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The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at ÿrst. It leads by min-max duality to the deÿnition of dual static and kinematic safety coe cients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coe cient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coe cients are obtained.

Introduction

The elastic shakedown phenomenon is related to the long-term behaviour of a solid under variable loads and expresses the fact that the mechanical response of solids becomes purely elastic if the load amplitude is small enough or if the hardening e ect is strong enough, especially in cyclic plasticity, immaterial of the initial state of the evolution. The possibility of shakedown is interesting in the analysis of quasi-static or dynamic response of elastic-p1astic solids under cyclic loads. Indeed, in cyclic plasticity, an uncontrolled progressive or alternating plastic deformation is often the origin of undesirable e ects for the resistance of a solid. For example, the existence of shakedown will prevent the fatigue phenomenon under plastic strains, which results in failure under a small number of cycles, in contrast with the fatigue under elastic strain with much higher number of cycles (cf. Dang [START_REF] Van | High-Cycle Metal Fatigue From Theory to Application[END_REF]. For this reason, shakedown conditions are discussed in a large number of papers, for di erent applications in the design of structures. Classical shakedown theorems in a quasi-static deformation takes its deÿnitive form from the pioneering works of [START_REF] Bleich | Uber die bemessung statisch unbestimmter stahltragwerke unter beruschsichtigung der elastisch-plastischen verhaltens des bausto es[END_REF], [START_REF] Melan | Theorie Statisch unbestimmter systeme aus ideal-plastischen bausto[END_REF] and [START_REF] Koiter | General problems for elastic-plastic solids[END_REF]. Its generalization to dynamics has been discussed (cf. [START_REF] Corradi | Dynamic non-shakedown theorem for elastic perfectly-plastic continua[END_REF]. Further extensions to hardening plasticity, non-standard plasticity, to visco-plasticity or to damage mechanics and poroplasticity can be found in a large number of references (e.g. [START_REF] Maier | A shake-down matrix theory allowing for workhardening and second order geometric e ects[END_REF][START_REF] Konig | Shakedown of Elastic-Plastic Structures[END_REF][START_REF] Polizzotto | Shakedown problems for mechanical models with internal variables[END_REF][START_REF] Debordes | Dualità e des thà eor emes statique at cinà ematique sur la thà eorie de l'adaptation des milieux continus à elasto-plastiques[END_REF][START_REF] Weichert | Inelastic Analysis of Structures Under Variable Repeated Loads[END_REF][START_REF] Maier | On some issues in shakedown analysis[END_REF]; Bodovillà e and de Saxcà e, 2001). In particular, the reader can refer to [START_REF] Martin | Plasticity: Fundamentals and General Results[END_REF], [START_REF] Polizzotto | A uniÿed treatment of shakedown theory and related bounding techniques[END_REF], [START_REF] Corigliano | Dynamic shakedown analysis and bounds for elasto-plastic structures with non-associated internal variable constitutive laws[END_REF] for a rather complete presentation of the theory and historical survey, to [START_REF] Maier | On some issues in shakedown analysis[END_REF], [START_REF] Ponter | A minimum theorem for cyclic load in excess of shakedown with application to the evaluation of a ratchet limit[END_REF] and [START_REF] Hachemi | Numerical shakedown analysis of damaged structures[END_REF] for new directions on the related subjects.

The objective of this paper is to give a presentation of shakedown theorems in hardening plasticity, available for common models of strain hardening. Since the extension of shakedown theory into hardening plasticity has been much discussed (e.g. [START_REF] Maier | A shake-down matrix theory allowing for workhardening and second order geometric e ects[END_REF][START_REF] Mandel | Adaptation d'une structure plastique à ecrouissable[END_REF][START_REF] Nguyen | Extension des thà eor emes d'adaptation et d'unicità e en à ecrouissage non linà eaire[END_REF][START_REF] Polizzotto | Shakedown problems for mechanical models with internal variables[END_REF][START_REF] Pycko | Alternative approach to shakedown as a solution of min-max problem[END_REF][START_REF] Corigliano | Dynamic shakedown analysis and bounds for elasto-plastic structures with non-associated internal variable constitutive laws[END_REF]Fuschi, 1999 etc.) a complete survey on general results for hardening plasticity in the spirit of Koiter's discussion [START_REF] Koiter | General problems for elastic-plastic solids[END_REF]) is certainly useful. However, because of the complexity and the diversity of hardening laws, it is clear that such a task is di cult and it will be easier to give only a less ambitious presentation on general theorems which can be derived within some description. In this spirit, our attention is focussed on the framework of generalized standard models of plasticity. This framework is a straightforward extension of perfect plasticity, with the same ingredients of convexity and normality and has been shown to be large enough to cover most common models of hardening plasticity [START_REF] Halphen | Sur les matà eriaux standard gà enà eralisà es[END_REF][START_REF] Nguyen | Stability and Nonlinear Solid Mechanics[END_REF]. As in perfect plasticity [START_REF] Koiter | General problems for elastic-plastic solids[END_REF][START_REF] Debordes | Dualità e des thà eor emes statique at cinà ematique sur la thà eorie de l'adaptation des milieux continus à elasto-plastiques[END_REF][START_REF] Pycko | Alternative approach to shakedown as a solution of min-max problem[END_REF], the method of min-max duality can be followed within this framework. The starting point is a static shakedown theorem, given previously in [START_REF] Nguyen | Extension des thà eor emes d'adaptation et d'unicità e en à ecrouissage non linà eaire[END_REF]; [START_REF] Polizzotto | Shakedown problems for mechanical models with internal variables[END_REF]. This theorem leads to the deÿnition of the safety coe cient with respect to shakedown and, by a min-max duality, to dual expressions of the safety coe cient obtained respectively from static and kinematic approaches. This method is then applied to the particular cases of strain hardening materials for which hardening parameters are the plastic strain or equivalent plastic strain.

This discussion also suggests the introduction of a relaxed kinematic safety coecient, following a method due to Koiter, in the so-called Koiter's second shakedown theorem [START_REF] Koiter | General problems for elastic-plastic solids[END_REF]. Some of the obtained results have been announced in [START_REF] Nguyen | On shakedown theorems in hardening plasticity[END_REF]. Min-max duality is also considered for common models of geomechanics such as the Cam-clay model. Finally, a simple example is given in the last section to illustrate the kinematic approach in limited kinematic hardening. Our principal goal is to obtain appropriate theorems for common models of limited isotropic or kinematic hardening or for pressure-dependent geomaterials.

Static shakedown theorems

The quasi-static evolution of an elastic plastic solid under variable loads on the interval [0; +∞[ is considered here. For dynamic-conditions, it is well known that additional terms due to the inertial forces can be taken into account and the same conclusion remains valid as it has been shown in the literature. Let (u(t); (t); p (t)) be the elastic-plastic response of the solid starting from a given initial state on the interval t ¿ 0. By deÿnition, this response will shake down if the existence of the limit

lim t→∞ p (t) (1) 
is ensured. It can be noted that this property also ensures that lim t→∞ u(t) -u el (t) and lim t→∞ (t)el (t) exist, under certain additional assumptions (e.g. [START_REF] Debordes | Sur la thà eorie et le calcul  a l'adaptation des structures à elasto-plastiques[END_REF], where el (t); u el (t) denote the ÿctitious response of the same solid, assumed to be purely elastic, to the same loading. The proof of this statement is clear for discrete systems while for continua, some di culties remain concerning the choice of a relevent functional space in the case of perfect plasticity [START_REF] Debordes | Dualità e des thà eor emes statique at cinà ematique sur la thà eorie de l'adaptation des milieux continus à elasto-plastiques[END_REF].

Perfect plasticity

The classical static theorem of shakedown in perfect plasticity, also known as Melan's theorem, states that: Static shakedown theorem. If there exists a self-stress ÿeld s * (x), a safety coe cient m ¿ 1 and a time such that the stress ÿeld m(s * + el (t)) satisÿes everywhere and for all t ¿ the plastic criterion f(m(s * (x) + el (x; t))) 6 0 ∀x; ∀t ¿ then there is shakedown, immaterial of the initial conditions.

The proof of Melan's theorem can be obtained in two steps. In the ÿrst step, it is shown that under the assumptions of the theorem, the dissipated energy W d is necessarily bounded. In the second step, this property ensures the existence of lim t→∞ p (t). To prove the ÿrst step, it is useful to note that for all plastically admissible stress ÿelds ˜ , the following inequality holds:

( -˜ ): ˙ p d ¿ 0:
By taking ˜ = m(s * + el (t)) which is plastically admissible by assumption, it follows that

( - * ): ˙ p ¿ m -1 m d in d
with * = s * + el , where d in = : ˙ p . Since - * is a self-stress ÿeld and since u -u el = 0 on S u , one obtains

0 = ( - * ): ( ˙ -˙ el ) d = ( - * ): ˙ p + ( - * ): L -1 : ( ˙ -˙ * ) d : It follows that -( - * ): L -1 : ( ˙ -˙ * ) d ¿ m -1 m d in d ;
which leads, after a time integration on the interval [ ; t], to

I ( ) -I (t) ¿ m -1 m W d (2)
with

I (t) = 1 2 ( - * ): L -1 : ( - * ) d :
The dissipated energy W d (t) = t : ˙ p d d thus remains bounded for all initial conditions.

The second step consists of proving that p (t) tends to a limit. The fact that the dissipated energy remains bounded already ensures the existence of a limit of p (t) for any appropriate functional space which is complete with respect to the norm associated with the dissipation, since there exists a constant c ¿ 0 such that : ˙ p ¿ c ˙ p . This inequality follows from the fact that the origin of stress is strictly inside the elastic domain.

This convergence ensures immediately the existence of the limits lim t→∞ u(t)u el (t) and lim t→∞ (t)el (t) for discrete systems. A mathematical di culty, however, remains for continuous media and concerns an appropriate choice of the norm. A method due to [START_REF] Nayroles | Tendances rà ecentes et perspectives  a moyen terme en à elastoplasticità e asymptotique des constructions[END_REF] can be applied concerning the stress ÿeld when the plastic criterion is symmetric with respect to the origin of stress. It consists of proving that the sequence s i = (t i )el (t i ) is a Cauchy sequence with the energy norm s 2 e = s: L -1 : s d and thus converges. Indeed, for all t 2 ¿ t 1 ¿ t 0 , we have

1 2 s 1 -s 2 2 e = t2 t1 ṡ: L -1 : (s -s 1 ) d dt = - t2 t1
˙ p : (s -s 1 ) d dt:

The last integrand can also be written as

-˙ p : (s -s 1 ) = -˙ p : (( - * ) -( 1 - * 1 )) = -˙ p : ( - * ) + 1 : ˙ p -˙ p : * 1 :
In this expression, the ÿrst term is non-positive and the second is bounded by d in = : ˙ p . If the plastic criterion is symmetric with respect to the origin of stress, such as in the case of Mises or of Tresca's criterion, the stress - * 1 is also plastically admissible, thus the third term is also bounded by d in . It follows that = s 1 -s 2 2 e 6 4(W d (t 2 ) -W d (t 1 )): Since the dissipated energy is bounded and cannot decrease, s i is a Cauchy sequence and so this sequence converges. It follows that (t)el (t) tends to a limit when t → ∞.

In the presentation of the shakedown theorem in perfect plasticity, it can be assumed equivalently that there exists a particular plastic strain ÿeld p * generating a self-stress s * such that the stress ÿeld m * is plastically admissible. It should be also emphasized that two principal ingredients are involved in the proof of Melan's theorem. Firstly, the property of contraction of the distance separating two solutions starting from two initial states holds in perfect plasticity. Secondly, the possibility to have a constant solution for the plastic response exists by assumption.

Hardening plasticity

This discussion is limited to the case of generalized standard models of hardening plasticity. A generalized standard material is deÿned by the following conditions:

• State variables are ( ; ), which represent, respectively, the strain tensor and a set of internal parameters. Internal parameters include the plastic strain and other hardening variables. There exists an energy potential W ( ; ) which leads to associated forces = W; ; A= -W;

(3) and to a dissipation per unit volume d in

d in = A ˙ : (4) 
• The force A must be plastically admissible, this means that physically admissible forces A * must remain inside a convex domain C, called the elastic domain and deÿned by the plastic criterion f(A * ) 6 0. • Normality law is satisÿed for :

˙ = 9f 9A ; ¿ 0; f = 0: (5)
Thus, the following maximum dissipation principle is satisÿed:

A * ˙ 6 A ˙ = D( ˙ ) = max A * ∈C A * ˙ (6)
in the spirit of Hill's maximum principle in perfect plasticity. Finally, as in perfect plasticity, the notions of convexity, normality, energy and generalized forces are four principal ingredients of the generalized standard models. The dissipation potential D( ˙ ) is convex, positively homogeneous of degree 1. This function is state independent, i.e. independent of the present value of state variables ( ; ), if the plastic criterion is state independent.

The following result has been obtained under some additional assumptions.

Proposition 1 (static shakedown theorem in hardening plasticity). It is assumed that the plastic criterion is state-independent and that

W = W 1 ( ; ) + W 2 ( ); (7)
where W 1 is quadratic and non-negative with respect to ( ; ) and W 2 ( ) is an arbitrary convex and di erentiable function. Then there is shakedown whatever the initial state if there exists a time , a constant internal parameter ÿeld * and a safety coe cient m ¿ 1 such that the force ÿeld mA * (t) is plastically admissible for all t ¿ , where A * =-W; ( * ; * ) denotes the force deÿned from the associated response u * (t).

The associated response u * denotes the response of a corresponding elastic solid admitting the linear elastic relationship

= W; =W 1; = L: + Y = L: ( -p * ) with p * = -L -1 : Y * :
under the same loading (prescribed forces and displacements) and under the inherent plastic strain p * . In particular, the associated stress is * (t) = el (t) + s * where s * denotes the self-stress due to the inherent plastic strain p * .

The proof of this proposition is relatively straightforward. Indeed, let (u(t); (t)) be a solution of the evolution problem starting from a given initial condition. Since under the assumptions introduced, mA * is plastically admissible for all t ¿ , the following inequality holds:

(A -A * ) ˙ d ¿ m -1 m A ˙ d :
From the fact that

( - * ): ( ˙ -˙ * ) -(A -A * )( ˙ -˙ * ) = d dt {W 1 ( - * ; - * ) + W 2 ( ) -W 2 ( * ) -W 2; ( * )( - * )}
since ˙ * = 0, and that

( - * ): ( ˙ -˙ * ) d = 0;
the following equation results:

- d dt {W 1 ( - * ; - * ) + W 2 ( ) -W 2 ( * ) -W 2; ( * )( - * )} d ¿ m -1 m d in d :
Thus estimate ( 2) is again obtained with

I (t) = {W 1 ( (t) - * (t); (t) - * ) +W 2 ( (t)) -W 2 ( * ) -W 2; ( * )( (t) - * )} d :
Since I (t) is non-negative as a sum of two non-negative terms, the dissipated energy W d (t) is bounded by I ( ) for all t ¿ . Repeating the same arguments, the existence of the limit

lim t→∞ (t) - *
is ensured again from this estimate on the dissipated energy. In the same spirit as Melan's theorem, Proposition 2 gives a su cient condition ensuring the shakedown of a solid subjected to a given loading path.

If the plastic criterion is symmetric with respect to the origin in the force space, Nayroles' method is still valid and leads then to the convergence of the stress ÿeld (t) in the elastic energy norm. Indeed, the following expression holds:

: ˙ p = A ˙ + (X -Y T L -1 Y ) ˙ + W 2; ˙ with the notation W 1 = 1=2( : L: + : Y + X ). Thus -˙ p : ( - * ) + 1 : ˙ p - * 1 ˙ p = -˙ : (A -A * ) + A 1 ˙ -A * 1 ˙ -W 2; ˙ -W 2; 1 ˙ -( -1 )(X -Y T L -1 Y ) ˙
and the same argument leads to

6 4(W d (t 2 ) -W d (t 1 )) -(W 2 ( 2 ) -W 2 ( 1 ) -W 2; 1 )( 2 -1 )) - 1 2 ( 2 -1 )(X -Y T L -1 Y )( 2 -1 ) 6 4(W d (t 2 ) -W d (t 1 ))
since the two last terms of the middle expression are non-positive after the assumptions of Proposition 2.

Min-max duality and dual safety coe cients

In the spirit of the min-max duality method, developed by [START_REF] Debordes | Sur la thà eorie et le calcul  a l'adaptation des structures à elasto-plastiques[END_REF] or [START_REF] Pycko | Alternative approach to shakedown as a solution of min-max problem[END_REF] for shakedown theorems in perfect plasticity, the deÿnition of a safety coe cient with respect to shakedown is now introduced and dual static and kinematic approaches are considered.

Static approach and safety coe cient

The deÿnition of a safety coe cient with respect to shakedown can be given from the previous results. where CA, SA, PA, respectively, stand for kinematically, statically and plastically admissible ÿelds. Then there is shakedown if there exists ¿ 0 such that m s ( ) ¿ 1 while no conclusion is available if m s ( ) ¡ 1 for all ¿ 0.

Indeed, if m s ¿ 1 then there exists a constant ÿeld * in the spirit of Proposition 1 and the conclusion holds. In perfect plasticity, this statement reduces to Melan's theorem. In kinematic hardening for example, the linear Zieger-Prager model is often adopted. It is deÿned by state variables ; p with p kk = 0. The energy potential W = 1 2 ( -p ): L:

( -p )+ 1 2 p : h: p leads to associated force A=-W; p = -h: p . The plastic criterion (Mises) is A -k 6 0 and the dissipation potential is D( ˙ p ) = k ˙ p with the notation A = A ij A ij : From Proposition 2, Proposition 3 follows.
Proposition 3. In linear kinematic hardening, the static safety coe cient is deÿned as the maximum

m s ( ) = max p * m (10)
among constant plastic strain ÿelds p * satisfying p * kk = 0 such that m(s * ( p * ) + el -h: p * ) 6 k (11) for all x ∈ and t ¿ .

It is well known in linear elasticity that the self-stress associated with a given initial strain s( I ) is obtained from the resolution of a linear elastic problem with initial strain. In particular, the self-stress associated with a given ÿeld of initial strains I is the solution of the minimization problem of total complementary energy of the elastic solid min s self -stress s + L: I 2 ;

where s denotes the elastic energy norm

s 2 = s: L -1 : s d :
Thus, the associated self-stress can be schematically written in the form

s( I ) = -Z( I ) (12)
where the linear and symmetric operator Z is a projection in the sense of the energy norm. In particular, this linear operator is non-negative since

Z( I )| I = -s( I ): I d = s( I ) 2 ¿ 0:
Let us assume that there exists a state of stress deviator * such that

el (t) - * ¡ k ¡ k ∀t ¿ : (13) 
Then the plastic criterion A * ¡ k is always satisÿed if a ÿeld p * is such that

(Z + hI ) p * = * (14)
could be found. Since this equation admits a solution for all * from the fact that the linear, symmetric operator Z + hI is positive-deÿnite when h ¿ 0. Thus, a particular ÿeld p * satisfying the static theorem can then be obtained and there is shakedown. Finally, in linear kinematic hardening, the shakedown problem leads to the discussion of conditions (13) which can be easily solved as it has been shown in the literature (cf. [START_REF] Gittus | Modelling Small Deformations of Polycrystals[END_REF] for example). It is well known that there is shakedown if the amplitude of the elastic stress does not exceed the diameter of the yield surface.

Min-max duality

Eqs. ( 8) or (10) are convex optimization problems. The dual approach consists of considering dual problems obtained by relaxing some constraints. For this, the initial problem ( 8) is ÿrst written as the search of maximum of m in the set of constant ÿelds * and time-dependent ÿelds Ã(t) and of coe cients m such that

∀t ¿ ; u * (t)CA; * (t)SA; m Ã(t)PA; * = W; ( (u * ); * ); A * = -W; ( (u * ); * ); Ã(t) = A * (t): (15) 
The last constraint is relaxed by the introduction of Lagrange multipliers ÿ(t) associated with the constraint m( Ã(t) -A * (t)) = 0 and the Lagrangian 

(ÿ; m; * ; Ã) = m + ∞ m( Ã -A * )ÿ d dt ( 
deÿnes the dual approach to compute the safety coe cient. It is clear that

m s ( ) 6 m k ( ); (21) 
according to general results of saddle-point duality.

In particular, if m k ¡ 1, then it is not possible to ÿnd a self-stress satisfying the condition of the previous propositions.

Dual kinematic approach

In the following sections, the dual kinematic approach will be considered for strain hardening models admitting as internal parameters the plastic strains or the equivalent plastic strain in view of common models in hardening plasticity.

Perfect plasticity

In this case, Eq. ( 10 +∞ if E p is not a compatible ÿeld:

A compatible ÿeld means that there exists a displacement ÿeld u p with u p = 0 on S u such that E p = (∇u p ). It follows that max

p * ; ˜ = m 1 - ∞ 0 el : d p d dt + ∞ D(d p ) d dt:
when d p is admissible and E p = ∞ d p dt is compatible. Admissible rates d p must be considered in order to ensure a ÿnite value of D(d p ). For example, if Mises criterion is satisÿed, the plastic rate is admissible if d p kk = 0. It is concluded after the maximization with respect to m that the following result holds (cf. [START_REF] Koiter | General problems for elastic-plastic solids[END_REF][START_REF] Debordes | Dualità e des thà eor emes statique at cinà ematique sur la thà eorie de l'adaptation des milieux continus à elasto-plastiques[END_REF][START_REF] Pycko | Alternative approach to shakedown as a solution of min-max problem[END_REF]:

In perfect plasticity, the dual kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum It is useful to note that m k ¿ 1 if the following inequality holds:

m k = min
∞ D(d p ) d dt ¿ ∞ el : d p d dt ( 27 
)
for all plastic strain rate d p admissible and satisfying the condition

E p = ∞ d p dt
compatible. This result is classically known as Koiter's shakedown theorem [START_REF] Koiter | General problems for elastic-plastic solids[END_REF].

As usually established in min-max duality, equality m s = m k is generically satisÿed. In particular, this equality holds if the plastic domain is bounded in the stress space as it has been shown by [START_REF] Debordes | Sur la thà eorie et le calcul  a l'adaptation des structures à elasto-plastiques[END_REF]. It is expected that this equality always holds although a rigorous proof is lacking for continuum solids.

Isotropic hardening

The isotropic hardening model with Mises criterion is deÿned by state variables ; p ; e -p with energy W = 1 2 ( -p ): L: ( -p ) + V (e -p ) and plastic criterion -R(e -p ) -k 6 0 where R(y) = V (y). Since V (y) is a convex function, its derivative R(y) is a non-decreasing function. The associated force is A = ( ; -R) and the dissipation is

d in = : ˙ p -R(e -p ) ˙ p = D = k ˙ p :
If R(y) is bounded and attains its maximum R(y) = R max for y ¿ y max as shown in Fig. 1, the static coe cient m s will be bounded. Let K = k + R max , the calculation can be done in the same spirit and leads to max This result is quite natural in the sense that the behaviour of the solid is the same as in perfect plasticity with yield stress K. As in perfect plasticity, this discussion is given here as a simple illustration of the method.

p * ;e -p * = m 1 - ∞ el : d p d dt + ∞ (k + R max ) d p d dt if E p = ∞ d p dt is a compatible ÿeld,

Linear kinematic hardening

If Zieger-Prager's model is considered, it is not di cult to establish that max p * -(s * -h: p * ):

∞ d p dt d =      0 if E p = ∞ d p dt = 0; +∞ if E p = 0:
The same method then leads to Shakedown theorem (cf. for example to [START_REF] Koiter | General problems for elastic-plastic solids[END_REF], [START_REF] Pham | Shakedown kinematic theorem for elastic-plastic bodies[END_REF]) Proposition 6. In linear kinematic hardening with Mises criterion, the dual kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum Thus, closed cycles of plastic rates must be considered instead of compatible plastic cycles as in perfect plasticity or in isotropic hardening.

m k = min
It is clear from this proposition that the result does not depend on the hardening tensor h, the only restriction is its positiveness. The fact that closed cycles must be considered leads to the consideration of the amplitude of the elastic stress and to the trivial result that there is shakedown if this amplitude is smaller than the diameter of the yield surface.

Combined isotropic and linear kinematic hardening models can also be discussed in the same spirit. Again, closed cycles of plastic rates must be considered. This result, to the knowledge of the author, has not been given in the literature and deserves to be underlined although shakedown analysis in linear kinematic hardening is a trivial problem.

Limited kinematic hardening

The model of nonlinear and limited kinematic hardening of Fig. 2 is considered. For this model, the state variables are ; p with p kk = 0. The energy potential is W = 1 2 (p ): L: ( -p ) + V ( p ) where R(y) = V (y) is the monotone function previously introduced in Fig. 1. Thus the generalized force is A = -W ; p = -C with C = R( p ) p = p . With Mises criterion A -k 6 0, the elastic domain is a sphere of radius k and with center C in the force space. This center C remains near the origin since C 6 R max . It is not di cult to establish that

max p * - s * -R( p * ) p * p * : ∞ d p dt d = R max E p if E p is compatible;
+∞ if E p is not compatible:

The same method then leads to Proposition 7. For this limited kinematic hardening model, the dual kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum

m k = min d p R max E p d + ∞ k d p d dt (32)
among plastic rates d p satisfying

d p kk = 0; E p = ∞ d p dt compatible; ∞ el : d p d dt = 1: (33)
Again, compatible plastic cycles must be considered as in perfect plasticity or in isotropic hardening.

In particular, if m 0 k ; m lkh k and m nkh k denote, respectively, the kinematic safety coefÿcients in perfect plasticity, in linear kinematic hardening and in nonlinear kinematic hardening with the same yield stress k, it follows from their deÿnition that m 0 k ( ) 6 m nkh k ( ) 6 m lkh k ( ) for all :

(34)

The case of limited hardening (Proposition 7) appears as the penalization of the unlimited case (Proposition 6), R max is the penalty parameter associated with the constraint E p = 0.

A relaxed kinematic coe cient

If incompressible plastic strains and Mises yield criterion are assumed, the plastic rates d p to be considered in the dual kinematic approach must satisfy both compatibility and admissibility conditions:

d p kk = 0 and E p = ∞ d p dt compatible:
A relaxation of the ÿrst condition has been introduced by [START_REF] Koiter | General problems for elastic-plastic solids[END_REF] in order to replace in perfect plasticity the computation of m k by a smaller coe cient deÿned as the minimum. A translation following the p-axis can also be introduced in order to include the origin of stresses inside the elastic domain

m ' = min d p ∞ D(d p ) d dt (35)
among the rates ÿ satisfying

E p = ∞ d p dt compatible; ∞ el : d p d dt = 1 (36)
where d p is a symmetric second order tensor and d p its deviatoric part. From this deÿnition and from the expression of m k in Proposition 5, it is clear that m ' , denoted as the relaxed kinematic safety coe cient, must satisfy m ' 6 m k :

(37)

Moreover, the following result has been established and known as Koiter's second shakedown theorem.

Koiter's second shakedown theorem. If m ' ¿ 1, then the plastic dissipated energy is necessarily bounded for any elastic-plastic evolution of a solid submitted to a given loading path from any initial condition. Thus, there is shakedown.

This theorem can be easily understood under the assumption of the generic equality m s = m k . Indeed, it follows that m s ¿ m ' ¿ 1, thus there is shakedown from the static approach. However, a direct proof has been given by [START_REF] Koiter | General problems for elastic-plastic solids[END_REF] without this assumption.

The same theorem also holds for the limited kinematic hardening model.

Proposition 8 (relaxed kinematic coe cient). In the case of the previous limited kinematic hardening model, the dissipated energy is necessarily bounded and there is shakedown if there exists ¿ 0 such that the relaxed safety coe cient m ' 6 m k , deÿned by

m ' = min d p R max E p d + ∞ k d p d dt (38)
among the symmetric rates d p (x; t) such that

E p = ∞ d p dt compatible ∞ el : d p d dt = 1; (39) satisÿes m ' ¿ 1.
A direct proof is given here without the assumption m s = m k following Koiter's method. Indeed, the response of a hardening solid obeying this model under a given loading path is considered starting from any initial condition. A special compatible rate history d p is now constructed on [ ; +∞[ from the plastic strain rate ˙ p (t); t ∈ [ ; T ] for a chosen time T ¿ . With the notation = el + r + p where r = L -1 s, the following rate is considered:

d p (t) = ˙ p (t) if 6 t 6 T; d p (t) = 1 T r (T ) if 2T ¿ t ¿ T; d p (t) = 0 if t ¿ 2T with (t) = (t) -( ). It is clear that E p = ∞ d p (t) dt = p (T ) + r (T ) = (T ) -el (T )
is a compatible but not necessarily admissible ÿeld. We are interested in the expression of the quantity

∞ el : d p d dt. Since for all t ∈ [0; T ] ( : ˙ p + s: ˙ r -el : ˙ p ) = ( -el )( ˙ -˙ el ) d = 0; el : d p d = ( : ˙ p + s: ˙ r ) d ; it follows that 2T el : d p d dt = T : ˙ p + s: L -1 : ṡ d dt + 1 T 2T T dt el : r (T ) d :
This rate history satisÿes necessarily after the deÿnition of m ' +∞ el :

d p d dt 6 1 m ' +∞ k d p d dt + 1 m ' R max E p d : It follows that m ' -1 m ' T A: ˙ p d dt 6 {W c (s( )) -W c (s(T )) + V ( p ( ) ) -V ( p (T ) ) + 1 m ' (k + R max ) r (T ) + 1 m ' R max p ( ) + 1 m ' R max p (T ) d - 1 T 2T T el : r (T ) dt d ; (40) 
where A: ˙ p = k ˙ p and W c (s) = 1 2 s: L -1 : s. The next step of the proof is to check that the second member of this inequality remains bounded. On the one hand, after the introduced assumption on the function V (y) as shown in Fig. 1, the estimate

V ( p ) ¿ R max ( p -y max ) holds and gives 1 m ' R max p (T ) -V ( p (T ) 6 y max R max + 1 -m ' m ' R max p (T ) 6 y max R max :
On the other hand, r remains bounded from the fact that

A = s + el -C 6 k ⇒ s 6 k + R max + el :
It is thus concluded that the second member of Eq. ( 40) is bounded for all T and Proposition 8 holds.

Pressure-dependent models of geomaterials

In particular, the min-max duality method can be discussed for some common models of soil mechanics.

Cam-clay model

This model, proposed by the Cambridge school [START_REF] Burland | On the generalized stress/strain behaviour of wet clay[END_REF][START_REF] Schoÿeld | Critical State Soil Mechanics[END_REF], is very popular in soil mechanics since it describes correctly the plastic dilatation or contraction observed experimentally.

A generalized standard version of Cam-clay model is considered here. If p denotes the mean pressure, p = kk =3 and q = , the plastic criterion is given by the yield function

((p + R) 2 + bq 2 ) 1=2 -R 6 0;
where R ¿ 0 is a critical pressure denoted as the consolidation pressure and b ¿ 0 is a material constant.

The elastic domain is thus a family of growing ellipses as shown in Fig. 3. This family is homothetical with respect to the origin and there is isotropic hardening. Hardening e ects are described by the variation of the consolidation pressure R. For example, the following relation holds:

R = R 0 exp(y);
where y is the consolidation parameter, a non-decreasing variable with the plastic deformation to ensure that the consolidation pressure is non-decreasing. It can be deÿned Fig. 3. Cam-clay model of geomaterials: the elastic domain is limited by a family of ellipses in the stress space (p × q) and represented by a cone in the force space (A 0 × A × A ).

by the di erence between an equivalent plastic strain and the plastic dilatation p kk y = -p kk : This choice will be shown to be appropriate. It also ensures that the consolidation is possible in compression and not in tension. This is a generalized standard model with internal parameters p ; and energy

W = 1 2 ( -p ): L: ( -p ) + V (y) with V (y) = R thus V (y) = R 0 exp(y):
The generalized forces associated with the plastic dilatation and plastic deviator are A 0 =p+R and A = , respectively. The generalized force associated with is A =-R. The elastic domain is state-independent since it is deÿned by the convex cone

A 2 0 + bA : A + A 6 0: Normality law gives ˙ p kk = A 0 A 2 0 + bA : A = (p + R) R ; ˙ p = b A A 2 0 + bA : A = b R ; ˙ = ¿ 0:
It follows that the plastic volume rate is dilative if p ¿-R and contractive if p ¿-R and that

˙ = | ˙ p kk | 2 + 1 b ˙ p 2 1=2 :
This relation gives the physical interpretation of as a measure of equivalent plastic strain. In particular, the consolidation parameter and the consolidation pressure are non-decreasing since ẏ ¿ 0. The consolidation pressure R is not limited in the previous description since R(y) varies from 0 to +∞ when y varies from -∞ to +∞. Its expression can be in fact replaced and deÿned from any suitable monotone increasing curve such that lim y→-∞ R(y) = 0 and lim y→+∞ R(y) = R max ¡ + ∞. In this case, a model of limited consolidation is obtained.

For such a model, Eq. ( 16) is now considered with à = A * . It is clear that

max p * -(s * + R * I ): ∞ d p dt d =      -R * E p kk d if E p is compatible; +∞ if not: Finally, R * must maximise the quantity ∞ R * (d p kk ) 2 + 1 b d p 2 1=2 d dt d dt - R * E p kk d ¿ 0:
Thus the following result holds from min-max saddle method.

Proposition 9. For a Cam-clay model with limited consolidation, the kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum As expected, the result is the same as an elastic perfectly-plastic material with a elastic domain C max associated with the extreme ellipse.

m k = min d p R

Kinematic hardening

In the spirit of the previous Cam-clay model, a particular model of kinematic hardening can also be introduced. Here, the consolidation parameter can increase or decrease and is taken simply as y = -p kk with the plastic criterion

((p + R) 2 + bq 2 ) 1=2 -k 6 0;
where k ¿ 0 is a constant and R(y) ¿ 0 is a given non-decreasing function satisfying

lim y→-∞ R(y) = R min ¿ 0 and lim y→+∞ R(y) = R max ¿ 0:
The elastic domain is now a family of ellipses of the same size, centered on axis p 6 0 of the (p × q)-plane. This is a generalized standard model of kinematic hardening, in the same spirit as Ziegler-Prager's model, with internal parameter p . The translation of the center of ellipse in the interval [ -R max ; -R min ] is due to the variation of the plastic dilatation. When R max ¡ + ∞, there is limited kinematic hardening. In this case, the choice of

R * must maximize -R * E p kk thus R * = R max if E p kk ¡ 0 and R * = R min if E p kk ¿ 0.
Finally, the following proposition holds.

Proposition 10. For the Cam-clay model of limited kinematic hardening, the kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum When R max =+∞, there is unlimited kinematic hardening and the following proposition holds.

m k = min d p          ∞ k (d p kk ) 2 + 1 b d p 2 1=2 d dt + (R max E p kk --R min E p kk + ) d          ( 
Proposition 11. For the Cam-clay model of unlimited kinematic hardening, the kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum

m k = min d p ∞ k (d p kk ) 2 + 1 b d p 2 1=2 d dt - R min E p kk d (45) 
among the plastic rates d p satisfying

E p = ∞ d p dt compatible; E p kk ¿ 0; ∞ el : d p d dt = 1: (46) 
This result is easily understood in the spirit of Propositions 6 and 7 since the back-stress is a pressure in this particular case. Again, the limited case (Proposition 10) appears as a penalization of the unlimited case (Proposition 11), R max is a penalty parameter associated with the constraint E p kk ¿ 0. In particular, if R min = k, the expression to be minimized (45) is exactly the dissipated energy associated with the yield surface deÿned by the ellipse of center -k.

Shakedown conditions for a domain of load values

In the classical presentation of shakedown theorems, the load history in conveniently presented by the elastic response el (t) for t ∈ [0; +∞[. It is well known that instead of a load history, a set of possible values el ( ) depending on n load parameters = ( 1 ; : : : ; n ) for ∈ S can be introduced in the case of cyclic loads. The conditions of safety with respect to shakedown for such a domain of loads can be easily written by adapting the previous theorems. Such a condition means that there is shakedown for any load history deÿned by a curve = (t) taking values in S for all t ¿ 0.

Let u el ( ); el ( ) be the elastic response in displacement and stress under the load . The associated response u * ; * is given by u * = u el ( ) + u * p and * = el ( ) + s * . Static shakedown theorem Proposition 1 can be written in this case under the form of Proposition 1 : Proposition 1 . For generalized standard materials obeying assumptions (7), there is shakedown under any load path (t) ∈ S whatever the initial state if there exists an internal parameter ÿeld * and a safety coe cient m ¿ 1 such that the force ÿeld mA * ( ) is plastically admissible for all ∈ S, where A * ( ) = -W ; ( * ( ); * ).

The particular case of a domain S such that the associated convex domain S c deÿned from S by convexiÿcation is a bounded polyhedral domain with corners r ; r = 1; q, can be considered for practical situations. Since A * ( ) = -Y T el ( ) -X * -W 2; ( * ), the dependence of A * on el is linear and leads to a simpler statement.

Proposition 1 . For generalized standard materials obeying assumptions (7), there is shakedown under any load path (t) ∈ S c whatever the initial state if there exists an internal parameter ÿeld * and a safety coe cient m ¿ 1 such that the force ÿeld mA * ( r ) is plastically admissible for all r = 1; q, where A * ( ) = -W ; ( * ( ); * ). 

Illustrative example

The simple case of a symmetric three-bar system is considered here as an illustrative example. The system is composed of three elastic-plastic bars (2,1,2) connected by rigid bars as shown in Fig. 4. It is submitted to a central force F which is maintained constant while the temperature elevation T -T 0 of the central bar is varied and takes its values in the interval [ -T; + T ]. The shakedown condition with respect to thermo-mechanical cyclic loading inside this domain of values is discussed.

Taking account of the symmetry, static and kinematic equations are reduced to 1 + 2 2 = f;

= p 1 + T + 1 = p 2 + 2 ; For this system, a self-stress state respecting the symmetry has the form ( ; -2 ; ) and a compatible state of strain respecting the symmetry the form ( ; ; ). In perfect plasticity, the shakedown is ensured if there exists a self-stress state ( ; -2 ; ) such that the plastic criterion is satisÿed for the extreme loads, i.e. such that

-2 + f ∓ 2Â 3 6 1; + f ± Â 3 6 1:
It is well known that the resulting shakedown domain is a convex domain OABC in Fig. 4, completed by symmetry with respect to axes f and Â.

The kinematic approach consists of ÿnding the safety coe cient m k of the loads f; ±Â. For this, plastic increments (d + 1 ; d - 1 ) and (d + 2 ; d - 2 ) in bars 1 and 2, associated with the extreme loads, are introduced. The kinematic approach gives m k as the minimum of the dissipated work

m k = min d 2|d + 2 | + 2|d - 2 | + |d + 1 | + |d - 1 | (49)
among compatible increments i.e.

d + 2 + d - 2 = d p 1 + d - 1 = E p satisfying 2 el+ 2 d + 2 + 2 el- 2 d - 2 + el+ 1 d + 1 + el- 1 d - 1 = 1:

Conclusion

In this paper, new results concerning the expression of kinematic safety coe cients, available for common models of limited isotropic and kinematic hardening, are given. The expressions obtained from the min-max duality such as ( 19), ( 30), ( 32), ( 38), ( 41) and ( 45) provide a useful complement to the static approach. Propositions 7-11 are new compared to the existing results of the literature in shakedown analysis since they deal principally with the kinematic approach. They are particularly simple and can be easily exploited to approximate by upper bounds the theoretical values in hardening plasticity as it is usually done for shakedown and limit analyses in perfect plasticity. In particular, the amplitude of the plastic rate path, denoted as E p in this discussion, ÿgures explicitly in the expression of the kinematic safety coe cients.

For the models considered here, it should be emphasized that the material always o ers its maximum allowable resistance given by the saturation limit of the yield surface. It is true that this remarkable capability holds only for appropriate ow laws of the plastic strain and internal parameters, as it has been emphasized in the literature (cf. for example, [START_REF] Fuschi | Structural shakedown for elastic-plastic materials with hardening saturation surface[END_REF]. However, this conclusion could possibly remain available for a class of hardening materials larger than the generalized standard models. It may be then interesting to discuss the least restrictive assumption on constitutive equations ensuring this result and the validity of the static and kinematic approaches. For non-associated ow laws, it is already known that no general variational principle or dual theorems could be derived for shakedown analysis or for limit analysis.

  For a given loading history on the time interval [0 + ∞[, Proposition 2. Let m s be the safety coe cient deÿned by the maximum m s ( ) = max * m (8) among all constant ÿelds * such that ∀t ¿ ; u * (t)CA; * (t)SA; mA * PA; * = W; ( (u * ); * ); A * = -W; ( (u * ); * ); (9)

  ) leads to the strain rate history ÿ = d p and to the Lagrangian = m + ∞ m( ˜ - * ): d p d dt; (22) where m ˜ must be plastically admissible and * = s * + el . The operation max s * leads to d p ) = max m ˜ PA m ˜ : d p . The ÿrst problem leads to max s * self -stress -s * :

  rates d p satisfying d p admissible; E p = ∞ d p dt compatible; ∞ el : d p d dt = 1: (26)

Fig. 1 .

 1 Fig. 1. A model for isotropic hardening.

  while the result is inÿnite otherwise. It is concluded that Proposition 5. In isotropic hardening with Mises criterion, the dual kinematic approach leads to a coe cient m k ¿ m s , deÿned as the minimum

Fig. 2 .

 2 Fig. 2. A model for limited kinematic hardening.

  d p ) d dt with D m (d p ) = max ∈Cmax

  In the same spirit, for a limited kinematic hardening model, Proposition 7 leads to the following statement Proposition 7 . For the limited kinematic hardening model, the dual kinematic approach leads to the computation of a coe cient m k , deÿned as the minimum

Fig. 4 .

 4 Fig. 4. A symmetric three-bar system and shakedown domains in perfect plasticity, limited kinematic hardening and linear kinematic hardening.

  leads to the initial problem since the result of the minimization with respect to ÿ then gives min ÿ = m if Ã(t) = A * (t) for all t ¿ and min ÿ = -∞ otherwise.

	The saddle-point problem max Proposition 4. The dual problem m k = min	16)

* ; Ã; m min ÿ (17) in the set of arbitrary ÿelds ÿ(t) and * ; Ã(t); m such that ∀t ¿ ; u * (t)CA; * (t)SA; m Ã(t)PA; * = W; ( (u * ); * ); A * = -W; ( (u * ); * ); (18) ÿ max * ; Ã; m (19) in the set of arbitrary ÿelds ÿ(t) and * ; Ã(t) such that ∀t ¿ ; u * (t)CA; * (t)SA; m Ã(t)PA; * = W; ( (u * ); * ); A * = -W; ( (u * ); * );

This condition gives

In linear kinematic hardening, the shakedown domain can be found easily. There is shakedown if the amplitude of the elastic response is small enough to satisfy the plastic criterion. Thus, there is shakedown if |Â| ¡ 3=2 as shown in Fig. 4 and no shakedown if |Â| ¿ 3=2. In the last cases, the responses are elastic-plastic and periodic for periodic loadings. The kinematic approach in kinematic hardening leads to the search of the minimum of the same expression (49) under the last condition among closed plastic increments

and thus, m k = 3=2Â. Thus, m k ¿ 1 if  ¡ 3 2 which is the result obtained by the static approach as shown in Fig. 4.

In limited kinematic hardening, from the static shakedown theorem (Proposition 1), there is shakedown if a plastic strain state ( p * 1 ; p * 2 ) can be found such that the associated self-stresses ( * 2 ; * 1 ; * 2 ), deÿned by *

lead to plastically admissible stress states. This means that the inequalities 2 3 ( p * 2 -p * 1 ) +

must be satisÿed, where r( p )=(1=k)R( p ). The kinematic approach consists of solving the problem

is then necessary to consider two possibilities: