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Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
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Abstract

In this work, we present a new PDE model of the growth of Postia placenta, a species of brown

rot fungus. The formulation was derived mainly from the biological mechanisms embedded in our

discrete model, validated against experimental data. In order to mimic the growth mechanisms, we

propose a new reaction-diffusion formulation, based on three variables: the concentration of tips, the

branch density and the total hyphal density. The evolution of tips obeys a reaction-diffusion model,

with constant diffusivity, while the evolution of the two other variables results from time integrals.

The numerical solution is in excellent agreement with the averaged radial tip/hyphal densities of the

mycelial network obtained by the discrete model. Thanks to the efficient exponential Euler method

with Krylov subspace approximation, the solution needs only 3.5 s of CPU time to simulate 104-day

of mycelium growth, in comparison with 8 hours for the discrete model. The great reduction of

the RAM memory and computing time gives the possibility to upscale the simulation. The novelty

of the PDE system is that the spatial colonization is formulated as a diffusion mechanism, which

is self-standing, contrary to models based on an advection term. The continuous model can also

reproduce the radial densities when the growth parameters in the discrete model are varied to adapt

to different growth conditions. The correlation constructed between the two models provides us

a tool for mutual insights between local biological mechanisms to the global biomass distribution,

especially when analyzing experimental data.

Keywords: Reaction-diffusion, continuum modeling, upscaling, fungus

1. Introduction

Wood and wood-based products have been popular constructive materials due to their excellent

structural properties for many years. The good thermal performance and design of new manufac-

turing technology enable the reduction of energy consumption and emission, which addresses the
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Preprint submitted to Journal of theoretical biology March 15, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022519319301225
Manuscript_b4e9d866db1eff69f08173a9f69291c6

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022519319301225
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022519319301225


present needs in building construction. This is why these materials became even more promoted5

in construction. However, fungal decay in bio-based materials is of major concern in relation to

the service time of buildings and even to human safety, since it weakens the structural support of

wood enough to cause mechanical failure. Every year an enormous amount of wood and wood-

based products is destroyed by fungal decay, among which brown rot fungi are the most common

and destructive within buildings throughout Europe and North America due to their rapid decay10

mechanisms [1]. Many researches have studied the growth and decay patterns of brown rot fungi

as well as the impact of environmental factors to their growth [2, 3, 4, 5, 6, 7, 8]. Nevertheless, the

laboratory observations are constrained by the scales of study and their cost. As a supplementary

tool, mathematical modeling in combination with laboratory experiments can realize a deeper and

wider insight in a more efficient way.15

The modeling techniques to simulate the spatial distribution of fungi are classified into two

categories: discrete models and continuous models. The previous ones adapt well to model the

mycelial growth at a small scale in identifying individual hypha to form mycelial networks in differ-

ent environments. For example, Boswell et al. (2007) and Boswell (2008) respectively developed a20

two-dimensional (2D) and a three-dimensional (3D) lattice-based model to simulate mycelial growth

in a soil-like environment [9, 10]. Fuhr et al. (2011) constructed a 3D lattice-free model of hyphal

growth in the heartwood of Norway spruce in simplifying the structure of wood [11]. These models

are generally constrained in a small scale by the necessary RAM memory and the computing time.

In contrast, the continuous models provide a potential of modeling the fungal growth from the25

colony-scale to the macroscale, in which the density of fungal matter was viewed as averaged quan-

tities. The early models were extended from reaction-advection systems which included nutrients

and geometries of mycelial spread [12, 13, 14, 15]. However, the advection process requires the

development direction to be known at each point, which limits the prediction ability of the code

and/or augments the mathematical complexity especially in heterogeneous media. Thus, in the30

recent models, the diffusion process has replaced the advection to model the movement of hyphal

biomass [16, 17, 18, 19, 20, 21] or combined with the advection process to model the movement

of tips and hyphae [22, 23]. However, in these models, some of the mechanisms were based on

assumptions and no precise validation process has been carried out.

35

The strategy of our work is to enlarge the spatio-temporal scale of the study of fungal growth

step by step in an accurate and efficient way. Thus, we started from the micro-scale experiment [24]

to observe the hyphal growth behaviors of a species of the brown rot fungi, Postia placenta. Then,

a discrete model [25], derived from the biological mechanisms of hyphal development, was precisely
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validated with experimental data. Compared to the experiment, this model allows us to predict the40

mycelial growth at a larger spatial-scale in much shorter time. However, to reach the macroscale

with an even a higher computational efficiency, a continuous model is needed.

In this work, we propose a PDE formulation mainly derived from the mechanisms of hyphal

growth at the microscopic level. A reaction-diffusion equation mimics the movement and prolifer-45

ation of tips. Then, the evolution of hyphal biomass is related to the tip density following the tip

elongation mechanism. Most of parameters of the continuous model were directly obtained from

the discrete model, while three remaining parameters were determined by an inverse procedure: the

model parameters were adjusted to minimize the objective function, i.e. the gap between the PDE

profiles and the radial profiles of hyphal density calculated by the validated discrete model. Thanks50

to the exponential Euler method with Krylov subspace approximation, the model was accurately

solved in an efficient way. Then, the growth parameters in the discrete model have been varied to

investigate their influences to the distributions of tips and hyphae. The good agreements between

the numerical solutions and the profiles obtained in the discrete model verified the excellent pre-

diction capacity of the continuous model and its facility to adapt to different growth conditions.55

Additionally, thanks to the good correspondence of the two models, the local mechanisms of the

mycelial network can also be estimated via the change of biomass distribution. Furthermore, due

to the pure diffusion process, this model is simple enough to extend to study the fungal growth in

multi-dimensional spaces and in porous media, and even provides a base to the multi-scale modeling

of the fungal development in wood.60

2. Method and materials

2.1. Discrete mechanisms and radial profiles

In our discrete model [25], three main microscopic mechanisms (i.e., tip elongation, branching

and anastomosis) of hyphal growth were implemented in a regular square-lattice to simulate the65

development of a mycelial network. The two fundamental features of mycelial growth are tips

and hyphae. Tips belong to two classes: active tips which extend at a certain, non-null, rate and

dormant tips which do not elongate. A hypha elongates by the extension of an active tip, fol-

lowing its dominant direction. The elongation rate of each active tip follows a corrected gamma

distribution. Each site of the lattice can contain numerous hyphae and/or tips. Lateral and apical70

branching are considered as way to produce new tips. The rate of lateral branching depends on the

lateral branching probability and the total number of tips and the lateral branches are uniformly

distributed throughout the mycelium. The apical branching occurs to the active tips and its rate
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is determine by the apical branching probability. The branching is inhibited in three special cases:

(i) no lateral branches emerge in the proximity of an existed branch; (ii) the formation of a lateral75

branch around a hyphal tip is inhibited by apical dominance; (iii) the apical branching does not

occur if its trailing hypha has not a certain length. Apart from the process of tip proliferation, tips

can also disappear through anastomosis. The fusion of a tip with a hypha can occur when they

contact each other to yield an interconnected mycelial network.

80

This model has been validated by a precise process using the experimental data of the growth of

P. Placenta during 17 days. With the determined parameters, the spatio-temporal development of

a mycelial network was generated from a spore during a longer timescale of 9× 106 s (∼ 104 days).

We divided the mycelial network into a series of rings with a gap of ∆r = 1.5×10−4m , of which the

radial densities of tips and hyphae were respectively calculated by averaging the discrete network85

over radius increments. The tip density is defined as the number of tips per unit volume, while

the hyphal density denotes the length of hyphae per unit volume. Due to the numerous stochastic

processes in the discrete model, a single realization contains fluctuations. Therefore, we repeated

the simulations 20 times with the same parameters and averaged the two resulting densities for

each ring: (i) the averaged tip density denoted by ρtip(r, t) in the ring around the radius r and at90

time t and (ii) the averaged hyphal density denoted by ρhypha(r, t). In the following, the temporal

evolution of the tip and hyphal distributions, the two averaged densities, were calculated at nine

instants from t = 2.25× 105 to t = 9× 106 s.

2.2. Continuous model95

A continuous model was directly derived from the three microscopic mechanisms of mycelial

growth of the above-presented discrete model. The fungal mycelium is represented by two compo-

nents: tip density and hyphal density, which represent respectively the proliferation capacity of the

mycelium and the total biomass quantity. The tip density, denoted by C(x, t), is the number of tips

in a unit volume at the spatial position x and time t, while B(x, t) is the hyphal density defined as100

the length of hyphae per unit volume.

The three main mechanisms of mycelial growth, tip elongation, branching and anastomosis,

lead to respectively the migration, the proliferation and the elimination of tips. Thus, as shown

in Eq. (1a), a reaction-diffusion equation was applied to describe the variation of the tip density.105

The diffusion term denotes the migration of tips with a diffusion coefficient D. The two reaction

terms, S and P , represent the proliferation and the elimination of tips. As the hyphal extension is

generated only by tip elongation, the amount of hyphae created in a unit volume over a short time
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interval is linearly related to the actual quantity of tips by two factors, the averaged tip elongation

rate R and the proportion of active tips Pactive (Eq. (1b)).110

∂C

∂t
= ∇(D∇C) + S(B,C)− P (B,C), (1a)

∂B

∂t
= RPactiveC. (1b)

As mentioned above, the term S denotes the production of tips by lateral and apical branch-

ing. According to the branching mechanisms in our discrete model, the number of lateral branches

emerged per unit of time is the product of lateral branching probability P latbr by the total quantity

of tips in the mycelium. The latter is obtained as the integral of the tip density over all the entire115

volume (i.e.,
∫
Cdx). The lateral branches should be uniformly distributed in the mycelium. Thus,

the amount of branches distributed into each unit volume depends on the proportion of hyphae con-

taining in this volume over the whole mycelium (i.e., B/
∫
Bdx). In addition, the lateral branching

is inhibited in two special cases related to the number of branches and tips per unit hyphal length.

As shown in Eq. (2), we applied an exponential function to account for this inhibition, where β is120

defined as the inhibition coefficient and Br(x, t) denotes the number of branches per unit volume

at position x and time t. Since the branches do not move, Br is the accumulation of the term S

over time, calculated by Eq. (3).

Y (x, t) =

e
−β(C(x,t)+Br(x,t))/B(x,t) B(x, t) > 0,

0 B(x, t) = 0.

(2)

∂Br

∂t
= S. (3)

For apical branching, each active tip possesses a probability P apibr to form a new tip. The in-125

crease of tips due to the apical branching is hence given by P apibr PactiveC. Considering that the

apical branching occurs when the hypha attains a certain length, we modified C(x, t) with a time-

delayed term C(x, t− τ) where τ is the necessary time for a tip to reach that given length with the

average elongation rate. Together, the proliferation term S is modeled as:

130

S(B,C) = P latbr

∫
Cdx

B∫
Bdx

Y + P apibr PactiveC(x, t− τ). (4)

The disappearance of tips is caused by anastomosis. Such a fusion occurs when a hyphal

tip contacts another hypha, which implies that the disappearance rate depends on the contact
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probability between tips and hyphae. Since tips elongate at a low rate (∼ 10−9m · s−1), they move

a very short distance during a unit time interval. We focused on one tip and we took the volume

formed by a unit surface and the short distance the tip passes through during a unit time interval.135

All the hyphae contained in this volume were projected on the bottom surface. The possibility of

this tip contacting another hypha is equal to the proportion of the projected area, which is related

to the hyphal length. In all, the elimination rate of tips is proportional to the tip density C, the

tip elongation rate R, and the hyphal density B and can be expressed as follows:

P (B,C) = γRBC. (5)

The coefficient γ is named as the anastomosis coefficient for correlating the projected area with the140

hyphal density.

To summarize, the reaction-diffusion system takes the following form

Tip density
∂C

∂t
= ∇(D∇C) + S − P, (6)

Hyphal density
∂B

∂t
= RPactiveC, (7)

Branch density
∂Br

∂t
= S. (8)

where

S =

P
lat
br

∫
Cdx B∫

Bdx
e−β(C+Br)/B + P apibr PactiveC(x, t− τ) B(x, t) > 0,

P apibr PactiveC(x, t− τ) B(x, t) = 0,

(9a)

P = γRBC. (9b)

2.3. Numerical solution145

The model was solved in a one-dimensional (1D) axisymmetric configuration to be compared

with the radial profiles obtained with the discrete model. The 1D axisymmetric formulation reads

as follows:

∂C(r, t)

∂t
=

1

r

∂

∂r
(Dr

∂C(r, t)

∂r
) + S − P,

∂B(r, t)

∂t
= RPactiveC,

∂Br(r, t)

∂t
= S.

(10)

6



The term C(x, t− τ) in Eq. (9a) is approximately transformed to an term able to be solved:

150

C(t− τ) ≈ C(t)− τ ∂C
∂t

(t). (11)

The initial condition for this model was defined as the averaged density profiles of tips, hyphae

and branches obtained with the discrete model at t = 2.25× 105 s.

The reaction-diffusion system was solved in cylindrical coordinates with a computational do-

main large enough to assume no-flux boundary conditions. A control-volume finite-element spatial155

discretization turned the PDEs system (Eq. (10)) into an initial value problem of the form

du

dt
= g(u), u(0) = u0, (12)

where u = (C,B,Br) ∈ R3N , g: R3N ⊂ D → R3N is a nonlinear function of u, and N is the size of

the 1D mesh. The calculation domain was meshed uniformly with a spacing of 1.5× 10−4m which

is equal to the spatial resolution of the profiles obtained in the discrete model.

160

We performed the time integration process to get a linearized version of Eq. (12),

du

dt
= g(un) + Jg(un)(u− un), t > tn, (13)

whose exact solution is

u(t) = un + (t− tn)ϕ((t− tn)Jg(un))g(un), t > tn, (14)

where Jg ∈ R3N×3N is the Jacobian matrix of g and function ϕ is defined as ϕ(z) = ez−1
z .

Applying the exponential Euler method to Eq. (14) at time tn+1, we get the approximate solution165

of Eq. (12)

un+1 = un + dtnϕ(dtnJg(un))g(un), (15)

with time step dtn = tn+1 − tn.

The exponential integrators method was first presented in 1960 by Certaine [26] and has been

well-known since late of 1990s by works of M. Hochbruck and others [27, 28]. Thanks to the ap-170

proximation of the Krylov subspace to the matrix-function vector product ϕ(dtnJg(un))g(un), the

exponential integrators method became very useful for large system of stiff equations [29, 30, 31].
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In this article, our work was inspired from the work of E. Carr, I.Turner and P. Perré [30] using the

”variable-stepsize exponential Euler method” to solve the system of non-linear transport equations

with great success.175

The Krylov subspace methods compute a small m×m matrix Hm (the projection matrix) instead

of the full Jacobian matrix Jg. The approximation of the matrix-vector product is as follows:

ϕ(dtnJg(un))g(un) ≈ β0Vmϕ(dtnHm)e1. (16)

Thanks to this, we can have a large time step dtn without preconditioning techniques, which is very

efficient in terms of computational time and RAM memory.180

2.4. Parameter determination

The continuous model was calibrated for P. Placenta via the validated discrete model mentioned

in Part 2.1. All parameters are summarized in table 1 using the international unit standard. Most

of these parameters were defined directly from the discrete model [25]. For example, since the tip185

elongation rates follow a corrected gamma distribution, its mean was calculated as the averaged

tip elongation rate R. With this averaged rate, we obtained τ ≈ 1048 s, which is the average time

for a tip to extend by 5µm. The proportion of active tips, the lateral and the apical branching

probability are simply those of the discrete model.

190

The determination of the three remaining, macroscopic parameters, the diffusion coefficient D,

the inhibition coefficient β and the anastomosis coefficient γ, were determined by inverse analysis.

The objective function used for optimization compares, in the sense of mean squared difference,

the radial profiles obtained with the discrete and continuous models. Since the tip and the hyphal

density are tightly related and our final objective is to fit the latter one, we defined the relative195

error E(B) of the hyphal density profiles:

E(B) =

√√√√√√√√
∑
t∈{t1,...,t9}

N∑
k=1

(ρhypha[r(k), t]−B[r(k), t])2

∑
t∈{t1,...,t9}

N∑
k=1

ρ2hypha[r(k), t]

, (17)

where the total number of radius increments is denoted by N (here N = 299) and r(k) represents

the radius of the kth ring. This function was minimized using the Nelder-Mead method.
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Table 1. Description of variables and parameter values in the continuous model.

Symbol Description Unit Value

C Tip density m−3 −−

B Hyphal density m ·m−3 −−

Br Branch density m−3 −−

t Time s −−

R∗ Tip elongation rate m · s−1 4, 77 × 10−9

P ∗
active Proportion of active tips −− 0, 7

P lat∗
br Lateral branching probability s−1 1.11 × 10−5

Papi∗
br Apical branching probability s−1 3.22 × 10−6

τ∗ Lag time for apical branching s 1048

D Diffusion coefficient m2 · s−1 1.13 × 10−12

β Inhibition coefficient −− 7.78 × 10−5

γ Anastomosis coefficient m 5.40 × 10−2

* Parameter values come from [25].

3. Results

3.1. Radial profiles calculated from the discrete model200

The spatial distribution of tips and the mycelial network were simulated during a long period

(9 × 106 s, ca. 100 days) by the discrete model. Fig. 1 shows the evolution of the tip distribution

and the mycelial network at three elapsed times: t = 1.8 × 106, 4.5 × 106 and 9 × 106 s. These

profiles show very clearly how the tips proliferate and colonize the free space starting from the

inoculum zone. After a long-term growth, the distribution of tips seems uniform throughout the205

mycelium except at the edge. Clearly, the area of the colony increases with time, but we can also

see the increase of the hyphal density inside the colony from Fig. 1 (c) which shows the zoom of a

tiny part of the mycelial network.

Then, nine profiles of the averaged radial density at different times were obtained from the210

discrete model (Fig. 2). The profiles confirm that, after a long-term growth, the tip density is

almost uniformly distributed, even though it decreases slightly towards the center of the colony.

The higher distribution of tips at the edge is a strategy that favors the exploitation of new space.

The uniform distribution implies the existence of an equilibrium between the emergence of branches

and the anastomosis. In spite of the wave-like shape of the tip density profiles, its higher value at215

the edge maintains a local gradient. It seems therefore reasonable to propose a diffusion process

to simulate the tip movement in a continuum approach. One may note also that the tip density

in the center increases first and then decreases at longer times. Indeed, when the mycelial network

becomes dense, the anastomosis and the inhibition occur more frequently, leading to more elimina-
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tion of tips. From Fig. 2 (b), we observed that the hyphal density profiles continuously increased220

in time keeping a negative gradient towards the edge. Note however that the hyphal density in-

creases more and more slowly in the center due to the reduction of tip density, revealing the existence

of an upper limit to the biomass even for the free growth of mycelia on a two-dimensional substrate.

Fig. 1. Simulation of the discrete model: temporal evolution of (a) the distribution of tips, (b) the mycelial

network and (c) the zoom of the red squared part in (b).

3.2. Validation of the PDE formulation225

The profiles averaged over 20 realizations of the stochastic model (Fig. 2) were used to optimize

the three macroscopic parameters of the continuous model. The optimized solution of Eq. (10) has

a very small relative error (E(B) = 2.70× 10−2), which proves the ability of the PDE formulation

to represent the discrete mechanisms. The profiles, plotted at different times in Fig. 3, give another

piece of information: even though the objective function considers only the hyphal density, both230

10



Fig. 2. Radial densities of tips and hyphae obtained by averaging respectively the tip distributions and the

mycelial networks over radius increments at nine times. Profiles on the right are the average of 20 realizations of

the stochastic discrete model.
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the tip and the hyphal profiles of the PDE solution are in excellent agreement with the discrete

model. This confirms that the two variables, tip density and hyphal density, are tightly related to

each other. Moreover, the wave-shape of the tip profiles was well captured by the diffusion process,

even though it resembles more a front-like progression than a diffusion phenomenon.

235

Fig. 3. Comparison of the numerical solutions (solid line) after optimization with the averaged radial profiles

(dashed line) of the discrete model at eight times. The black solid lines depict the initial condition for the

continuous model, which are the averaged profiles obtained with the discrete model at t = 2.25 × 105 s.

Compared to the advection process, which requires the propagation direction to be known a

priori, the diffusion process greatly facilitates multi-dimensional modeling. Indeed, as the propaga-

tion results are from a diffusion process, the propagation direction is defined locally from the actual

gradient of the tip concentration. The other discrete mechanisms are also well described by the

continuous terms, even the implicit ones. This is the case in particular for the anastomosis rate at240

the macroscale, assumed to be linearly related to the tip density, the tip elongation rate and the

hyphal density, and for the branching inhibition expressed as an exponential function depending on

the branching and tip density per unit length of hyphae. The value of the three parameters (i.e.,

D, β and γ) determined by inverse procedure are listed in Table 1.

245

3.3. Ability of the PDE model to simulate different growth conditions

In the previous section, we proved that the continuous model perfectly reproduces, at the

macroscopic scale, the growth of P. Placenta for the reference parameter set of the discrete model

( [24, 25]). However, the change of the growth conditions, such as temperature, humidity or nutri-

ent concentration, influences the behavior of hyphal growth, particularly branching and elongation250

rate [32, 33, 34, 35]. It is therefore very important to check whether the continuous model is able to

predict the growth behaviour for different parameters of the discrete model. To that purpose, we

12



altered the three key parameters of hyphal growth in the discrete model, (i.e., the apical branching

probability P apibr , the lateral branching probability P latbr and the tip extension rate R). The values of

the three parameters listed in Table 1 were considered as reference. Then, for each parameter, we255

performed simulations with 0.5, 1.5 and 2 times the reference value. These factors were arbitrarily

chosen to represent a quite significant change of growth conditions. This means that nine series of

simulations (20 realizations per case study) have been carried out by changing one parameter of the

discrete model at a time. The corresponding profiles were obtained in the same way as described

in Part 2.1.260

Obviously, these changes were reported when these discrete parameters are involved explicitly

in the continuous formulation. The three macroscopic parameters identified in the previous section

were used as initial guess. Then, for each series of profiles, we optimized four times the objective

function E(B) (Eq. (17)) by using different set of free parameters (D, γ, β), (D, γ), (D,β) and D.265

The relative errors of the hyphal density between the discrete and continuous solutions are presented

in Fig. 4 before and after optimization. According to this bar chart, a good continuous-discrete

match requires the value of D to be modified when the discrete parameter P apibr changed, while

both D and γ should be adjusted when parameters P latbr and R changed. Accordingly, parameter

β can be kept unchanged in any case. The relative errors of the optimal solutions are all around270

4.00 × 10−2, which is low enough to ensure the capacity of the continuous model to replicate the

mycelial growth under different conditions.

To better understand the impact of the three discrete parameters on the mycelial growth, we

compared the profiles of the tip and the hyphal density obtained with different values of P apibr , P latbr275

and R (respectively Fig. 5, 6 and 7) after optimization. In accordance with the results of Fig. 4, D

was the unique adjusted parameter to match the changes of P apibr while two parameters, D and γ,

were adjusted when changing the value of P latbr or R. The numerical solutions agree well with the

discrete results for all of the nine cases. With the increase of the apical and lateral branching prob-

ability, the local tip and hyphal density increase more rapidly since the proliferation rate of tips is280

higher. As a subtler effect, we may notice that the extension rate of the colony also augments with

the increase of local tips. This result is from a statistical effect: with the increase of tips at the edge

of the mycelium, the chance to have tips whose extension direction is close to the radial direction

also increases, resulting in a more efficient spatial extension of the network. With the increase of

the tip elongation rate, the extension rate of the colony rises but the local hyphal density reduces285

significantly. Since the tip proliferation rate does not change, the amount of tips produce by branch-

ing is similar, but, as the colony occupies a larger space, less tips will be distributed per unit volume.

13



Fig. 4. Relative errors of the hyphal density (E(B)) between the discrete profiles and the numerical solutions in

nine cases (in each case we varied one growth parameter in the discrete model). The five colors represent the

numerical solutions before the optimization (blue) and after the optimization executed in specifying D, β and γ

(orange), D and β (grey), D and γ (green), and D (yellow).

Fig. 5. Comparison of the numerical solutions after the optimization in identifying D and the radial profiles in the

three cases of the variation of the apical branching probability Papi
br in the discrete model.

To summarize, even though the impact of P latbr and R is greater than that of P apibr , the three

parameters influence the morphology of the mycelial network by intricate effects. This necessarily290
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Fig. 6. Comparison of the numerical solutions after the optimization in identifying (D, γ) and the radial profiles in

the three cases of the variation of the lateral branching probability P lat
br in the discrete model.

Fig. 7. Comparison of the numerical solutions after the optimization in identifying (D, γ) and the radial profiles in

the three cases of the variation of tip elongation rate R in the discrete model.
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modifies the colony size and the spatio-temporal distribution of biomass, which explains why the

global parameters of the PDE model, the diffusion coefficient D and/or the anastomosis coefficient

γ, need to be adjusted. The effect of the three growth parameters on the macroscopic coefficient D

or γ are depicted in Fig. 8. The fitted expressions proposed in this figure have all a coefficient of

determination r2 close to the unit.295

Fig. 8. Relationship between D or γ and the three growth parameters. Xref represents the reference value of each

parameter listed in Table 1. Dots are the optimal values of D or γ obtained for different growth parameters. Dash

lines are the smoothing functions.

Consistently, the tip elongation rate R has a direct impact on D. The effect of R is almost

linear with a slope equal to 1.5. The fact that D varies more rapidly than R, can be explained by

the indirect effect of tip elongation rate on tip density.

300

The effect of branching probabilities on D reveals more subtle mechanisms. Let’s focus first on

the negative correlation between apical branching probability P apibr and D. We have to keep in mind

that a higher value of P apibr slightly increases the colony expansion rate, because the probability to

have active tips right along the macroscopic radial direction increases with the tip density. Besides,

the tip density at the colony edge is higher, giving rise to a larger tip gradient. Consequently, the305

diffusivity D must be smaller to obtain the right expansion rate.

This coupled effect of tip gradient and diffusivity to build up the macroscopic extension rate

is also likely to explain the positive correlation between lateral branching probability P latbr and D.

Due to apical inhibition, a higher lateral branching probability increases the tip density everywhere310
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except right at the colony edge. This non-uniform tip source term tends to decrease the tip gradient

at the colony edge and should be compensated by a slightly larger diffusivity D.

Regarding the effect of growth condition on γ, equation 9b reminds us that this factor corrects

the linear relation between biomass density B and anastomosis. Indeed, due to the statistical par-315

tition of biomass B in a volume, the projected area along tip extension is not simply proportional

to B. In a certain volume, the proportion of overlapping hyphae increases with density. When

P latbr increases or R decreases, the hyphal density increases and γ should be reduced to obtain the

correct anastomosis term.

320

4. Discussion

As summary of this work, it is worth to come back to our global upscaling strategy of mycelial

growth modeling. We first proposed a discrete model which mimics the mycelium development

at the microscopic scale [25]. This model accounts for the fundamental mechanisms of network

development (tip extension, lateral and apical branching, anastomosis). It has been calibrated and325

validated from experimental data by a rigorous procedure. For that purpose, the network develop-

ment has been observed during 17 days by confocal microscopy, and the image were subsequently

processed to extract relevant information [24]. In the discrete model, some parameters such as the

lateral and apical branching probabilities, were determined by an inverse analysis. Without the dis-

crete model, these parameters could not have been accurately determined from experimental data.330

Moreover, via the validation process, some underlying mechanisms have been discovered, such as the

inhibition of branching which is almost impossible to observe directly from the mycelial morphology.

Acting as a bridge between the microscopic behaviors of hyphal growth and the mycelial devel-

opment at the macroscale, the validated discrete model was used to simulate the mycelial growth335

during ∼ 104 days. This is quite computationally intensive as one realization requires about 50 Go

of RAM memory and a computational time of ca. 8 hours on a single core of a HPC cluster with

the processor Intel Xeon CPU E5-2670 v3 @ 2.30 GHz. By this way, the spatial dimension was

extended from 0.9 cm × 0.9 cm (experiment) to 9 cm × 9 cm (simulation). Therefore, the discrete

model already allowed the spatio-temporal scale to be efficiently extended.340

20 realizations of the discrete model, ca. 160 hours of CPU time, were averaged to obtain

tip/hyphal density profiles. This piece of information served as input data for the continuous

model proposed in the present work. Based on the hyphal growth mechanisms at the discrete
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scale, a new reaction-diffusion system, involving three spatio-temporal variables (tip, mycelium345

and branch densities), has been derived. While most discrete parameters are involved explicitly in

the continuous formulation, three macroscopic parameters had to be defined by inverse analysis.

Once done, the discrete profiles are perfectly reproduced, in space and in time, by the PDE model.

Thanks to the exponential Euler method with Krylov subspace approximation, the computational

time to solve the continuous model was again greatly compressed to less than 4 s on a single core350

of the same cluster. In brief, by following the upscaling strategy, the continuous model realizes the

prediction of the mycelial growth during 104 days in less than 4 s. In addition, since the memory

required by the continuous model is much less than the discrete model, it is possible to further

enlarge, by several orders of magnitude, the spatial and time scales.

355

Our continuous model is based on a reaction-diffusion formulation. Unlike advection models,

it is not necessary for the diffusion process to know the development direction at each point a

priori. This feature opens the door to multi-dimensional modeling and growth simulation in porous

media. For the reaction part, we rigorously followed the mechanisms of the discrete model, which

implies that all parameters have a physical meaning. In addition, thanks to the balance between360

diffusion and production (a global effect of branching), an almost constant gradient establishes at

the edge of the network. This can be seen at the edge of the colony in Fig. 3(a): a tip density

peak develops towards the free space. Therefore, an almost constant propagation rate arises from

this diffusion-reaction mechanism. Consequently, a constant diffusivity is likely to simulate a given

average tip elongation rate. The reaction-diffusion process is applied to the tip density, while the365

hyphal density is the accumulation of the tip density over time. Similarly, the branch density at

any location is obtained as the time integration of the source terms of branches at that location.

The 3-variable PDE model involves coupling between variables. For example, the tip density is

connected to the hyphal density as the latter influences the lateral branching distribution and the

anastomosis. Even so, the relation between the two main densities (tips and biomass) is nicely370

reproduced by the continuous model.

Apart from the reference simulation, additional series of profiles were produced by the discrete

model with various parameter values, which are artificially set just to give us insight into the link

between the possible microscopic mechanisms and the correponding macroscopic behaviours. These375

configurations have been reproduced by the continuous model. Whether the branching rate or the

elongation rate has great impact on the morphology of the mycelium by changing the colony ex-

tension rate and the local biomass distributions. They can also alter the maximal value of the tip

density, revealing that they change the balance between branching and anastomosis. In addition,
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due to the decrease of the tip density in the center at increasing hyphal density, it seems that380

there exists a limit for the biomass density on the 2D substrate. This last part told us that only

two key parameters (the diffusion coefficient D and the anastomosis coefficient γ) out of the three

macroscopic parameters, need to be adapted when the growth conditions change. It is certain that

efforts should be made to figure out the quantitative change of the growth parameters depending

on environmental factors, and this work is in progress in our team. However, the good quality of385

the continuous-discrete match proves the potential of the continuous model to describe the fungal

growth under different conditions. It also provides a tool to realize the bidirectional transfer, from

the local biological mechanisms to the global biomass distribution and vice-versa. For example,

if the local mechanisms of hyphal growth change (different growing conditions or another species

of interest), only their local growth characteristics are needed to be measured to obtain both the390

mycelial morphology and the biomass distribution. On the contrary, the variation of the local

mechanism and the mycelial network can also be estimated via the experimental observation of the

biomass distribution together with an inverse procedure. In this sense, the numerical efficiency of

the continuous model is of particular interest.

395

5. Conclusion

This work proposes a new three-variable reaction-diffusion PDE model capable of simulating

and predicting the mycelial growth under different environmental conditions. This model was

calibrated using variable profiles predicted by the average over several realizations of a stochastic

discrete model. For source and sink terms of tips, biomass production and branching density, the400

formulation rigorously follows the discrete mechanisms of mycelial development, which implies that

all parameters have a physical meaning. Thanks to the discrete model, the ability of this new model

to account for various growth conditions was successfully tested. Moreover, the correlation between

the discrete and continuous model has been constructed, which provides us a tool to realize the

bidirectional transfer, from the local biological mechanisms to the global biomass distribution and405

vice-versa.

As the mycelium network propagation is formulated as a diffusion process, this model has the

potential to be easily extended in multi-dimensions and to heterogeneous media such as a Low Den-

sity Fiberboard. In the future, additional features such as translocation and substrate-degradation

mechanisms will be incorporated in the model to simulate the mycelial growth in the real morphol-410

ogy of bio-based materials as obtained by nano-tomography. Once combined with decomposition

mechanisms, this model can also be applied to solid-state fermentation.
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