed from the neighborhood
of a sample of solutions, which makes them relevant for

performance prediction. In the following, we introduce two
sampling strategies and a number of landscape measures. We
simply consider a local feature as a combination of both.

1) Sampling: In single-objective landscape analysis, sam-
pling is often performed by means of a walk over
the landscape. A walk is an ordered sequence of solu-
tions (x0, x1, . . . , x`) such that x0 2 X , and xt 2 N (xt�1)
for all t 2 {1, . . . , `} [7], [8].

During a random walk, there is no particular criterion to
pick the neighboring solution at each step; i.e. a random
neighbor is selected. In the single-objective case, the first au-
tocorrelation coefficient of (scalar) fitness values encountered
during the random walk characterizes the ruggedness of the
landscape [7], [43]: the larger this coefficient, the smoother the
landscape. To accommodate the multi-objective nature of the
landscape, different autocorrelation measures will be discussed
below. In the case of a random walk, the length of the walk `
is a parameter that must be provided beforehand. The longer
the length, the better the estimation.

By contrast, during an adaptive walk, an improving neigh-
bor is selected at each step, as a conventional hill climber
would do. In this case, the length ` is the number of steps
performed until the walk falls into a local optimum. This
length is used as an estimator of the diameter of local optima’s
basins of attraction: assuming isotropy in the search space, the
longer the length, the larger the basins size, hence the lower
the number of local optima [8]. Multiple adaptive walks are
typically performed to improve the estimation.

A random walk does not require any adaptation to the multi-
objective case, except for the measure used to estimate the
correlation coefficient, detailed next. As for the adaptive walk,
we consider a very basic single solution-based multi-objective
Pareto hill climber (PHC) [18]. The PHC is initialized with
a random solution. At each iteration, the current solution
is replaced by a random dominating neighbor until it falls
into a PLO. The considered random and adaptive walks are
illustrated in Figs. 4 and 5, respectively.

2) Measures: Given an ordered sequence of solutions col-
lected along a walk, we consider the following measures.
For each solution from the sample, we explore its neighbor-
hood, and we measure the proportion of dominated (#inf),
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ƒ1
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Fig. 4. Illustration of a multi-objective random walk in the objective space.
In this example, the walk length is set to ` = 7.

ƒ1

ƒ2

Fig. 5. Illustration of a multi-objective adaptive walk (PHC) in the objective
space. In this example, the walk performs ` = 5 until it falls into a PLO.
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Fig. 6. Illustration of local dominance measures collected along random and
adaptive walks.

hvd

hv

nhv

ƒ1

ƒ2

Fig. 7. Illustration of local hypervolume measures collected along random
and adaptive walks.

dominating (#sup), and incomparable (#inc) neighbors, as
illustrated in Fig. 6. We also consider the proportion of non-
dominated solutions in its neighborhood (#lnd), as well as the
proportion of supported solutions therein (#lsupp). In Fig. 7,
we illustrate some measures based on hypervolume: the aver-
age hypervolume covered by each neighbor (hv), the average
difference between the hypervolume covered by each neighbor
and the one covered by the current solution (hvd), and the
hypervolume covered by the whole neighborhood (nhv). The
notions of dominance and hypervolume improvement that
can be reached by a solution’s neighborhood can be seen as
measures of evolvability [44] for multi-objective optimization.

For samples collected by means of a random walk, we
compute both the average value as well as the first autocor-
relation coefficient of the measures reported above. Let us
consider, for instance, the hv measure. When there is a strong
correlation between the hypervolume of neighboring solutions
observed at two consecutive steps of the random walk, we
argue that it tends to be easier to improve locally by means
of neighborhood exploration. On the contrary, when there
is no correlation between the hypervolume of neighboring
solutions, it is likely harder to improve locally. As such, the
corresponding feature might characterize a facet of difficulty
for multi-objective landscapes. We also use the random walk

sample to estimate the degree of correlation between the
objectives (f_cor_rws). The latter is expected to estimate ⇢
for ⇢mnk-landscapes. For adaptive walks, we simply compute
average values for each measure, as well as walks length
(length_aws). In [18], length_aws is shown to be a good
estimator for #plo.

IV. LANDSCAPE FEATURES VS. ALGORITHM
PERFORMANCE ON SMALL INSTANCES

A. Experimental Setup

We consider small-size ⇢mnk-landscapes with a problem
size n 2 {10, 11, 12, 13, 14, 15, 16} in order to enumerate
the solution space exhaustively, as required by global fea-
tures; a number of variable interactions (epistatic degree)
k 2 {0, 1, 2, 3, 4, 5, 6, 7, 8}, from linear to highly rugged
landscapes; a number of objectives m 2 {2, 3, 4, 5}, from bi-,
to multi- and many-objective instances; and an objective corre-
lation ⇢ 2 {�0.8,�0.6,�0.4,�0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
such that ⇢ > �1/(m � 1). We generate 30 landscapes
independently at random for each combination of instance
settings. This represents a dataset of 60 480 small-size problem
instances in total, exhibiting a large span of landscape char-
acteristics. For local features, we perform one random walk
of length ` = 1000, and 100 independent adaptive walks,
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TABLE I
STATE-OF-THE-ART AND NEWLY-PROPOSED MULTI-OBJECTIVE LANDSCAPE FEATURES CONSIDERED IN THE PAPER. WHEN NO REFERENCE IS GIVEN,

THE CORRESPONDING FEATURE APPEARS IN THIS PAPER FOR THE FIRST TIME. NOTICE THAT THE COMPUTATIONAL COMPLEXITY FOR (I) GLOBAL
FEATURES FROM ENUMERATION IS O(|X|) = O(2n), (II) LOCAL FEATURES FROM RANDOM WALK SAMPLING IS O(` · n), WHERE ` IS A PRE-DEFINED

PARAMETER, (III) LOCAL FEATURES FROM ADAPTIVE WALK SAMPLING IS O(` · n), WHERE ` IS THE NUMBER OF STEPS TO FALL INTO A PARETO LOCAL
OPTIMA (PLO). ALL BENCHMARK PARAMETERS ARE CONSIDERED IN OUR ANALYSIS, ALTHOUGH ONLY THE PROBLEM SIZE (N) AND THE NUMBER OF

OBJECTIVES (M) ARE AVAILABLE IN A BLACK-BOX SCENARIO.

BENCHMARK PARAMETERS (4)

n number of (binary) variables
k_n proportional number of variable interactions (epistatic links) : k/n
m number of objectives
⇢ correlation between the objective values

GLOBAL FEATURES FROM FULL ENUMERATION (16)

#po proportion of Pareto optimal (PO) solutions [12], [15]
#supp proportion of supported PO solutions [12]
hv hypervolume-value of the (exact) Pareto front [17]
podist_avg average Hamming distance between PO solutions [19]
podist_max maximal Hamming distance between PO solutions (diameter of the Pareto set) [12]
po_ent entropy of binary variables from Pareto optimal solutions [12]
fdc fitness-distance correlation in the Pareto set (Hamming dist. in sol. space vs. Manhattan dist. in obj. space) [12], [15]
#cc proportion of connected components in the Pareto graph [14]
#sing proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph [14]
#lcc proportional size of the largest connected component in the Pareto graph [18]
lcc_dist average Hamming distance between solutions from the largest connected component here
lcc_hv proportion of hypervolume covered by the largest connected component here
#fronts proportion of non-dominated fronts [16], [17]
front_ent entropy of the non-dominated front’s size distribution here
#plo proportion of Pareto local optimal (PLO) solutions [13]
#slo_avg average proportion of single-objective local optimal solutions per objective here

LOCAL FEATURES FROM RANDOM WALK SAMPLING (17)

#inf_avg_rws average proportion of neighbors dominated by the current solution here
#inf_r1_rws first autocorrelation coefficient of the proportion of neighbors dominated by the current solution here
#sup_avg_rws average proportion of neighbors dominating the current solution here
#sup_r1_rws first autocorrelation coefficient of the proportion of neighbors dominating the current solution here
#inc_avg_rws average proportion of neighbors incomparable to the current solution here
#inc_r1_rws first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution here
#lnd_avg_rws average proportion of locally non-dominated solutions in the neighborhood here
#lnd_r1_rws first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood here
#lsupp_avg_rws average proportion of supported locally non-dominated solutions in the neighborhood here
#lsupp_r1_rws first autocorrelation coefficient of the proportion of supported locally non-dominated solutions in the neighborhood here
hv_avg_rws average (single) solution’s hypervolume-value here
hv_r1_rws first autocorrelation coefficient of (single) solution’s hypervolume-values [19]
hvd_avg_rws average (single) solution’s hypervolume difference-value here
hvd_r1_rws first autocorrelation coefficient of (single) solution’s hypervolume difference-values [19]
nhv_avg_rws average neighborhood’s hypervolume-value here
nhv_r1_rws first autocorrelation coefficient of neighborhood’s hypervolume-value here
f_cor_rws estimated correlation between the objective values here

LOCAL FEATURES FROM ADAPTIVE WALK SAMPLING (9)

#inf_avg_aws average proportion of neighbors dominated by the current solution here
#sup_avg_aws average proportion of neighbors dominating the current solution here
#inc_avg_aws average proportion of neighbors incomparable to the current solution here
#lnd_avg_aws average proportion of locally non-dominated solutions in the neighborhood here
#lsupp_avg_aws average proportion of supported locally non-dominated solutions in the neighborhood here
hv_avg_aws average (single) solution’s hypervolume-value here
hvd_avg_aws average (single) solution’s hypervolume difference-value here
nhv_avg_aws average neighborhood’s hypervolume-value here
length_aws average length of adaptive walks [18]

per instance. As in single-objective landscape analysis [8],
multiple adaptive walks are performed to account for the
stochasticity observed in their length, whereas a single long
random walk is performed to obtain a large sample to better
estimate the autocorrelation coefficients. For features based
on hypervolume, given that all ⇢mnk-landscape’s objectives
have a similar range and take their values in [0, 1], we set
the reference point to the origin. In terms of algorithms, we

perform 30 independent runs of both G-SEMO and I-PLS on
each instance. We are interested in the approximation quality
found by each algorithm after reaching a maximum budget,
here defined as a number of calls to the evaluation function.
The stopping condition is set to a fixed budget of 10% of
the solution space size, i.e. d0.1 · |X|e = d0.1 · 2ne calls
of the evaluation function. This represents a budget of 103
evaluations for n = 10, up to 6 554 evaluations for n = 16.
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Fig. 8. Features clustering (left) and features association (right) computed over the whole set of small instances. The strength of monotonic association
between each pair of features is measured by the Kendall coefficient ⌧ , which is a rank-based non-linear correlation measure. The distance between each pair
of features is defined as 1� |⌧ |. Ward’s hierarchical clustering [45] is performed according to such distance (left figure, y-axis): the lower the split, the closer
the features. Clustering is also used to reorder rows and columns of the symmetrical correlation matrix [46] (right figure, see color legend in the middle): the
darker the color, the higher the strength of association between the corresponding features. By cutting the clustering tree, we can group together the features
that are more associated with each one of the benchmark parameters {⇢,m,n,k_n}; see branches and row label colors: green for ⇢, violet for k_n, and
orange for m.

Performance quality is measured in terms of the multiplicative
epsilon indicator [38], that is the epsilon approximation ratio
to the exact PF.

B. Correlation between Landscape Features

Fig. 8 reports the correlation matrix and a hierarchical
clustering of all features, as measured on the complete dataset
of small-size instances. This highlights the similarities between
features and their main association with either benchmark
parameters: it is worth noticing that each cluster contains a
benchmark parameter, as well as both global and local features.

1) Cluster associated with ruggedness (violet): All of the
eight landscape features from the first autocorrelation coeffi-
cient of random walks measures strongly correlate with the
proportional number of variable interactions (epistatic links)
of ⇢mnk-landscapes (k_n = k/n). Intuitively, those features
are related to the ruggedness of the multi-objective landscape,
which generalizes known results from single-objective land-
scape analysis [7]: the ruggedness of the landscape increases
with k_n. As in single-objective optimization, the average
number of local optima per objective #slo_avg also corre-
lates to k_n. All the features related with connectedness (#cc,
#sing, #lcc, lcc_dist, lcc_hv) belong to this same
cluster, together with other features related to the distance be-

tween PO solutions (podist_avg, po_ent, fdc), although
the correlation with k_n is lower in this case.

2) Cluster associated with the number of objectives (or-

ange): The features related to hypervolume that do not belong
to the previous cluster (associated with ruggedness) are all neg-
atively correlated to the number of objectives (m). Interestingly,
features based on average hypervolume measures (hv, hvd,
nhv) are closely related to one another, for samples from both
random and adaptive walks. This means that the landscape
evolvability, in terms of hypervolume, decreases with the
objective space dimension, and so does the PF hypervolume.

3) Cluster associated with objective correlation (green):

This last cluster contains the highest number of features, all re-
lated to the correlation between the objective values (⇢). Note
that f_cor_rws is shown to highly correlate with ⇢, and can
thus be used as an estimator for black-box instances, for which
⇢ is typically unknown. Objective correlation seems to impact
both the shape and the cardinality of the PF (#po, #supp,
podist_max). Similarly, local features based on dominance
(#inf, #inc, #sup) are close to one another, both for
random and adaptive walks. More interestingly, the proportion
of Pareto local optima (#plo) and its estimator length_aws
both belong to this cluster. Although #slo_avg belongs to
the first cluster associated with ruggedness (see above), #plo
seems to increase with the degree of conflicts between the
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TABLE II
10-FOLD CROSS-VALIDATED REGRESSION ACCURACY OBTAINED ON SMALL INSTANCES FOR DIFFERENT INPUT FEATURES.

Algo. Set of features MAE MSE R2 adjusted R2
Rankavg std avg std avg std avg std

G
-S

EM
O

all features 0.007781 0.000055 0.000118 0.000002 0.951609 0.001463 0.951238 0.001474 1
global features 0.008411 0.000064 0.000142 0.000003 0.943046 0.001665 0.942876 0.001670 2
local features 0.009113 0.000072 0.000161 0.000003 0.932975 0.001555 0.932663 0.001562 3
local features (random walk) 0.009284 0.000081 0.000167 0.000003 0.930728 0.001605 0.930510 0.001610 4
local features (adaptive walk) 0.010241 0.000106 0.000195 0.000004 0.917563 0.002260 0.917399 0.002264 5
{⇢,m,n,k_n} 0.010609 0.000110 0.000215 0.000004 0.911350 0.002436 0.911292 0.002372 6
{m,n} 0.032150 0.000309 0.001545 0.000025 0.340715 0.011217 0.340497 0.011220 7

I-
PL

S

all features 0.008043 0.000052 0.000127 0.000002 0.944367 0.001429 0.943940 0.001440 1
global features 0.008613 0.000054 0.000149 0.000002 0.936046 0.001479 0.935856 0.001484 2
local features 0.009297 0.000081 0.000167 0.000003 0.925610 0.001900 0.925264 0.001909 3
local features (random walk) 0.009485 0.000089 0.000173 0.000004 0.923032 0.001863 0.922789 0.001869 4
local features (adaptive walk) 0.010336 0.000098 0.000198 0.000004 0.910670 0.002455 0.910493 0.002459 5
{⇢,m,n,k_n} 0.010817 0.000122 0.000223 0.000005 0.901888 0.002803 0.901823 0.002882 6
{m,n} 0.030523 0.000286 0.001423 0.000023 0.351707 0.009822 0.351493 0.009826 7

objectives. Indeed, the objective correlation directly impacts
the probability of dominance: the larger ⇢, the smaller the
chance to have a dominated or dominating neighbor, and
the larger the chance to have an incomparable one, which
directly impacts the number of PLO. The problem size n
is also contained in this cluster, although it is only slightly
correlated to other features, except for the proportional number
of fronts (#fronts).

C. Feature-based Performance Prediction

To investigate the association between instance features and
empirical problem hardness, we build a regression model that
predicts search performance based on different subsets of input
features. More precisely, we predict the multiplicative epsilon
indicator value reached by G-SEMO and I-PLS based on: all
features, global features, local features, local features based on
random walk, local features based on adaptive walk, bench-
mark parameters, and problem parameters available in a black-
box scenario. Given the non-linearity observed in the data, we
chose a tree-based regression model: an ensemble of extremely
randomized trees [47]. It is a variant of the popular random
forest model [48] that differs in the way individual trees are
built. While splitting a node, we do not only randomize the
choice of input variable, but also the cut-point. Moreover,
each tree uses the entire training data, rather than bootstrap
replicas. In our experiments, we employ ensembles of 500
unpruned regression trees [49]. The prediction target is the
approximation ratio to the exact PF, measured every tenth
of the total evaluations budget. That is, we model the search
convergence curve with a multi-output regression. The mean
square error (MSE), mean absolute error (MAE), coefficient
of determination (R2) and adjusted R2 of the regression model
for different sets of predictors are reported in Table II. A score
is the average score over the multiple outputs of a model. The
closer MSE and MAE are to 0.0, the better. Conversely, R2

reaches 1.0 when the predictions are perfect, and would be 0.0
for a constant model that always predicts the global average
of the target value, irrespective of the input features. For each
measure of accuracy, we report the average value on test and
its standard deviation over a 10-fold cross-validation.

A general observation is that the MAE and the MSE are
in accordance with each other, as shown by the relative
ranking of each subset of features. The rank reflects any
significant statistical difference on MAE and MSE over the
holdouts of each cross-validation iteration, with respect to a
Mann-Whitney statistical test at a significance level of 0.05
with Bonferroni correction for multiple comparisons [50]. In
addition, when comparing G-SEMO and I-PLS, we observe
almost no difference in the models accuracy. When analyzing
the impact of the different subset of features, we can observe
a poor performance when using solely m and n as input
variables. This means that the problem input provided in
a black-box scenario, i.e. the solution and objective space
dimensions, is not sufficient to explain the performance of
G-SEMO and I-PLS. Once we take into account the objective
correlation ⇢, and more importantly the proportional number
of variable interactions k_n, we observe a significant increase
in the model accuracy. For both algorithms, the R2 exceeds
0.9. In a sense, more than 90% of the variance of search
performance between instances is explained by the ⇢mnk-
landscape parameters. This is not a surprise since these four
parameters define the way ⇢mnk-landscapes are constructed;
see Section II-C. However, let us remind that ⇢ and k_n
are not known in practice when solving a black-box problem
instance. More interestingly, however, we see that the proposed
local features, based on sampling, allow the model to ob-
tain a better prediction accuracy than benchmark parameters.
We attribute this to the fact that they are able to capture
the variations between instances with the same parameters;
i.e. the randomness in the construction of ⇢mnk-landscapes.
This is particularly true for local features based on random
walk, which contain more insightful information for search
performance than the ones based on adaptive walk. Indeed,
the regression accuracy obtained with the former subset of
local features is almost as good as the combination of both. At
last, we observe that global features, based on the enumeration
of the solution space, obtain a better ranking, although the
addition of local features seems to increase the predictive
power of the regression model even more, as illustrated by
the results obtained by the models using all features.
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Fig. 9. Relative importance of features (mean decrease in node impurity)
from totally-randomized regression trees for small instances.

D. Importance of Features for Search Performance

Tree-based predictive models also allow for the identifica-
tion of which input features are the most important to make
accurate predictions, which provides insight into the process
being modeled [51], [52]. In particular, we consider the mea-
sure of importance that relates to the decrease in node impurity
after each split on a given predictor; the larger the decrease,
the more important the predictor. Note that, in the regression
case, node impurity is measured by variance. We derive our
estimates from a large ensemble of 50 000 shallow and totally-
randomized regression trees. Choosing the input variable to
split on totally at random prevents correlated variables to
mask one another, which would result in underestimating
their relative importance [52]. Then, by using small trees,
we strive to minimize the effect of having a finite sample
set, which introduces noise in the node impurities as trees
grow. The relative importance of features thus extracted, is
depicted in Fig. 9. For a given algorithm, features are sorted in
decreasing order of importance, from top to bottom. Although
the regression accuracy is similar for both algorithms, the most
important features are different for G-SEMO and I-PLS.

For G-SEMO, the six most important features are all related
to the ruggedness of the landscape (in violet). Apart from the
proportional number of variable interactions k_n in ⇢mnk-
landscapes, the others correspond to the first autocorrelation
coefficient of the proportional number of dominated (#inf),
dominating (#sup), and incomparable (#inc) neighbors,
the proportional number of non-dominated solutions in the
neighborhood (#lnd), and the hypervolume covered by the
neighborhood (nhv) encountered along a random walk. Next
in the ranking are those associated with objective corre-
lation and dominance (in green), such as the diameter of

the PS (podist_max), which also correspond to the most
important global feature. For I-PLS, features related to the
ruggedness (in violet) and to the objective correlation (in
green) seem equally important, and the features listed above
also appear to be impactful. Most notably, the proportion of
PLO (#plo) seems of high importance; it appears in the 3rd
place for I-PLS and only in the 12th place for G-SEMO. By
contrast, the features associated with the number of objec-
tives (in orange) are of low importance for the two algorithms.
Interestingly, for both G-SEMO and I-PLS, the most important
benchmark parameter is the proportional number of variable
interactions k_n, followed by the problem size n, the objective
correlation ⇢, and finally the number of objectives m.

V. SCALING TO LARGE INSTANCES

In this section, we extend our analysis to large-size in-
stances. Since global features cannot be computed anymore,
we investigate the ability of local features to explain algorithm
performance for large dimensions.

A. Experimental Setup

We generate large-size ⇢mnk-landscapes by means of
a design of experiments based on random latin hyper-
cube sampling. We consider problem sizes in the range
n 2 {64, . . . , 256}, numbers of variable interactions k 2
{0, . . . , 8}, numbers of objectives m 2 {2, . . . , 5}, and ob-
jective correlations ⇢ 2 ]�1, 1] such that ⇢ > �1/(m � 1).
A total of 1 000 problem instances is considered, a single
instance is generated for each parameter setting provided by
the design of experiments. We consider all local features
as well as benchmark parameters, and the same two multi-
objective algorithms. We perform 30 independent runs per
instance and per algorithm, with a fixed budget of 100 000
calls to the evaluation function. The performance quality is
measured in terms of the multiplicative epsilon indicator to
the best-known non-dominated set.

B. Correlation between Landscape Features

As performed in the previous section for small instances, we
report the correlation between each pair of features and the
corresponding clustering in Fig. 10. Similar to our previous
results, we obtain three clusters, each one being associated
with one benchmark parameter.

The local features related to the first autocorrelation co-
efficient measured on random walks remain in the cluster
associated to ruggedness (in violet), as it was with small
instances. In addition, both features measuring the average
difference between the hypervolume covered by each neighbor
and the one covered by the current solution (hvd) moved to
this cluster, but their correlation with the other features in
the cluster is low. Similar observations can be made for the
problem size n. We attribute this to the design of experiments
of this new dataset for large instances. Once again, the features
related to dominance (in green) are all very close to one
another. They relate very much to the objective correlation (⇢)
and to the proportion of PLO (#plo). As with small instances,
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Fig. 10. Features clustering (left) and features association (right) computed over the whole set of large instances; see Fig. 8 for details.

features related to hypervolume are correlated with the number
of objectives (m, in orange). Overall, there are no major
changes with respect to the previous dataset, which validates
our study on small instances.

C. Feature-based Performance Prediction

The prediction accuracy of regression models predicting
search performance for different subsets of input variables is
reported in Table III. Overall, the fitting quality is lower than
for small instances. We attribute this to the smaller number of
observations contained in the dataset for large instances (1 000,
against 60 480 for small instances). Once again, the results
for G-SEMO and I-PLS are quite similar. As before, the
objective correlation ⇢ and the proportional number of variable
interactions k_n, which are unknown in a black-box scenario,
are essential to understand search performance and to reach
a good prediction accuracy. Surprisingly, the model using
solely the solution space and objective space dimensions, n
and m, has a negative R2, and performs worse than a model
that always predict the average performance value. Actually,
a visual inspection (not reported) allows one to note that
observed and predicted values can be far from each other,
in particular for instances where algorithms are efficient. All
other models obtain an R2 larger than 0.8. This means that
more than 80% of the variance in the algorithms performance
is explained by local features. The set of all local features
has a similar predictive power than (known and unknown)
benchmark parameters. Let us remind that in this dataset, a
single instance is generated per instance setting, so that there

is no variance between instances with the same parameters.
As with small instances, the local features based on random
walks have a higher predictive power than those based on
adaptive walks, although the combination of both is always
more accurate. Ultimately, local features allow the regression
model to obtain a satisfying prediction accuracy. We analyze
the importance of local features below, and then we study their
relevance in the context of algorithm selection.

D. Importance of Features for Search Performance

The importance of features for both algorithms is reported
in Fig. 11. For G-SEMO, features related to ruggedness (in
violet) are more relevant than others, followed by features
related to objective correlation, such as the estimator of the
proportion of PLO (length_aws), and to a smaller extent, to
features that are associated with the number of objectives (m).
Interestingly, for I-PLS, features related to dominance and
objective correlation (in green) are clearly much more infor-
mative. Indeed, the average rank of those features is 7 for
I-PLS, whereas it is only 19.08 for G-SEMO. Conversely,
the average rank of features related to ruggedness (in violet)
is 10.33 for G-SEMO, against 23.67 for I-PLS. For both
algorithms, the average rank of features related to the number
of objectives (in orange) is about the same, and the second
most important one (16.6 for G-SEMO, against 18 for I-PLS).
This highlights that problem features impact local and global
dominance-based multi-objective algorithms differently.
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TABLE III
RANDOM SUBSAMPLING CROSS-VALIDATED REGRESSION ACCURACY OBTAINED ON LARGE INSTANCES (50 ITERATIONS, 90/10 SPLIT).

Algo. Set of features MAE MSE R2 adjusted R2
Rankavg std avg std avg std avg std

G
-S

EM
O

all features 0.003049 0.000285 0.000017 0.000004 0.891227 0.024584 0.843934 0.035273 1
local features 0.003152 0.000295 0.000018 0.000004 0.883909 0.026863 0.838126 0.037457 1
local features (random walk) 0.003220 0.000314 0.000019 0.000004 0.878212 0.028956 0.849287 0.035833 1.5
local features (adaptive walk) 0.003525 0.000329 0.000023 0.000006 0.854199 0.032339 0.834089 0.036799 5
{⇢,m,n,k_n} 0.003084 0.000270 0.000017 0.000003 0.892947 0.020658 0.888440 0.021528 1
{m,n} 0.010813 0.000830 0.000206 0.000030 -0.303336 0.188046 -0.330209 0.191923 6

I-
PL

S

all features 0.004290 0.000430 0.000034 0.000008 0.886568 0.026980 0.837249 0.038710 1
local features 0.004359 0.000423 0.000035 0.000008 0.883323 0.027274 0.837309 0.038030 1
local features (random walk) 0.004449 0.000394 0.000036 0.000008 0.879936 0.026335 0.851421 0.032589 1
local features (adaptive walk) 0.004663 0.000403 0.000039 0.000008 0.871011 0.025903 0.853219 0.029476 3.5
{⇢,m,n,k_n} 0.004353 0.000320 0.000033 0.000006 0.889872 0.024505 0.885235 0.025537 1
{m,n} 0.016959 0.001473 0.000472 0.000077 -0.568495 0.228629 -0.600836 0.233343 6
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Fig. 11. Relative importance of features (mean decrease in node impurity)
from totally-randomized regression trees for large instances.

VI. TOWARDS FEATURE-BASED ALGORITHM PORTFOLIO

We conclude our analysis with a feature-based algorithm
selection using a portfolio of three EMO algorithms, namely
NSGA-II [1] IBEA [2], and MOEA/D [3]. They were chosen
as representatives of the state-of-the-art in the field, covering
dominance-, indicator- and scalarization-based approaches, re-
spectively. We rely on an out-of-the-box implementation with
default parameters, as provided in jMetal 4.5 [53]. We
first consider the dataset of large ⇢mnk-landscapes, and then
a scenario for multi-objective quadratic assignment problems.

A. ⇢mnk-Landscapes

For ⇢mnk-landscapes, all three algorithms use a population
of size 100, a 1-point crossover with a rate of 0.9, and a
bit-flip mutation with a rate of 1/n, under a fixed budget of

1 000 000 evaluations. Notice that the dataset contains 999
observations: one instance was discarded as there was no
distinction between the algorithms. In order to predict the
best-performing algorithm for solving a given instance, we
build an ensemble of 500 extremely randomized classification

trees, in contrast to the regression models discussed so far.
The output class is simply whether (i) NSGA-II, (ii) IBEA,
or (iii) MOEA/D performs better, on average, for a given
instance, in terms of hypervolume. The classification accuracy,
measured in terms of a cross-validated error rate, is reported in
Table IV. In fact, we report two error rates. In the error rate
of best average performance, an error is taken into account
if the predicted algorithm differs from the best performing
algorithm on average. Complementarily, in the error rate of
best statistical rank, an error is taken into account only if the
predicted algorithm is significantly outperformed by any other
according to a Mann-Whitney statistical test at a significance
level of 0.05 with Bonferroni correction.

Overall, the feature-based classification models are able
to reach an error rate below 0.131 for the best average
performance and below 0.016 for the best statistical rank. As
such, one of the significantly best-performing algorithms is
predicted in more than 98.4% of the cases. That is significantly
more accurate than the basic approach based on the solution
and objective space dimensions (n and m), which has an error
rate of about 41.3% for the best average performance, and of
19.7% for the best statistical rank. Notice that a naive approach
that always chooses the best algorithm on average (NSGA-II)
has an error rate of more than 50%, while always selecting
the algorithm with the best statistical rank (MOEA/D) would
result in more than 12% of errors. We did not find any
statistical difference between all other classification models,
although the model with the lowest error always uses local
features. Note that models built on features from random
walks only are almost as good as any other model: this might
provide a viable option to reduce the computational cost of
the portfolio without altering much the prediction accuracy.

For the sake of providing a model that is easier to interpret,
we construct another classifier based on a simple decision
tree [54], [55], as illustrated in Fig. 12. Even with such a
simple decision tree of depth three, the proposed features
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TABLE IV
RANDOM SUBSAMPLING CROSS-VALIDATED CLASSIFICATION ACCURACY OBTAINED ON LARGE ⇢MNK-LANDSCAPES (50 ITERATIONS, 90/10 SPLIT).

Set of features Error rate of best average performance Rank Error rate of best statistical rank Rankmean std mean std

all features 0.122222 0.031033 1 0.012727 0.014110 1
local features 0.123030 0.030521 1 0.013737 0.014103 1
local features (random walk) 0.118788 0.029187 1 0.013333 0.012149 1
local features (adaptive walk) 0.130303 0.029308 1 0.015354 0.014026 1
{⇢,m,n,k_n} 0.125859 0.028875 1 0.014141 0.013382 1
{m,n} 0.413333 0.045533 6 0.197374 0.043778 6

Fig. 12. CART decision tree for algorithm selection on ⇢mnk-landscapes. The
nodes report the number of instances where NSGA-II, IBEA, and MOEA/D
performs better in average, from left to right, respectively.

are able to distinguish between the algorithms with a cross-
validated error rate on best average performance of 12.61%.
The root of the decision tree is a feature related to the objec-
tive correlation (#lnd_avg_aws), measured in terms of the
proportion of locally non-dominated neighbors encountered
along an adaptive walk. When there are few non-dominated
solutions in the neighborhood, NSGA-II has more chances of
being selected. This typically happens when the objectives are
correlated. Indeed, on the left-hand side of the tree, NSGA-II
outperforms IBEA and MOEA/D on 469 instances, whereas
it is outperformed only 196 times. On the contrary, when
there are more non-dominated solutions, MOEA/D shall be
selected, as it performs better on 308 instances, against 26
for the other algorithms. In order to reduce the error rate
on the left-hand side of the decision tree, two features are
considered (hvd_avg_rws and #lnd_avg_rws), both re-
lated to ruggedness. Roughly speaking, MOEA/D shall be
preferred over NSGA-II for correlated objectives only when
the landscape is relatively smooth. Overall, this emphasizes
that a single feature is not enough to distinguish between the
different algorithms, and that multiple features, in this case
related to ruggedness and objective correlation, are required
to design an accurate portfolio approach. This simple example
illustrates the potential of algorithm selection based on multi-
objective landscape features for large dimensions.

B. Multi-objective QAP

The second considered algorithm portfolio scenario deals
with another problem class: the multi-objective quadratic
assignment problem (mQAP) [12]. The mQAP differs from
⇢mnk-landscapes in multiple aspects, notably the solution

representation, which is based on permutations and not binary
strings. We generate 1 000 mQAP instances based on [12],
and following a design of experiments based on random latin
hypercube sampling. We consider problem sizes in the range
n 2 {30, . . . , 100}, numbers of objectives m 2 {2, . . . , 5},
objective correlations ⇢ 2 ]�1, 1], and two instance types:
uniform and real-like instances [12]. Bear in mind that the
instance type and the objective correlation are unknown in
practice for black-box mQAP instances. Local features are
computed based on a single adaptive walk, and a single
random walk of length ` = 200. Moreover, in order to cope
with the quadratic nature of the swap neighborhood considered
for mQAP, we simply sample 200 neighbors at random instead
of performing a full neighborhood exploration at each step.
In terms of algorithms, we still consider NSGA-II, IBEA and
MOEA/D, with a population of size 100, a swap mutation with
a rate of 0.2, and a 2-point crossover with a rate of 0.95. The
crossover operator simply copies the segment in-between two
randomly-chosen points from one parent, and fill the missing
values following the order from the other parent [53]. All the
algorithms stop after 1 000 000 evaluations.

Table V reports the error rates obtained by the classification
model based on different subsets of features. Similar to ⇢mnk-
landscapes, apart from the simple model based on m and n,
the error rate is always below 17.1% in terms of best average
performance, and below 1.1% in terms of best statistical rank.
In other words, a feature-based classification model is able to
choose an algorithm that is not significantly outperformed by
any other in almost 99% of the cases. This shows that the
information contained in the proposed local features general-
izes to other problem classes. Notice that IBEA is the best-
performing algorithm overall for mQAP, being outperformed
on 51.8% of instances only in terms of average performance,
and on 31.4% of instances in terms of statistical difference.
Once again, we did not observe any significant difference
between all classification models, but the one based on m
and n. It is interesting to notice that, in average, the total
cost of local features represents less than 5% of the budget
allocated to the search process in this case. A simple decision
tree for mQAP is provided in Fig. 13. In this case, the most
discriminant feature to distinguish between the algorithms is
length_aws, that is the length of the adaptive walk. As
such, IBEA is recommended when the length is large, that
is, when there are few PLO. On the contrary, MOEA/D is
recommended when there are more PLO. This emphasizes the
high importance of multimodality for mQAP as well, over the
number of objectives and their degree of conflict.
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TABLE V
RANDOM SUBSAMPLING CROSS-VALIDATED CLASSIFICATION ACCURACY OBTAINED ON MQAP (50 ITERATIONS, 90/10 SPLIT).

Set of features Error rate of best average performance Rank Error rate of best statistical rank Rankmean std mean std

all features 0.1558 0.038124 1 0.0076 0.008704 1
local features 0.1560 0.038012 1 0.0070 0.010152 1
local features (random walk) 0.1632 0.036558 1 0.0104 0.011773 1
local features (adaptive walk) 0.1704 0.033195 1 0.0066 0.009392 1
{type,m,n, ⇢} 0.1686 0.035226 1 0.0100 0.010880 1
{m,n} 0.3132 0.044741 6 0.1156 0.031178 6

Fig. 13. CART decision tree for algorithm selection on mQAP. The nodes
report the number of instances where NSGA-II, IBEA, and MOEA/D performs
better in average, from left to right, respectively.

VII. CONCLUSIONS

In this paper, we investigated the potential of landscape
features to explain and predict the performance of EMO
algorithms for black-box multi-objective combinatorial opti-
mization. We reviewed the state-of-the-art of multi-objective
landscape analysis, and we proposed new general-purpose

features characterizing the landscape, which are affordable
for high-dimensional problems due to their local nature. By
analyzing their association and relevance to search perfor-
mance, we highlighted the insightful information they are
able to capture regarding problem difficulty. In the context of
performance prediction, our data-driven analysis revealed the
crucial importance of considering multiple features to reach
a good prediction accuracy. From a benchmarking point-of-
view, we showed that not only the number of objectives, but
also their degree of conflict, are jointly important to model
search performance. Even more notably, ruggedness and mul-
timodality, which are often overlooked in the EMO literature,
constitute crucial dimensions that complements the portrait of
multi-objective landscapes. By extending results from single-
objective landscape analysis, we were able to design afford-
able features to characterize ruggedness and multimodality
in multi-objective optimization. Interestingly, relevant features
are not the same for the considered algorithms, which allows
us to understand what makes an instance more difficult to solve
for a given algorithm. Ultimately, two algorithm selection
scenarios with a portfolio of three algorithms allowed us to
emphasize that, by leveraging the proposed landscape features,
one can accurately select the most appropriate algorithm for
different large-size problem classes and instances.

Extending and analyzing our feature-based performance
prediction and algorithm selection methodology by consid-
ering more practical scenarios would allow us to increase
our understanding of the landscape structure exhibited by
black-box multi-objective combinatorial optimization prob-
lems, particularly when an instance generator is not available.
Consequently, we plan to consider other multi-objective prob-
lem and algorithms classes, to study how algorithm compo-
nent choices impact search performance over different multi-
objective landscapes, and how this could help improving the
design of EMO algorithms. Another challenge for feature-
based algorithm selection is to investigate the tradeoff between
feature cost and accuracy.
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