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Abstract—Advanced Sleep Modes (ASMs) are defined as a
progressive shutdown of the Base Station (BS) depending on the
activation and the deactivation times of the different components.
This transition duration defines different levels of sleep modes
that can be implemented in future 5G networks. We propose in
this paper a management strategy based on Q-learning approach
which will enable to find the best combination and durations
of ASM levels depending on the traffic load and the network
operator’s policy regarding energy reduction versus latency.
Our results show that even in delay-sensitive scenarios, high
energy gains can be achieved in low and moderate traffic loads,
respectively 55% and 10%, without inducing an extra latency.
Starting from a certain traffic load (approximately 30%), ASM
should not be implemented in case of stringent latency constraint.

Index Terms—Advanced Sleep Modes, 5G networks, Q-
learning, traffic load, latency.

I. INTRODUCTION

The multiplicity of mobile devices and the upsurge of
new services have led to an exponential growth of traffic
demand. This has induced a huge increase in the energy
consumed by the network operators [1] which has an impact on
both the operator’s Operational Expenditures (OPEX) and the
environment due to the increasing CO2 emissions [2]. To cope
with these problems, considerable efforts have been invested
to reduce the energy consumption of mobile networks and
more precisely of the Base Stations (BSs) as they are the most
energy consumers (around 80% of the overall mobile energy
consumption) [3]. Several techniques and technological levers
have been investigated in this area such as Massive Multiple
Input Multiple Output (MIMO) systems [4], cell zooming [5]
and sleep modes [6].

We focus in this work on the feature of Advanced Sleep
Modes (ASMs) which corresponds to a progressive deac-
tivation of the BS’s components [7]. Different levels are
considered in ASM according to the time needed for the
activation and the deactivation (transition time) of each com-
ponent. Going from one level to another, more components
are deactivated which reduces the BS’s power consumption,
but this is at the expense of a longer delay as more time is
needed to reactivate the BS again.

The sleep modes are already present in LTE systems under
the name of µDTX (≈ 71 µs) [3]. With the lean carrier
design in 5G networks permitting to have less control signals,

deeper sleep modes can be implemented. It has been shown
in previous works [8] that ASMs can reduce up to 90% of
the energy consumption in very low load. However, the delay
increase may be up to 5ms which is critical for some 5G
use cases like Ultra-Reliable Low Latency Communications
(URLLC) where the maximum acceptable latency is around
1ms [9]. For this reason, a delay-sensitive orchestration of the
different ASM levels is needed in order to know how much
each of them is allowed to be used depending on the length
of the idle periods of a BS and according to the network
operator’s needs with respect to latency. A first study was
presented in [10] where a Q-learning based implementation
strategy has been applied for the case of very low loads.
Hence, a more comprehensive investigation is needed in order
to derive the optimal policies for higher loads values.

We present in this paper a traffic-aware implementation
strategy which enables to have a codebook mapping the traffic
load to the possible actions to be performed in the Q-learning
algorithm. According to the constraint of the network operator
imposed on the latency and to the traffic conditions, especially
regarding the average inter-arrival times, several policies can
be deduced.

The remainder of this paper is as follows: Section II-A
describes the concept of ASMs, the 5G new radio opportunities
that can be exploited to have deeper sleep modes, the buffering
strategy and the proposed solution for ASM implementation.
Section III develops our ASM management solution based
on Q-learning approach. Section IV presents the simulation
results and Section V concludes the paper and gives some
perspectives for future works.

II. SYSTEM DESCRIPTION

A. Advanced Sleep Modes description
The different components and sub-components of a BS

can be classified into four categories according to the time
needed by each of them to deactivate and then wake up again
(transition time) as presented in [7]. These categories define
the different possible levels of sleep modes that a BS can enter,
and are denoted as “Advanced Sleep Modes”:
• SM1: represents the shortest sleep mode which needs a

transition time of 71µs (OFDM symbol). The power am-
plifier and some components of the digital baseband and
the analog front-end (both in Rx and Tx) are deactivated.



• SM2: corresponds to a longer sleep mode which needs
1ms as a transition time (1 sub-frame or TTI) and in
which more components of the analog front-end are
disabled compared to the first level.

• SM3: the power amplifier, all the components of the
digital baseband and almost all the parts of the analog
front-end (except the clock generator) are switched off.
This subset of components needs 10 ms (a frame) to
deactivate then wake up again.

• SM4: corresponds to the standby mode in which the
BS retains its wake-up functionalities but almost all its
components are deactivated. It groups the components
that need more than 1s for the transition latency (deep
sleep mode).

The ASMs are defined only based on the transition times
of the BS’s components. However, the sleep length of each of
them has not been defined. We assume that the minimal sleep
duration in each sleep level is in the same time scale of the
transition time corresponding to that level, and that both the
activation and deactivation delays are half of this transition
time. This is summarized in Table I.

TABLE I: Advanced Sleep Modes characteristics

Sleep Deactivation Minimum Activation
level duration sleep duration duration
SM1 35.5 µs 71 µs 35.5 µs
SM2 0.5 ms 1 ms 0.5 ms
SM3 5 ms 10 ms 5 ms
SM4 0.5 s 1 s 0.5 s

B. Signaling in 5G new radio

In LTE systems, the BS sends periodically control signals
such as Cell-specific Reference Signals (CRS) broadcasted
during 4 OFDM symbols out of 14, Primary and Secondary
Synchronization Signals (PSS and SSS) transmitted every 5ms
and Physical Broadcast CHannel (PBCH) which is transmitted
in the first sub-frame of the LTE radio frame. With such
frequent signaling, only the first level of sleep modes (SM1)
is applicable.

With the lean carrier design of 5G new radio, synchroniza-
tion signals are grouped in blocks and are sent periodically
with a configurable periodicity among this set [5, 10, 20, 40,
80, 160 ms] as agreed in 3GPP [11]. This allows to enter
deeper sleep mode levels i.e., SM2 and SM3. For this reason,
we consider in this work the first three ASM levels.

C. Buffering strategy

We consider in this work only users in connected mode
and ignore users’ initial access. When a user arrives during
a sleep mode, his arrival triggers the activation of the BS. In
the meantime, the user request is kept in a buffer until the BS
wakes up and serves him. The buffereing delay depends on
the depth of the sleep mode and on its phase, i.e., whether the
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Fig. 1: Buffering delays in ASMs

BS is deactivating, activating or it is in the sleep mode itself.
This is illustrated in Figure 1.

The deeper the sleep mode, the more power reduction we
can have as we deactivate more hardware. This hampers the
responsiveness of the BS due to the buffering time for the
users arriving during the sleep mode. This may be a problem
in some scenarios where there is a high constraint imposed
on the delay such as URLLC type of service. Hence, a delay-
sensitive implementation strategy is needed in order to be able
to profit from the ASM without inducing any impact on the
latency.

D. Delay-sensitive implementation strategy

We proposed in [10] an implementation strategy for ASM
which consists of putting the BS in different levels of sleep
modes as follows: each time the BS is idle, we start with
the deepest level (SM3), then we wake up the BS gradually:
we put it into SM2 and then SM1 then in the idle mode as
shown in Figure 2. Each sleep level can be repeated many
times before going to the next one. The target is to determine
the duration of each sleep mode.

The idea is to have different possibilities of sleep durations
in each sleep mode level according to the policy of the network
operator. If this policy consists of prioritizing the energy
consumption reduction, then the best strategy is to remain in
the deepest sleep level until the arrival of the next user which
will trigger the activation of the BS. However, if the network
operator decides to prioritize the users’ latency, then the best
strategy to follow is to anticipate the arrival of a user by taking
more conservative actions (lower durations of sleep modes) so
that whenever a user arrives, he finds the BS ready to serve
him. In the case where both energy reduction and latency are
to be considered, we make use of a utility function which is



equal to the weighted sum of both criteria. We try to maximize
it following the same strategy i.e., deepest sleep level first. We
make so based on a Q-learning algorithm that depends on the
traffic load, as shown next.
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Fig. 2: Delay-sensitive implementation strategy of ASMs

III. ASM MANAGEMENT BASED ON Q-LEARNING
APPROACH

As in [10], we consider the Q-learning approach [12] in
order to find the optimal duration for each sleep mode level.
The advantage of this method is that it is model-free which
makes it well adapted for the ASM problem.

A. Q-learning algorithm

The Q-learning approach is based on the estimation of a
state-value function denoted by Q which links the state s to
the action a and is updated in each iteration.

Table II presents the pseudo-code summarizing the Q-
learning algorithm:

Q-learning algorithm

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q (e.g., ε-greedy)
Take action a, observe R, s′
Q(s, a)← Q(s, a) + α[R+ γmaxa′ Q(s′, a′)−Q(s, a) ]
until s is terminal

TABLE II: Q-learning algorithm

where :
• an episode is defined according to the users’ dynamics.

The departure of a user corresponds to the begining of
an episode, if there is any other user being served.

• s denotes the current state of the system and s′ the
following state after performing action a.

• R is the reward achieved by choosing action a.
• α is the learning rate.

• γ is the discount factor describing the weight given to
future rewards.

• The ε-greedy algorithm operates in such a way to test
random actions with probability ε (exploration) and to
take the actions which maximize the Q value with a
probability 1− ε (exploitation).

B. Q-learning characteristics

1) State space: It corresponds to the different states of
the BS. It can be either active (serving a user), idle (not
transmitting anything but it is still activated) or in sleep mode
(SM1, SM2 or SM3).

S = {active, idle, SM1, SM2, SM3}.

2) Decision epochs: The decision points are defined at
the end of each state: if the BS was in the active state, the
departure of a user marks the end of this state and an action
should be performed. This is the start of an episode. After
peforming that action, the BS will be in the next state, first in
SM3 if applicable, or else SM2, or else SM1. Once the time
allowed for the corresponding sleep level elapses, another
decision should be taken, it consists of going to a higher SM
level. This is repeated until the arrival of a user which will
end the current episode and impose the activation of the BS
or after having entered all the possible sleep mode levels then
activated the BS.

3) Action space: The action space corresponds to the
decisions that can be taken at each desicion point. An action
consists of finding ni the number of times the BS can repeat
the following sleep mode level i. Let Ni be the set of possible
values that ni can take, for i ∈ {1, 2, 3}.

So, the action space is:

As = {N3 ×N2 ×N1}.

The objective is to find the optimal triplet (n3, n2, n1)
which maximize a reward function R.

4) Reward function: The reward R for a given episode can
be defined as the weighted sum of the energy gain Egain
and the added delay D, that are achieved following the sleep
strategy during that episode.

Hence, R can be written as follows:

R = −εD + (1− ε)Egain (1)

where ε is a normalized weight (ε ∈ [0, 1]) that denotes the
importance given to the two factors D and Egain. A small ε
means that the energy reduction is prioritized over the delay
and vice versa.

C. Traffic-aware action space

The ASMs are intended to be used during the idle periods
of the BS. They are most profitable when the traffic load is
very low as we have enough time between the users to put
the BS in deep sleep mode for large periods. It has been
shown that in almost zero-load condition, we can achieve up



to 90% of energy reduction [8]. When the load increases, the
users’ inter-arrival time decreases which will restrict the use of
sleep modes. The action space denoting the number of times
to repeat each sleep mode level is a finite set of some possible
values that should be well adapted to the traffic load.

An action ni can be written as follows:

ni = bxinc (2)

where:
• xi is the number of times to repeat the sleep mode i in

order to cover all the idle period only by this level. It can
be defined as xi = I

Ti
with I is the average inter-arrival

time of users and Ti the duration of sleep mode i.
• n is a multiplicative factor taken in such a way to have

different possibilities of sleep duration for each sleep
mode level while being around the optimal value xi.
We consider n ∈ [0, 0.1, 0.2, 0.5, 1, 2, 5, 7, 10] in our
numerical experiments shown next.

IV. NUMERICAL RESULTS

A. Simulator description

We consider a 2x2 MIMO BS with a single sector and we
simulate an FTP service where the users request to download
a file of exponential size and once the download is complete
they quit the network. The simulator is event-based where an
event corresponds to the dynamics of users and sleep modes
(activation, deactivation, change of sleep level). The different
characteristics of the simulator are given in Table III.

TABLE III: Simulator characteristics

Network parameters
Antenna height 30 m

Bandwidth 20MHz
Scheduling type Round Robin

Channel characteristics
Thermal noise -174 dBm/Hz

Path loss (d in km) 128.1 + 37.6 log10(d) dB
Shadowing Log-normal (6dB)

Traffic characteristics
Users’ arrivals Log-normal with mean λ

and variance v = λ
10

Service type FTP
Average file size 4 Mbits

Q-learning parameters
Learning rate α = 1

Ns,a

where Ns,a is the number of visits to
the action-state pair (s, a).

Discount factor γ = 0.1

Exploration factor εexp = 0.1

In order to quantify the outcome of the proposed solution,
we focus on two performance metrics: energy consumption
and latency.

The energy consumption can be defined as follows:

EC =

Ne∑
i=1

τi−1,iPi−1,i (3)

where:
• Ne is the number of events.
• τi−1,i is the duration between two events i− 1 and i.
• Pi−1,i is the power consumed by the BS during τi−1,i

and is computed using IMEC power model tool [13].
This power value depends on the state of the BS during
that period as mentioned in Table IV.

TABLE IV: Power consumption of 2x2 MIMO BS (1 sector)
in different states.

Radiated Power: 46 dBm, Bandwidth: 20 MHz

Active Idle SM1 SM2 SM3

250 W 109 W 52.3 W 14.3 W 9.51 W

The latency of a user can be computed as follows:

∆Latency = Tserve − Treq (4)

where Tserve is the time when the BS starts serving the user
and Treq is the time when the request occurs. We focus here
on the latency induced by the sleep modes due to the buffering
approach.

We consider different values of arrival rates λ ∈{1, 3, 6, 10,
20, 35} (users/s/Km2) which are translated into loads of 1%,
4%, 9%, 15%, 30% and 55%, respectively. The load is defined
as the fraction of time during which the BS was active:

ρ =
1

T

Ne∑
i=1

τi−1,i1{xe(τi−1,i)=1} (5)

where :
• T =

∑Ne

i=1 τi−1,i, is the total observation time.

• xe(τi−1,i) =

{
1 if the BS was active during τi−1,i.
0 otherwise.

B. Convergence analysis

The convergence criteria is based on the computation of
the maximum variation of the quality-value Q(s, a) in each
iteration for all the state-action pairs (s, a). Figure 3 shows
the convergence behaviour in a low load scenario (1%) with
ε = 0.75 during the learning phase. The maximum variation
tends to zero for a sufficiently high number of iterations (in
the order of 104).

C. Performances results

We consider five different values of ε: 0.001, 0.25, 0.5, 0.75
and 0.999. For ε ≈ 0, the energy consumption reduction is
prioritized, whereas when ε ≈ 1, it is the delay that counts the
most. In the cases in between, different weights are given to
the two factors.
1) Output policies:
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Table V presents the differents policies, i.e., the triplet
(n3, n2, n1), that are deduced depending on the value of ε for
the different considered arrival rates. The more we increase
ε the more we reduce the time spent in SM3 giving more
opportunities for the next levels.

2) Energy consumption reduction with ASM:
Figure 4 shows the energy consumption reduction achieved

for different loads and different values of ε. The highest energy
gain (90%) is achieved in low load with the lowest ε. The
more we increase the load, the more we reduce the energy
gain as we use less sleep modes between the users’ arrivals.
For a given value of load, the energy gains decrease with ε,
as when we increase ε, we give more weight to the delay so
that we use the sleep modes for shorter periods to prevent the
arrival of users during the sleep state. Even with this constraint,
we can achieve up to 55% of energy reduction in low loads.
For average loads, the energy gain is also significant (10% of
reduction for 10% of load). Starting from 30% of the load,
the best policy to take in order to satisfy the delay constraint
is to not use any sleep mode level.
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Fig. 4: Energy consumption reduction

3) Influence on users’ latency:
Figure 5 shows the variation of the added delay caused by

the sleep strategy for different values of load and ε. We observe
that if we increase ε, we can reduce this impact on latency until

TABLE V: Policies

Arrival rate ε ≈ 0 ε = 0.25 ε = 0.5 ε = 0.75 ε ≈ 1

(users/s/Km2)
n3 6944 1389 694 694 694

λ1 = 1 n2 69444 69444 13889 6944 0
n1 1369327 391236 978091 391236 39124

1369327 978091
1956182 1369327

1956182

n3 4630 463 231 231 46
λ2 = 3 n2 9259 46296 4630 2315 0

23148
32407
46296

n1 130412 652061 130412 326030 13041
326030 326030
456442 456442
652061 652061

n3 1157 139 116 116 0
λ3 = 6 n2 4630 13889 4630 1157 0

11574 16204
n1 65206 136933 163015 65206 6521

163015 228221
228221 326030
326030

n3 1389 69 69 69 0
λ4 = 10 n2 13889 6944 2778 694 0

n1 195618 68466 97809 136933 3912
97809 136933 195618

195618

n3 694 40 35 14 0
λ5 = 20 n2 6944 1984 3472 694 0

n1 97809 39124 68466 97809 0
55891 97809

n3 397 40 8 4 0
λ6 = 35 n2 3968 1984 1984 394 0

n1 55891 39124 39124 55891 0
55891

having no (or very little) influence (lowest curve).

V. CONCLUSION

We presented in this paper a traffic-aware, energy and delay-
sensitive implementation strategy for ASM in 5G networks.
It takes into account the traffic variation and the constraint
that may be imposed by the network operator on energy
and latency in order to derive the policy that captures the
projected trade-off between them. Different policies can be
achieved based on different traffic loads as well as the network
operator’s policy regarding delay and energy reduction. Our
results show that significant energy gains can be achieved
by the ASM, especially in low load scenarios and when
there is no constraint imposed on the delay: up to 90% of
energy reduction. Even with a high constraint on the delay,
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the energy reduction can still achieve high values: up to 55 %
in low load and 10% in moderate load. Starting from a certain
load threshold (approximately 30%), the ASM cannot be used
anymore if the delay is prioritized over the energy reduction.

This study was performed without considering the control
signals. As an extension of this work, we aim to add the
periodic signaling and find out the possible changes in the
policies that we can deduce according to the traffic conditions.
It is also interesting to extend the work to a network with
multiple BSs and consider cooperation between them in order
to have the highest possible energy gains with the minimal
impact on the delays. A centralized orchestration of the
different BS sleeping cycles is thus needed.
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