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A simple microstructural viscoelastic model for flowing foams

Rubén Ibáñez1 · Adrien Scheuer1,4 · Emmanuelle Abisset-Chavanne1 · Francisco Chinesta2 · Antonio Huerta3 ·
Roland Keunings4

Abstract
The numerical modelling of forming processes involving the flow of foams requires taking into account the different problem
scales. Thus, in industrial applications a macroscopic approach is suitable, whereas the macroscopic flow parameters depend
on the cellular structure: cell size, shape, orientation, etc. Moreover, the shape and orientation of the cells are induced by the
flow. A fully microscopic description remains useful to understand the foam behaviour and the topological changes induced
by the cell elongation or distortion, however, from an industrial point of view, microscopic simulations remain challenging
to address practical applications involving flows in complex 3D geometries. In this paper, we propose a viscoelastic flow
model where the foam microstructure is represented from suitable microstructure descriptors whose evolution is governed
by the macroscopic flow kinematics.
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Introduction

Aqueous foams are concentrated dispersions of gas bubbles
in a surfactant solution. Their structures are organized over
a large range of length scales and complex flows take place
at different scales [6].

The proposal of macroscopic constitutive equations
allows for the efficient modelling and simulation of indus-
trial processes involving the flow of foams [1, 4]. Usu-
ally, such descriptions remain however too phenomeno-
logical, and even though they predict accurately the flow
kinematics, microstructure information remains often unac-
cessible. On the opposite side, fully microscopic simu-
lations allow for very detailed descriptions of the foam
microstructural evolution [2]. However such approaches
fail to address scenarios of industrial interest that usually
involve the flow of foams in very large and complex 3D
geometries.

The macroscopic flow model is expected to depend on
the cellular structure: cell size, shape and orientation, as
well as on the fluid rheology and the surface tension.
Moreover, cell shape and orientation are induced by the
flow. This microscopic information could be introduced
into a macroscopic flow model by using standard upscaling
and homogenization techniques. Thus inspired by [7],
at some locations in the domain in which an effective
homogeneous fluid flows, we could attach a representative
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volume containing several cells, whose size, shape and
orientation depend on the considered location. Now, a
detailed microscopic calculation could be carried out in
order to determine the effective fluid rheology. However,
such a route, widely and successfully considered in a variety
of fields, remains expensive from a computational point of
view despite some attempts at combining it with advanced
model reduction techniques [12].

The most appealing description consists of a macroscopic
flow model making use of some conformational variables
describing the main microstructural features, as widely con-
sidered in the field of multiscale polymer modelling [3,
11]. Thus, in [10] the authors study flows during foam-
ing, considering cell evolutions but without addressing the
shape orientation and then, the induced anisotropy. Richer
microstructure descriptions can be obtained by using a set
of configurational coordinates, from which a conformation
tensor can be derived and a macroscopic constitutive equa-
tion established. This route was successfully considered in
[13]. In the present work, we propose an alternative sim-
pler microstructure description and its coupling with the
macroscopic flow.

Remark In the sequel, we consider the following ten-
sor products, where Einstein’s summation convention is
assumed:

– if a and b are first-order tensors, the single contraction
· reads (a · b) = aj bj ;

– if a and b are first-order tensors, the dyadic product ⊗
reads (a ⊗ b)jk = aj bk;

– if a and b are respectively second and first-order
tensors, the single contraction · reads (a ·b)j = ajm bm;

– if a and b are second-order tensors, the single
contraction · reads (a · b)jk = ajm bmk;

– if a and b are second-order tensors, the double
contraction : reads (a : b) = ajk bkj .

Cell conformation

A very simple description of a 3D cell consists of a
deformable ellipsoid (with constant volume) ranging from
the spherical shape to the infinite aspect ratio ellipsoid (rod).
Such an ellipsoid could be represented by means of three
orthogonal extensible springs, with reference length 2L0

and stiffness K. In the sequel, we restrict our analysis to 2D
scenarios (by considering ellipses instead of ellipsoids) but
the derived models and their numerical solution procedures
can be straightforwardly extended to 3D.

First, we consider the kinematics of a single linear
elastic dumbbell as starting point for elaborating the cell
conformation.

Kinematics of an extensible rod

The extensible rod, of reference length 2L0 and assumed
aligned in direction p (p having a unit norm), is represented
by an elastic spring of length 2L (in the deformed state)
and stiffness K equipped with two beads at its extremities
where hydrodynamic forces act. In the sequel, the word
hydrodynamic refers to the viscous drag force and not to
the one considered in other works to describe the effects of
a bead kinematics on the others from the use of the Oseen
tensor. These forces scale with the fluid - bead relative
velocity, the former given by v0 + ∇v · pL and the latter by
vG + ṗL + pL̇, where v0 is the unperturbed fluid velocity
at the rod center of gravity and vG the velocity of the rod
centre of gravity. A sketch of the rod and the forces acting
on it is depicted in Fig. 1.

The system is assumed inertialess, that implies the
equilibrium of forces and torques. The first implies
FH (pL) + FH (−pL) = 0, leading to v0 = vG, that is, the
rod centre of gravity moves with the fluid.

Now, to prevent a resultant torque, force FH (pL) must
align with p, i.e. FH (pL) = λp, λ ∈ R. Thus, we have

FH (pL) = ξ(∇v · pL − ṗL − pL̇) = λp, (1)

that multiplying by p and taking into account that p · p = 1
and consequently p · ṗ = 0, yields

ξ(∇v : (p ⊗ p)L − L̇) = λ, (2)

expression that introduced into Eq. 1 reads

ξ(∇v · pL − ṗL − pL̇) = ξ(∇v : (p ⊗ p)L − L̇)p, (3)

that leads to the rotary velocity ṗ

ṗ = ∇v · p − ∇v : (p ⊗ p)p, (4)

that is nothing else than the standard Jeffery expression for
ellipsoids of infinite aspect ratio (rods) [9].

Fig. 1 Extensible rod immersed in a flow



Now, by equating the force acting on the beads λ with the
one within the spring, we have

2K(L − L0) = ξ(∇v : (p ⊗ p)L − L̇), (5)

or

L̇ = −2K
ξ

(L − L0) + ∇v : (p ⊗ p)L). (6)

Thus, the kinematics of an elastic dumbbell of reference
length 2L0 with conformation at time t given by its
orientation p and length 2L, read{
ṗ = ∇v · p − ∇v : (p ⊗ p)p
L̇ = − 2K

ξ
(L − L0) + ∇v : (p ⊗ p)L)

. (7)

From rigid ellipses to orthogonal elastic bi-dumbells

In [5] it was proven that in order to represent a rigid
ellipse whose kinematics are given by the Jeffery equation
it suffices to consider a rigid system composed of two
mutually orthogonal rods whose lengths correspond with
the length of the ellipse axes.

In this case, if p refers to the direction of the ellipse

largest axis, and F = r2−1
r2+1

, with r the ellipse aspect ratio,
we have

ṗ = � · p + F (D · p − D : (p ⊗ p)p) , (8)

where � and D are respectively the vorticity and the rate of
strain tensors, 2� = ∇v − (∇v)T and 2D = ∇v + (∇v)T .

Now, we address the more general case in which both
rigid rods are replaced by two extensible and mutually
perpendicular springs of reference lengths L0

1 and L0
2. In

the sequel, the same reference lengths are assumed for both
dumbbells, i.e. 2L0

1 = 2L0
2 = 2L0.

In the present configuration, and considering that as
proven in our former works the centre of gravity moves with
the fluid, the hydrodynamic forces applying at beads L1p1
and L2p2, FH

1 and FH
2 read respectively

FH
1 = ξ(∇v · p1L1 − ṗ1L1 − p1L̇1), (9)

and

FH
2 = ξ(∇v · p2L2 − ṗ2L2 − p2L̇2), (10)

with p1 ⊥ p2, and with their orientation rates of change
expressed from{
ṗ1 = ω × p1
ṗ2 = ω × p2

. (11)

The angular momentum balance implies now

L2
1p1 × (∇v · p1 − ṗ1) + L2

2p2 × (∇v · p2 − ṗ2) = 0, (12)

which coincides with the expression obtained in the case of
rigid rods [5], proving the validity of the Jeffery equation in
the case of orthogonal elastic bi-dumbells.

Introducing the Jeffery Eq. 8 with r = L1
L2

that implies

F = L2
1−L2

2
L2
1+L2

2
, i.e.

ṗ1 = � · p1 + F
(
D · p1 −

(
pT
1 · D · p1

)
p1

)
, (13)

into the expression of the hydrodynamic force acting on
bead p1L1, we have

FH
1 = ξ(∇v · p1L1 − ṗ1L1 − p1L̇1) (14)

= ξ (∇v · p1L1 − � · p1L1

−F
(
D · p1L1 −

(
pT
1 · D · p1

)
p1L1

)
− p1L̇1

)
(15)

= ξL1

(
(1−F)D · p1+F

(
pT
1 ·D·p1

)
p1

)
−ξp1L̇1.(16)

Modelling incompressible ellipses from orthogonal
elastic bi-dumbells

The projection of force FH
1 in the direction p1 is the one that

causes the spring extension, i.e.

2K(L1 − L0) − FI
1 = ξL1pT

1 · D · p1 − ξL̇1, (17)

where the force FI
1 ensures the incompressibility constraint.

Similar calculations lead to

2K(L2 − L0) − FI
2 = ξL2pT

2 · D · p2 − ξL̇2, (18)

where it was assumed that K1 = K2 = K.
Thus, the extension velocities read

L̇1 = −2K
ξ

(L1 − L0) + L1pT
1 · D · p1 + 1

ξ
F I
1 , (19)

and

L̇2 = −2K
ξ

(L2 − L0) + L2pT
2 · D · p2 + 1

ξ
F I
2 . (20)

Taking into account{
pT
1 · D · p1 = D : (p1 ⊗ p1)

pT
2 · D · p2 = D : (p2 ⊗ p2)

, (21)

and the fact that, since p1 and p2 are mutually orthogonal,
(p1 ⊗ p1) + (p2 ⊗ p2) = I (with I the identity tensor), the
incompressibility constraint d

dt
(L1L2) = 0 reads

L̇1L2 + L1L̇2 = −2K
ξ

(L1 − L0)L2 − 2K
ξ

(L2 − L0)L1

+FI
1

L2

ξ
+ FI

2
L1

ξ
= 0, (22)

which simplifies to

L̇1L2 + L1L̇2 = −4K
ξ

L1L2 + 2K
ξ

L0(L1 + L2)

+FI
1

L2

ξ
+ FI

2
L1

ξ
= 0. (23)

Forces related to the incompressibility constraint are
expected to contribute isotropically to the resulting macro-
scopic stress, and then taken in the flow incompressibility



constraint. Thus, if we compute the contribution of FI
1 and

FI
2 to the stress by using the Kramers rule, we have

σ I = FI
1 p1 ⊗ L1p1 + FI

2 p2 ⊗ L2p2
= FI

1 L1(p1 ⊗ p1) + FI
2 L2(p2 ⊗ p2), (24)

which suggests considering FI
1 L1 = FI

2 L2, since p1⊗p1+
p2 ⊗ p2 = I.

Thus, considering FI
2 = FI

1
L1
L2

in Eq. 23, we have

FI
1

(
L2
1 + L2

2

ξL2

)
= 4K

ξ
L1L2 − 2K

ξ
L0(L1 + L2), (25)

or

FI
1 = 4K

L1L
2
2

L2
1 + L2

2

− 2KL0(L1 + L2)L2

L2
1 + L2

2

, (26)

that vanishes for the relaxed case L1 = L2 = L0, i.e.
FI
1 (L1 = L2 = L0) = 0 and consequently FI

2 (L1 = L2 =
L0) = 0.

Thus, finally the governing equations for the orthogonal
elastic bi-dumbbell representing an incompressible ellipse
read:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ1 = � · p1 + L2
1−L2

2
L2
1+L2

2
D · p1 − L2

1−L2
2

L2
1+L2

2

(
pT
1 · D · p1

)
p1

L̇1 = − 2K
ξ

(L1 − L0) − 1
ξ
F I
1 + L1pT

1 · D · p1
L̇2 = −L2

L1
L̇1

FI
1 = 4K L1L

2
2

L2
1+L2

2
− 2KL0(L1+L2)L2

L2
1+L2

2

FI
2 = FI

1
L1
L2

.

(27)

Conformation descriptor

When considering control volumes (small enough with
respect to the flow but large enough with respect to the cell
size) in a flowing foam, it can be observed that the cells in
each control volume have similar shapes and orientations.
In that case, the cell population in each volume element can
be described using p1 and L1 (when L0 is assumed known).

The contribution of a cell to the stress using the
Kramers rule can be obtained from the elastic forces. The
contribution due to the incompressibility constraint being
isotropic, it can be aggregated to the pressure term. Thus,
the conformation contribution σ c results

σ c = 2K(L1−L0)p1 ⊗ L1p1+2K(L2−L0)p2 ⊗ L2p2 (28)

= 2K(L1−L0)L1(p1 ⊗ p1)+2K(L2−L0)L2(p2 ⊗ p2) (29)

= 2K (�L1L1(p1 ⊗ p1)+�L2L2(p2 ⊗ p2)) , (30)

that vanishes in the relaxed configuration L1 = L2 = L0,
with �L1 = 0 and �L2 = 0.

In these circumstances, the simplest choice for the
conformation tensor consists of the second-order symmetric
tensor c defined from

c = �L1L1(p1 ⊗ p1) + �L2L2(p2 ⊗ p2). (31)

It is important to note that the conformation does not
involve an averaging process affecting the different cells
inside the control volume because we assumed that all of
them share almost the same conformation. However, as it is
usual in the modelling of suspensions, this hypothesis could
easily be relaxed and we would thus consider the average
of different cell conformation, as addressed in the micro-
macro simulations by Keunings and coworkers using the
Lagrangian Particle Method – LPM – [8, 11].

Even though many rheological behaviours could be
associated to flowing foams, this paper focuses on
the consideration of induced anisotropy due to the
cell deformation. For this reason, and without loss of
generality, we consider in what follows the simplest
rheological behaviour consisting of a Newtonian behaviour
complemented with an elastic contribution related to the cell
deformation. In any case, more complex bulk rheologies
could be considered, as for example the one related to a
viscoplastic behaviour.

Thus, the macroscopic viscoelastic constitutive equation
reads

σ = −pI + 2ηD + μc, (32)

where p is the pressure, that can be viewed as the
Lagrange multiplier associated with the macroscopic flow
incompressibility constraints, η the effective homogenized
fluid viscosity, and μ the rheological parameter affecting
the contribution of the microscopic conformation that scales
with K and the volume concentration of cells.

The origin of the elasticity introduced into the confor-
mation field evolution is related to the surface tension that
resists the cell deformation from its spherical reference
conformation. Topological changes can operate at the ele-
mental cell level. However, on average their net effect is
to avoid too large cellular distorsions. Thus, the coefficient
μ should describe both the surface tension as well as the
microscopic topological changes. In the proposed model, it
remains purely phenomenological and should be identified
from appropriate rheological tests.

Even though the present model does not address
relaxation mechanisms, they could easily be incorporated by
including a viscous component at the spring-beads level.

Rheological behaviour

In order to study the rheological response of the proposed
model, we carried out a numerical study to obtain the



loss and storage moduli of a foam. To proceed, consider a
periodic shear strain

γ (t) = γ0 sin(ωt) (33)

whose time derivative provides the evolution of the shear
rate

γ̇ (t) = γ0ω cos(ωt). (34)

In simple shear flow, the velocity gradient thus reads ∇v =[
0 γ̇ (t)

0 0

]
, and we could use the model Eq. 27 to obtain the

time evolution of the shape and orientation of a cell subject
to such an oscillatory flow. We can thus obtain the time
evolution c(t) of the conformation tensor introduced in the
previous section.

We can now decompose the off-diagonal component of
tensor c(t), that is c12(t) in its in-phase and out-of-phase
contributions according to

c12(t) = c′
12 sin(ωt) + c′′

12 cos(ωt), (35)

where c′
12 and c′′

12 are analogous to the so-called storage
(G′) and loss (G′′) modulus respectively (they actually
correspond to the storage and loss moduli associated with
the stress contribution σ c).

Figure 2 shows the value of c′
12 and c′′

12 for an oscillation
angular frequency ranging from 0.1 to 100 rad/s. The
parameters are ξ = 0.1, K = 1, L0 = 0.005 (metric system
of units). We can recognize a Maxwell-like model, with the
classical slopes of 1 (G′′) and 2 (G′) at low frequency.

To obtain properly the storage (G′) and loss (G′′) moduli,
we should also consider the viscous component of the stress
tensor. Thus the moduli are given by

G′ = σ ′
12

γ0
= μ

c′
12

γ0
(36)

G′′ = σ ′′
12

γ0
= 2ηω + μ

c′′
12

γ0
. (37)

Finally, we also conducted another rheological test to
observe the behaviour of the conformation tensor when a
constant shear flow is brutally stopped. As expected, we
obtain an exponential relaxation of the tensor components
towards zero.

Macroscopic flow problem

Neglecting inertia, the macroscopic flow problem is defined
as follows:⎧⎨
⎩

∇ · σ = 0
σ = −pI + 2ηD + μc
∇ · v = 0

, (38)

where σ is the Cauchy’s stress tensor, I the unit tensor and
v the macroscopic fluid velocity field. It can be noticed that
the problem reduces to the standard Stokes flow model as
soon as μ = 0. Incompressibility is justified by the fact that
drainage is neglected.

The flow model must be complemented with the
conformation expression

c = �L1L1(p1 ⊗ p1) + �L2L2(p2 ⊗ p2), (39)

Fig. 2 Oscillatory shear - c′
12

and c′′
12 components
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whose evolution is governed by the microstructural model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ1 = � · p1 + L2
1−L2

2
L2
1+L2

2
D · p1 − L2

1−L2
2

L2
1+L2

2

(
pT
1 · D · p1

)
p1

L̇1 = − 2K
ξ

(L1 − L0) − 1
ξ
F I + L1pT

1 · D · p1
L̇2 = −L2

L1
L̇1

FI
1 = 4K L1L

2
2

L2
1+L2

2
− 2KL0(L1+L2)L2

L2
1+L2

2

FI
2 = FI

1
L1
L2

.

(40)

In order to solve the resulting flow model defined in 	 ⊂
R
2, appropriate boundary conditions must be enforced at the

domain boundary 
 ≡ ∂	{
v = vg in 
D

t = σ · n = tg in 
N
, (41)

with 
D ∪ 
N = 
 and 
D ∩ 
N = ∅.

Numerical solution strategy

Cells are assumed represented at the initial time by a
spherical conformation tensor c = 0, since the cells are
initially in the relaxed state, L1 = L2 = L0.

1. The associated Stokes problem is solved at time tn, from
the microstructural term given at the previous time step
μc(tn−1). The problem is solved using a standard mixed
velocity-pressure formulation using any finite element
satisfying the stability conditions, the so-called LBB
conditions. In the example reported later, we considered
Q9/Q4 finite elements;

2. Then, from the just computed velocity field v(tn)
the orientation and extension fields, p1(x, tn) and
L1(x, tn) respectively, are updated by using a first-order
discontinuous Galerkin formulation;

3. Finally, the conformation tensor is updated c(tn).

These three steps are repeated until reaching the
maximum simulation time or the steady state.

Updating the conformation field

In the numerical experiments described below, we consider
2D flows defined in 2D geometries 	 ⊂ R

2. In the
2D case, the unit vector p1 can be expressed by p1 =
(cos θ, sin θ)T . By taking the time derivative, we get ṗ1 =
θ̇ (− sin θ, cos θ)T . Using θ as orientation descriptor, the
Jeffery equation can be expressed as

θ̇ (− sin θ, cos θ)T = G(θ,∇v, L1). (42)

Multiplying the previous expression by (− sin θ, cos θ), we
obtain the scalar equation

θ̇ = G(θ, ∇v, L1), (43)

where the material derivative can be expressed in an
Eulerian framework by introducing the orientation field
θ(x, t) whose evolution is governed by

∂θ

∂t
+ v · ∇θ = G(θ, ∇v, L1). (44)

The scalar equation governing the evolution of the spring
length can also be written as

∂L1

∂t
+ v · ∇L1 = H(θ, ∇v, L1). (45)

Both Eqs. 44 and 45 are purely advective, and thus appro-
priate discretization taking into account their hyperbolic
character must be used. We make here the simplest choice,
a first-order discontinuous Galerkin scheme, that considers
the generic variable P (θ or L1) constant in each element
	e belonging to the mesh M of 	. The test function is
assumed also constant in each element, vanishing outside.
The balance in element 	e reads, taking into account the
flow incompressibility (∇ · v = 0):∫

	e

∂P
∂t

dx +
∫

	e

∇ · (vP)dx =
∫

	e

J dx, (46)

where the source term J represents G or H depending on
the considered equation.

Using the divergence theorem, the second term of the
left-hand side can be written from the boundary flux, i.e.∫

	e

∂P
∂t

dx +
∫

∂	e

Pv · n dx =
∫

	e

J dx, (47)

where n is the unit outward vector normal to the element
boundary. As P is not defined on ∂	e, we consider the
element boundary decomposition ∂	e = ∂+	e ∪ ∂−	e,
where ∂−	e and ∂+	e represents the inflow and outflow
element boundaries, both defined from v·n < 0 and v·n > 0
respectively. Then we assume that the property on the inflow
boundary is given by its value at the upstream element, i.e.
P(x ∈ ∂−	e) = Pe−

, whereas on the outflow element
boundary, it is given by the property at element 	e, i.e.
P(x ∈ ∂+	e) = Pe.

Fig. 3 2D domain



Fig. 4 Conformation evolution for different spring stiffness in a simple shear flow

Discussion

– In the flow model just proposed there is no size effects,
which implies that the characteristic length of cells must
be small in relation to the one characterizing the spatial
variation of the macroscopic velocity field.

– The mesh considered for integrating the velocity field
must be small enough to capture all the macroscopic
velocity field details.

– The mesh considered for calculating the conformation
field must be small enough for assuming cells in each
element of the mesh described by the conformation
field inside the element, and it must be large enough
for assuming that it represents a population of cells.
However, as soon as the model is described in a
continuous way, there is no contradiction with the fact
of considering elements smaller that the characteristic
size of the cell (in the case of polymer flows one can
consider elements smaller that the size of a molecule).

Numerical results

Uncoupledmicrostructure-flow calculations

In this section, we address some simple flows in order to
evaluate the response of the cells. The model is uncoupled
in the sense that the flow induces cell deformation, but the
cell conformation does not affect the flow kinematics. Thus,
even though some of the flows addressed here could exhibit

rich kinematics in practice, in what follows the uncoupled
solution does not allow to capture such a rich kinematics, as
for example shear banding. Moreover, the only interest of
this section being the evolution of the cell deformation and
its macroscopic description, rheology is not considered in
the analyses carried out.

In the numerical examples considered in this section a
unit square is considered as depicted in Fig. 3. The initial
(relaxed) conformation is given by a zero conformation
tensor c(x, t = 0) = 0.

Four different flows are considered: (i) a simple shear;
(ii) a contraction flow; (iii) the driven cavity flow problem
and finally (iv) the flow around a square obstacle. In all
cases, the microstructure was computed on the basis of the
associated Stokes kinematics, i.e. considering the uncoupled
flow associated with μ = 0.

In order to quantify the way the flow behaviour (shear,
rigid motion or elongation) affects the microstructure
evolution we consider a flow criterion. For that purpose,
first, we introduce the relative rate of rotationW from

W = ω − w, (48)

where ω is related to the flow vorticity � according to

� = ε · ω, (49)

where ε is the third-order permutation tensor (also known
as the Levi-Civita tensor). The vector ω can also be written
in terms of the curl of the velocity,

ω = −1

2
∇ × v. (50)

Fig. 5 Velocity field (left) and
flow criterion (right) in a simple
shear flow



Fig. 6 Microstructure conformation in a simple shear flow

The vectorw in Eq. 48 represents the angular velocity of the
eigenvectors of the rate of strain tensor D. A simple local
descriptor of the type of flow can then be constructed from
the second invariant ofD, γ̇ = √

2D : D, and from the norm
of W, ‖W‖, according to
χ = 4‖W‖

γ̇ + 2‖W‖ . (51)

We have 0 ≤ χ ≤ 2, and more specifically

χ =
⎧⎨
⎩
0 in planar extension,
1 in pure shear,
2 in rigid motion.

(52)

Figure 4 shows the evolution of the microstructure
conformation for different K in a pure shear with ξ =
0.1 and L0 = 0.005 (metric system of units). The
qualitative analysis performed here does not require a
precise determination of these coefficients. As it can
be noticed, the more stiffness the spring has, the less
deformation the conformation presents. In order to prove
that the conformation is not only accommodating a
deformation but also that it is rotating, we included a small
cercle on the ellipsoid surface to appreciate the way in
which that point is evolving in time.

Simple shear flow

We consider V = 2 m · s−1 on the N-boundary, zero
velocity on the S-boundary and a linear velocity evolution
on the E-boundary and W-boundaries. The microstructure
effects were introduced by using K = 1.

Figure 5 depicts the velocity field, that evolves almost
linearly through the domain thickness, as well as the flow
criterion, that as expected corresponds to a perfect shear
behaviour. The pressure field is constant in the whole flow
domain.

Figure 6 shows the steady state conformation. Because of
the shear, the conformation is expected to rotate clockwise.
The microstructure shows a significant variation along the
domain as a consequence of the different velocity and
constant shear rate.

Extrusion-like flow

In the present case, we consider again K = 1. A
Poiseuille velocity profile (parabolic) is enforced on
the W-boundary (−2y(y − 1), 0)T , whereas at the E-
boundary the fluid leaves the square domain through-
out an exit where tension-free boundary conditions are
enforced.

Figure 7 depicts both components of the velocity field
whereas Fig. 8 shows the steady state conformation and the
flow criterion. As it can be seen, the largest conformation
axis remains aligned with the streamlines. A pure extension
is noticed along the symmetry axis in agreement with the
flow criterion.

Driven cavity flow

The only difference with respect to the previously analyzed
flow is that now a unit horizontal velocity is applied on the
top wall (N-boundary) that induces the fluid flow within the
cavity.

Figure 9 depicts both components of the velocity field.
Figure 10 shows the conformation at a given time as

Fig. 7 Extrusion-like flow
problem. Velocity field: (left)
x-component and (right)
y-component



Fig. 8 Conformation
distribution (left) and flow
criterion (right) in the
extrusion-like flow

Fig. 9 Driven cavity flow
problem. Velocity field: (left)
x-components and (right)
y-component

Fig. 10 Conformation (left) and
flow criterion (right) in the
driven cavity flow problem

Fig. 11 Flow around an
obstacle. Velocity field: (left)
x-component and (right)
y-components



Fig. 12 Conformation (left) and
flow criterion (right) in the flow
around an obstacle

well te steady state flow crieria. The conformation evolves
periodically and no steady state is reached.

Flow around an obstacle

In the present case, a unit horizontal velocity is enforced
on the W-boundary, with non-slip conditions on the top and
bottom walls and a free boundary condition is specified
on the E-boundary. The domain contains in its center an
obstacle where non-slip boundary conditions are enforced.

Figure 11 depicts both components of the velocity field.
The velocity field presents two stagnation points located
at the intersection between y = 0.5 and the obstacle.
These stagnation points correspond with the maximum and
minimum pressures.

Figure 12 depicts the conformation and flow criteria.
As it can be noticed, elongation is specially present
upstream and downstream, the shear being located in
the neighbourhood of the upper and lower sides of the
obstacle, with the expected effects on the microstructure
conformation.

Coupled simulations

This section adresses a coupled simulation in which flow
kinematics induces microstructure evolution and the latter
affects at its turn the flow kinematics.

Figure 13 shows two snapshots taken from films of
flowing foams where the flow and microstructures were

assumed almost at steady-state. The microstructure of these
snapshots will be used first to identify the model parameters
and then to test the agreement between the computed and
observed microstructures. Of course, from the information
of kinematics only, we cannot conclude on rheological
aspects but at least this serves to evaluate the proposed
model in terms of conformation evolution.

In order to extract from these images the conformation
tensor, both images were segmented (every pixel is
transformed into either black or white) and then cell
boundaries were easily identified. From that, the centre of
gravity of each cell can easily be obtained as well as the
conformation tensor. If Xe

i , i = 1, . . . , Qe are the points
defining the wall of cell Ce, the centre of gravity and the
inertia tensor Je are obtained from

Xe
G = 1

Qe

Qe∑
i=1

Xe
i (53)

and

Je = 1

Qe

Qe∑
i=1

(Xe
i − Xe

G) ⊗ (Xe
i − Xe

G) (54)

respectively.
The numerical inertia tensor can be calculated as soon as

p1 and L1 are known (p2 and L2 derive from p1 and L1).

J = L2
1(p1 ⊗ p1) + L2

2(p2 ⊗ p2). (55)

In Fig. 14, the experimental ellipses related to Je are
superimposed to the cells, and also to the solution predicted

Fig. 13 Experimental snapshots
(courtesy of F. Graner)



Fig. 14 Experimental
microstructure with the
associated conformation
superimposed (left) and the
associated numerical predictions
(right)

by using the proposed model. The model parameters K, ξ ,
η and μ are, as previously indicated, chosen in order to
obtain cell shapes close to those observed experimentally:
(metric system of units) K = 1, ξ = 0.1, η = 1 and
μ = 0.1. L0 = 0.005 was identified from the average cell
surface observed experimentally. In absence of rheological
data, we noticed that many choices of those parameters
lead to similar microstructures and that the impact of those
on the kinematics was almost negligible. Thus, a proper
rheological characterization seems compulsory to obtain an
adequate flow-microstructure coupling.

Conclusions

This work proposes a simple model for flowing foams,
where the microstructure is introduced from a conformation
tensor that describes the structural elasticity. The numerical
predictions have been compared with some experimental
results proving the ability of the model to describe
the effective kinematics as well as the flow induced
microstructure evolution.

More applicative analyses, in particular in the study
of industrial processes, require an appropriate rheological
characterization and very probably the proposal of

appropriate rheometric devices. All these aspects will be
addressed in future works.
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