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A tight-binding model is introduced for describing the dynamics of an exciton on an extended star
graph whose central node is occupied by a trap. On this graph, the exciton dynamics is governed by
two kinds of eigenstates : many eigenstates are associated to degenerate real eigenvalues insensitive
to the trap whereas three decaying eigenstates characterized by complex energies contribute to the
trapping process. It is shown that the excitonic population absorbed by the trap depends on the
size of the graph, only. By contrast, both the size parameters and the absorption rate control
the dynamics of the trapping. When theses parameters are judiciously chosen, the efficiency of
the transfer is optimized resulting in the minimization of the absorption time. The analysis of
the eigenstates reveals that such a feature arises around the superradiance transition. Moreover,
depending on the size of the network, two situations are highlighted where the transport efficiency
is either super-optimized or sub-optimized.

PACS numbers:

I. INTRODUCTION

In large molecules and molecular crystals, understand-
ing how excitons carry energy from one region to an-
other is a key step for explaining many phenomena [1].
Examples among many concern Frenkel exciton in pho-
tosynthetic antenna [2] and J-aggregates [3], amide-I ex-
citons in α-helices [4] and vibrons in nanostructures [5].
During the last five decades, special attention has been
paid for describing impurity induced exciton quenching
in molecular lattices [6–10]. Indeed, a lattice involves
regularly distributed donor ions which exchange excita-
tions through various processes allowing the coherent or
incoherent delocalization of excitons. In that case, an
acceptor ion embedded in the lattice behaves as an ir-
reversible trap because an exciton can be transferred to
the acceptor whereas the reverse process has a negligi-
ble probability. Describing the exciton dynamics in the
presence of traps is thus of fundamental importance for
understanding many processes such as the time evolu-
tion of the fluorescence [11] and the exciton transport
efficiency [12].

Although most studies were restricted to lattices with
translational invariance [13–15], recent investigations
were devoted to the characterization of the trapping phe-
nomena in complex networks. Two kinds of systems were
considered simultaneously.

On the one hand, the exciton trapping was investi-
gated in realistic molecular networks with complex struc-
tures such as dendrimers [16] and Fenna-Matthews-Olson
(FMO) protein [17]. Indeed, it has been shown that a
dendrimer may behave as an artificial light-harvesting
complex [18–23]. To proceed, the functionalization of the
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terminal groups by chromophores favors light harvesting.
The capture of light generates excitons that converge to-
ward the core that contains either a fluorescent trap, a
reaction center, or a chemical sensor [24, 25]. Similarly,
the FMO protein, which appears in green sulfur bacte-
ria, is a pigment-protein complex that consists of seven
bacteriochlorophyll-a molecules. In this protein, the ab-
sorption of light yields excitons able to propagate through
the complex until they reach the reaction center where
they are finally trapped [26–30].

On the other hand, trapping processes were studied
from a more formal point of view by considering the
complex networks one encounters in graph theory. Such
studies result from the fact that the delocalization of an
exciton between the nodes of a graph defines a continu-
ous time quantum walk (CTQW) [31]. As the quantum
analog of classical random walk, CTQW on complex net-
works appears to be a promising route to develop high-
performance quantum algorithms [32, 33]. The trap-
ping problem has been studied in a large variety of net-
works with a special emphasis on the comparison between
CTQW and classical random walk. Examples among
many are hyperbranched fractals [34], Sierpinsky frac-
tals [35], cycle graphs with long-range interactions [36],
chains and rings [37–39], and random networks [40].

From a theoretical point of view, the exciton trap-
ping is usually addressed using an effective non-hermitian
Hamiltonian approach [41, 42]. Within this approach,
the trapping results from the coupling with an exter-
nal continuum whose influence is encoded in an exciton
Hamiltonian with complex eigenvalues. The real parts
of these eigenvalues define the excitonic energies whereas
the imaginary parts specify the energy widths (i.e. de-
cay rates) resulting in an exciton finite lifetime. In that
case, a detailed study of the complex excitonic eigenval-
ues has revealed the occurrence of a general phenomenon
called superradiance transition (ST) [43]. The ST has
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been discovered in the context of quantum optic [44]. It
is a cooperative phenomenon that occurs when N excited
emitters interact with a common electromagnetic field. If
the wavelength of the light is greater than the separation
of the emitters, a collective spontaneous emission arises.
The emitters behave cooperatively resulting in a decay
rate proportional to N2 that is strongly enhanced when
compared to the rate proportional to N observed when
the emitters radiate independently of each other. How-
ever, after the works of Sokolov and Zelevinsky [45, 46],
the ST has been recognized to be a general phenomenon
that affects a quantum system opens to a continuum. Not
restricted to many excitation effects, it can occur also in
the presence of a single excitation, as encounter in the
exciton trapping problem. Indeed, when the exciton is
weakly coupled to a trap, all the exciton quantum states
are similarly affected. They thus exhibit a quite similar
energy width. However, as the exciton-trap coupling in-
creases, a reconstitution of the eigenstates takes place.
Only few short-lived states, called superradiant states,
exhibit cooperatively enhanced decay rates. These states
are accompanied by subradiant eigenstates, that is long-
lived states almost decoupled from the trap. As shown
very recently, the ST has a very pronounced impact on
the transport efficiency in complex networks, including
formal graphs and realistic systems [47–49].

Drawing on these concepts, we consider in this paper
the dynamics of an exciton moving on an extended star
graph [50] whose central node is occupied by a trap. Spe-
cial attention is paid for describing the ST and its con-
sequence on the transport efficiency when the exciton
propagates from the periphery to the core of the graph.
Note that the choice of the extended star graph is not the
result of chance. Indeed, this graph is one of the most
regular structures in graph theory. Organized around a
central core, it exhibits the local tree structure of irregu-
lar and complex networks. However, its topology remains
sufficiently simple so that analytical calculations can be
carried out resulting in a perfect understanding of the
influence of the graph size on the transport properties.
The present work can thus be viewed as a first step and
more realistic situations will be addressed in forthcoming
papers.

The paper is organized as follows. In Sec. II, the ex-
tended star graph is introduced and the exciton Hamil-
tonian is defined. Then, the exciton eigenstates and the
relevant observables required for characterizing the dy-
namics are described. In Sec. III, a numerical analysis is
performed for describing the trapping process. Finally,
the results are discussed in Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

The system we consider is the extended star graph il-
lustrated in Fig. 1a. It corresponds to a two-generation
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FIG. 1: (a) Representation of the extended star graph
with N = 1 +N1(N2 + 1) nodes (`, s). Graphical

representation of the block Hamiltonian (b) H(k) with
k 6= N1, (c) H(N1) and (d) H (see the text).

dendrimer-like structure formed by N1 branches that em-
anate out from a central core. Each branch connects the
central core to the central node of N1 peripheral star
graphs. Each peripheral star graph involves N2 branches
so that the total number of sites is N = 1 +N1(N2 + 1).
For describing the graph, let us introduce the labels (`, s):
(` = 0, s = 0) refers to the central core, (`, s = 0), with
` = 1, ..., N1, defines the central node of the `th periph-
eral star and (`, s), with ` = 1, ..., N1 and s = 1, ..., N2,
characterizes the sth peripheral site of the `th star.

The exciton dynamics is modeled as follows. Each site
(`, s) is occupied by a molecular subunit whose internal
dynamics is described by a two-level system with Bohr
frequency ω0 (using the Bohr frequency as the energy ref-
erence, the convention ω0 = 0 will be used in the follow-
ing of the text). Let |`, s〉 denote the state in which the



3

(`, s)th two-level system occupies its first excited state,
the other two-level systems remaining in their ground
state. One assumes that a trap is located on the central
core. This trap is responsible for an irreversible decay
of the exciton according to the decay rate Γ. In that
context, the exciton dynamics is governed by the non-
hermitian effective Hamiltonian defined in terms of the
hopping constant Φ as (within the convention ~ = 1)

H = (−iΓ/2)|0, 0〉〈0, 0|+
N1∑
`=1

Φ (|0, 0〉〈`, 0|+ h.c.)

+

N1∑
`=1

N2∑
s=1

Φ(|`, 0〉〈`, s|+ h.c.), (1)

where h.c. stands for hermitian conjugate.

B. System eigenstates

For describing the exciton eigenstates, we take advan-
tage of the fact that H is invariant under the discrete
rotation of angle θ1 = 2π/N1 and centered on the central
core (` = 0, s = 0). Consequently, its diagonalization
is greatly simplified when one works with an interme-
diate Bloch basis that involves the local state |0, 0〉 and
N1(N2+1) orthogonal Bloch states |χk, s〉 (k = 1, ..., N1)
defined as

|χk, s〉 =
1√
N1

N1∑
`=1

eik`θ1 |`, s〉. (2)

Since k is a good quantum number, the Hamiltonian H
becomes block diagonal. It is expressed as a direct sum
H = H(1) ⊕ H(2) ⊕ ... ⊕ H(N1) where H(k) is the block
Hamiltonian associated to the quantum number k.

For k 6= N1, H(k) is a hermitian operator that acts in
a subspace whose dimension is N2 + 1, as

H(k) =

N2∑
s=1

Φ(|χk, 0〉〈χk, s|+ h.c.), (3)

H(k) corresponds to the Hamiltonian of an exciton mov-
ing on the star graph shown in Fig. 1b. This graph,
whose sites are labeled by the index s = 0, ..., N2 (for
each k values), involves N2 branches that connect the
central site s = 0 (i.e. the state |χk, 0〉) to N2 peripheral
sites s = 1, ..., N2 (i.e. N2 peripheral states |χk, s〉). As
a result, H(k) is invariant under the discrete rotation of
angle θ2 = 2π/N2 and centered on the site s = 0. Once
again, its diagonalization is simplified by performing a
Bloch transformation, that now runs over the index s.
In doing so, one obtains a new basis involving the state
|χk, 0〉 and N2 Bloch states |χk, µq〉 (q = 1, ..., N2) de-
fined as

|χk, µq〉 =
1√
N2

N2∑
s=1

eiqsθ2 |χk, s〉. (4)

Within this basis, H(k) exhibits two kinds of eigen-
states. First, its spectrum shows (N2 − 1)-fold degen-
erate eigenenergy ω(k,q) = 0, with q = 1, ..., N2 − 1, the
corresponding eigenstates being the N2 − 1 Bloch states
|χk, µq〉. Second, H(k) supports two eigenstates |χk,±〉
defined as

|χk,±〉 =
1√
2

(|χk, 0〉 ± |χk, µN2
〉), (5)

with eigenenergies ω
(k,N2)
± = ±

√
N2Φ.

For k = N1, the block Hamiltonian H(N1), whose size
reduces to N2 + 2, is defined as

H(N1) = −iΓ/2|0, 0〉〈0, 0|+
√
N1Φ (|0, 0〉〈χN1

, 0|+ h.c.)

+

N2∑
s=1

Φ(|χN1 , 0〉〈χN1 , s|+ h.c.). (6)

H(N1) is equivalent to the Hamiltonian of an exciton mov-
ing on the graph displayed in Fig. 1c. This graph exhibits
N2 + 2 sites organized as follows. The first site is asso-
ciated to the state |0, 0〉 that is localized on the central
core of the extended star. It is connected to the second
site associated to the state |χN1 , 0〉 through the hopping
constant

√
N1Φ. The second site is the center of a star

graph that exhibits N2 branches. As previously, H(N1) is
invariant under the discrete rotation of angle θ2 = 2π/N2

so that its diagonalization is simplified by introducing a
new basis involving the state |0, 0〉, the state |χN1

, 0〉 and
N2 Bloch states |χN1

, µq〉 (q = 1, ..., N2) (see Eq.(4)).

Within this basis, H(N1) exhibits (N2 − 1) degener-
ate eigenstates |χN1

, µq〉, with q = 1, ..., N2 − 1, whose

eigenenergy is equal to ω(N1,q) = 0. Therefore, the
three remaining eigenstates are those of the (3× 3) non-
hermitian matrix that corresponds to the restriction of
the block H(N1) to the subspace generated by the three
vectors |0, 0〉, |χN1

, 0〉 and |χN1
, µN2

〉. This restriction,
denoted H, defines the Hamiltonian of an exciton mov-
ing on the trimer shown in Fig. 1d and whose sites 1,
2 and 3 are associated to the states |0, 0〉, |χN1

, 0〉 and
|χN1

, µN2
〉, respectively. H is expressed as

H =

 −iΓ/2 √N1Φ 0√
N1Φ 0

√
N2Φ

0
√
N2Φ 0

 . (7)

When Γ = 0, H is a hermitian operator that can be
diagonalized exactly. It exhibits three eigenvectors, as

|Ψ±〉 =
|0, 0〉 ±

√
1 + r|χN1

, 0〉+
√
r|χN1

, µN2
〉√

2(1 + r)

|Ψ0〉 =

√
r|0, 0〉 − |χN1

, µN2
〉√

1 + r
, (8)

with r = N2/N1. The corresponding eigenvalues are

ω̂
(N1,N2)
± = ±

√
N1 +N2Φ and ω̂

(N1,N2)
0 = 0. When

Γ 6= 0, H is diagonalized numerically. Due to its
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non-hermiticity, it exhibits three eigenvalues that are
complex numbers [51] whose real parts define effec-
tive energies and whose imaginary parts define de-
cay rates (i.e. widths). These eigenvalues are de-

noted ω̂
(N1,N2)
± = ω

(N1,N2)
± − iγ(N1,N2)

± /2 and ω̂
(N1,N2)
0 =

ω
(N1,N2)
0 − iγ(N1,N2)

0 /2. These eigenvalues are associated
to right eigenvectors |Ψ±〉 and |Ψ0〉 and to left eigenvec-

tors |Ψ̃±〉 and |Ψ̃0〉. Note that these eigenvectors will be

chosen to be biorthonormal (〈Ψ̃i|Ψj〉 = δi,j) and to sat-

isfy the completeness relation
∑
i |Ψi〉〈Ψ̃i| = It, where It

is the trimer subspace identity operator.
To summarize, the eigenstates can be divided into two

main types. First, the exciton Hamiltonian supports
N1(N2 + 1) − 2 eigenstates associated to real eigenval-
ues. These states, denoted |χk, µq〉 with k = 1, ..., N1; q =
1, ..., N2 and |χk,±〉 with k = 1, ..., N1−1, are insensitive
to the presence of the trap. Then, the three remaining
eigenstates are those of the restriction of the Hamiltonian
to the trimer subspace. The trimer subspace is gener-
ated by three states : |1〉 = |0, 0〉 (located at the center
of the extended star graph), |2〉 = |χN1

, 0〉 (uniformly
distributed over the center of the peripheral star) and
|3〉 = |χN1

, µN2
〉 (uniformly distributed over the periph-

eral sites). Because the trap is located at the center of
the graph, the corresponding eigenstates define decaying
states characterized by complex energies.

C. Quantum dynamics

In the present study, we consider that the exciton is
initially located on a peripheral site (`0 = 1, s0 = 1)
of the extended star graph. Its quantum state at time
t = 0 is thus defined as |Ψ(0)〉 = |`0, s0〉. In that context,
the exciton quantum state at time t is obtained by solv-
ing the standard time dependent Schrodinger equation.
A formal solution is encoded in the evolution operator
U(t) = exp(−iHt) that satisfies |Ψ(t)〉 = U(t)|Ψ(0)〉.
From the knowledge of the exciton eigenstates, the evo-
lution operator can be determined easily, as

U(t) =

N1∑
k=1

N2−1∑
q=1

|χk, µq〉〈χk, µq|e−iω
(k,q)t

+

N1−1∑
k=1

∑
σ=±
|χk, σ〉〈χk, σ|e−iω

(k,N2)
σ t

+
∑
i=0,±

|Ψi〉〈Ψ̃i|e−iω̂
(N1,N2)
i t. (9)

The characterization of both the evolution operator
and the eigenstates, allows us to compute different ob-
servables. First, we shall focus our attention on the ex-
citon density P`,s|`0,s0(t) that represents the probability
to observe the exciton on a site (`, s) at time t, as

P`,s|`0,s0(t) = |〈`, s|U(t)|`0, s0〉|2. (10)

Then, two quantities are of particular interest for describ-
ing the exciton dynamics in the presence of a trap. The
survival probability Q(t) defines the probability that the
exciton can still be found on the graph after some time
t. The absorbed population PA(t) is the probability that
the exciton is absorbed by the trap at time t. Both quan-
tities are defined as

Q(t) =
∑
`,s

P`,s|`0,s0(t)

PA(t) = 1−Q(t). (11)

Finally, the efficiency of the exciton transport is mea-
sured by the total absorbed population PA(+∞) [49],
and by the absorption time τ , i.e. the time for which the
absorbed population reaches 99 % of its maximum value.

Note that, when Γ = 0, P`,s|`0,s0(t) does not converge
to a stationary value because a unitary dynamics arises
[52]. Instead, it fluctuates around a long time average
distribution called the limiting probability P̄`,s|`0,s0 . It is
defined as

P̄`,s|`0,s0 = lim
T→∞

1

T

∫ T

0

P`,s|`0,s0(t)dt. (12)

The exciton density, the absorbed population, the lim-
iting probability and the absorption time are the central
objects of the present study. They give information about
the way the exciton propagates along the network after
its initial implementation. Their knowledge allows us to
characterize the influence of the trap, as illustrated in the
next sections.

III. NUMERICAL RESULTS

A. Coherent Exciton transport : Γ = 0

Before considering the influence of the trap, let us first
summarize what happens when the exciton moves coher-
ently on the extended star. In that case, since we are
able to diagonalize the system Hamiltonian, an exact ex-
pression of the exciton density is obtained, as illustrated
in appendix A. Therefore, a measure of the transport ef-
ficiency is given by the probability to observe the exciton
on the central node at time t defined as

P0,0|`0,s0(t) =

(
2

N1 +N2

)2

sin4

(√
N1 +N2Φt

2

)
.

(13)
This probability is a periodic function whose period
is equal to T = 2π/

√
N1 +N2Φ. It varies around

P̄0,0|`0,s0 = 1.5/(N1 + N2)2 and it reaches a maximum

value Pmax0,0|`0,s0 = 4/(N1 + N2)2. The size parameters

N1 and N2 affect similarly the behavior of the probabil-
ity so that the larger the lattice size is, the smaller is
the probability that the exciton reaches the core of the
graph. For instance, with N1 = N2 = 3, one obtains
Pmax0,0|`0,s0 = 0.11.
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FIG. 2: (Color online) (a) N2 dependence of the
limiting probability for N1 = 3 and (b) N1 dependence

of the limiting probability for N2 = 3. Limiting
probabilities to observe the exciton on the excited site
(black full line), on the excited star (green dotted line),
on the other stars (blue dashed line) and on the central

core (red short dashed line).

To understand this feature, let us discuss the behavior
of the limiting probabilities shown in Fig. 2. As illus-
trated in Fig. 2a for N1 = 3, the limiting probabilities
to observe the exciton on the excited site (black full line)
and on the excited star (green dotted line) increase as N2

increases. The larger N2 is, the closer are the two curves.
By contrast, the limiting probability to observe the ex-
citon on the other stars decreases with N2 (blue dashed
line). In other words, increasing the size N2 of the pe-
ripheral stars favors a localization of the exciton on the
excited site. As shown in Fig. 2b, a different behavior
arises when the size N1 varies. Indeed, for N2 = 3, the
limiting probability to observe the exciton on the excited
site (black full line) is almost N1 independent. It slightly
decreases with N1 and it varies from 0.55 for N1 = 2
to 0.5 for N1 = 20. Conversely, the limiting probability
to observe the exciton on the excited star (green dotted
line) increases as N1 increases whereas the limiting prob-
ability to observe the exciton on the other stars decreases
with N1 (blue dashed line). In that case, it turns out that
increasing the size N1 yields a localization on the excited

star. Nevertheless, inside that excited star, the excitonic
distribution is mainly governed by the N2 parameter, as
observed in Fig. 2a.

According to Eq.(9), the probability amplitude to ob-
serve the exciton on the central core is the sum of the
probability amplitudes associated to the different paths
that the exciton can follow to tunnel from the periphery
to the core. A path defines a transition through a spe-
cific eigenstate so that two kinds of contributions arise.
The first contribution corresponds to paths involving the
eigenstates of the restriction of the Hamiltonian to the
trimer subspace. Because of the extended nature of these
states, this contribution favors the delocalization of the
exciton. By contrast, the second contribution involves
the sum of the probability amplitudes associated to de-
generate eigenstates. This sum gives rise to quantum
interferences that favor the localization of the exciton
over few sites that surround the excited site. As the size
of the network increases, the second contribution dom-
inates preventing the exciton to reach the core of the
graph. Such an effect, well-known in complex networks,
corresponds to the process of localization induced by de-
generacy [53, 54].

B. Influence of the trap : Γ 6= 0

When the presence of the trap is taken into account,
the part of the exciton population that reaches the cen-
tral core is now absorbed. The time evolution of the
absorbed population is shown in Fig. 3 for different
values of the size parameters N1 and N2. For Γ = 3Φ
(Fig. 3a), PA(t) first scales as t5 in the very short-time
limit, whatever the value of the size parameters. Then,
it increases as time increases and, in the long-time limit,
it converges to a constant value PA(∞). An important
fact is that PA(∞) clearly depends on the size param-
eters but it is invariant under the exchange of the lat-
ter. For (N1 = 3, N2 = 8) and (N1 = 8, N2 = 3), it
reaches PA(∞) = 0.041, whereas for (N1 = 3, N2 = 6)
and (N1 = 6, N2 = 3), it is equal to PA(∞) = 0.055.
This behavior has been verified in several simulations
in which we intentionally inverted the values of N1 and
N2. To reach this asymptotic limit, PA(t) follows an ex-
ponential function that rises to a maximum modulated
by a series of plateaus. The number of plateaus and
their duration depend on the size parameters. Conse-
quently, for the same absorbed population, the absorp-
tion time differs from τ = 9.72Φ−1 for (N1 = 3, N2 = 6)
to τ = 5.06Φ−1 for (N1 = 6, N2 = 3). Similarly, for
(N1 = 3, N2 = 8) the absorption time is τ = 11.95Φ−1

whereas for (N1 = 8, N2 = 3) it reduces to τ = 5.16Φ−1.
When Γ = 20Φ (Fig. 3b), a similar behavior is ob-

served, but over different timescales. Indeed, PA(∞) is
clearly Γ independent so that we recover the asymptotic
values obtained in Fig. 3a. However the time needed
to reach PA(∞) is now more important. One obtains
τ = 15.97Φ−1 for (N1 = 3, N2 = 6) and τ = 7.86Φ−1 for
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dashed line, (N1 = 6, N2 = 3) black full line,
(N1 = 3, N2 = 6) black dashed line.
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FIG. 4: Γ dependence of the absorption time τ .
Configuration A : (N1 = 3, N2 = 8) dashed line.

Configuration B : (N1 = 8, N2 = 3) full line.

(N1 = 6, N2 = 3). Similarly, for (N1 = 3, N2 = 8) the ab-
sorption time is τ = 16.16Φ−1 whereas for (N1 = 8, N2 =
3) it reduces to τ = 5.88Φ−1. In fact, these observations
are quite general and we have verified that the parame-
ter Γ does not affect the total absorbed population. It
governs only the dynamics of the trapping process and it
controls the value of the absorption time τ .

To illustrate these features, the Γ dependence of the
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FIG. 5: (Color online) Γ dependence of (a) the width
and (b) the energy of the decaying states for

configurations A (dashed lines) and B (full lines):

γ
(N1,N2)
0 and ω

(N1,N2)
0 (green curve); γ

(N1,N2)
± and

ω
(N1,N2)
± (red curve).

absorption time τ is shown in Fig. 4. To proceed, two
configurations were considered. The configuration de-
noted A corresponds to (N1 = 3, N2 = 8) whereas the
configuration denoted B refers to (N1 = 8, N2 = 3). Al-
though in both cases the total absorbed population is the
same (PA(∞) = 0.041), a different dynamics occurs.

For the configuration A, a quite long absorption time
arises for small Γ values. For instance, τ = 20Φ−1

for Γ = 1.7Φ. However, τ decreases rapidly as Γ in-
creases. It reaches a minimum value τ = 8.80Φ−1 when
Γ ∈ [4.8Φ, 9.8Φ]. This interval defines the Γ range for
which the transport efficiency is optimized. Then, as Γ
increases, τ slightly increases and one recovers τ = 20Φ−1

for Γ = 25Φ. Note that the curve τ vs Γ is slightly
modulated by weakly pronounced plateaus. For the con-
figuration B, a similar behavior takes place. Indeed, τ
first decreases as Γ increases from zero. Then, it reaches
a minimum value and finally it increases with Γ. The
curve τ vs Γ is still modulated by plateaus which are
now more pronounced. Nevertheless, a difference clearly
occurs : the minimum value of the absorption time re-
duces to τ = 1.77Φ−1 indicating that the optimization
of the transport efficiency is enhanced by the exchange
of the size parameters. This optimization occurs when
Γ ∈ [6.2Φ, 8.5Φ].

To understand the physics behind the Γ-induced opti-
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mization of the transport efficiency, as well as the influ-
ence of the size parameters, let us study the Γ dependence
of the decaying eigenstates, i.e. the only states that con-
tribute to the absorption process. The exciton supports
three decaying eigenstates denoted |Ψ0〉 and |Ψ±〉 (see
Sec.II).

In Fig. 5a, the Γ dependence of the width of the
decaying states is shown. For configuration A, the

width γ
(N1,N2)
0 of the state |Ψ0〉 (green dashed line) is

a monotonous function that increases as Γ increases.
By contrast, the width γ

(N1,N2)
± of the states |Ψ±〉 (red

dashed line) behaves differently. For small Γ values, quite

close to γ
(N1,N2)
0 , γ

(N1,N2)
± increases as Γ increases. How-

ever, it reaches a maximum value γ
(N1,N2)
± = 0.53Φ when

Γ = 6.70Φ. Then, it decreases as Γ increases and becomes
extremely small for large Γ values. In fact, as explained
by Zhang et al. [49], the non monotonous behavior of

γ
(N1,N2)
± is the signature of the ST. The state |Ψ0〉 de-

fines the superradiant state whose lifetime decreases as
Γ increases. The two states |Ψ±〉 correspond to subradi-
ant states that become almost insensitive to the trap for

large Γ values. The ST occurs when Γ = Γ
(ST )
A = 6.70Φ

(γ
(N1,N2)
0 = 5.61Φ at ST). For configuration B, the same

features are observed. The width γ
(N1,N2)
0 (green full

line) of the superradiant state increases monotonously as

Γ increases. By contrast, the width γ
(N1,N2)
± (red full

line) of the subradiant states behaves non monotonously

and it reaches a maximum γ
(N1,N2)
± = 2.31Φ for Γ =

Γ
(ST )
B = 8.01Φ (γ

(N1,N2)
0 = 3.40Φ at ST). At this step,

let us mention that Γ
(ST )
A (resp. Γ

(ST )
B ) belongs to the Γ

range where the optimization of the transport efficiency
occurs for configuration A (resp. configuration B).

The Γ dependence of the energy of the decaying states
is illustrated in Fig. 5b for configurations A (dashed line)
and B (full line). Whatever the configuration, the energy
of the superradiant state is Γ independent. It is equal to
ω0 = 0, i.e the eigenenergy of the state |Ψ0〉 without
the trap. A different behavior arises for the subradiant

states. Equal to ω
(N1,N2)
± = ±

√
N1 +N2Φ for Γ = 0,

the energy of the subradiant states get closer to each
other as Γ increases. Such an effect arises around the
ST. For the configuration A, the relevant Bohr frequency

δω = ω
(N1,N2)
+ − ω

(N1,N2)
− is equal to δωA = 6.14Φ at

the ST (Γ = Γ
(ST )
A ). By contrast, for the configuration

B, it reduces δωB = 4.77Φ for Γ = Γ
(ST )
B . Then, for

larger Γ values, we have verified that the energy tends to

ω
(N1,N2)
± = ±

√
N2Φ.

The Γ dependence of the decaying states is illustrated
in Fig. 6 for the configurations A (Figs. 6a and 6b) and
B (Figs. 6c and 6d). The figures show the weight Πn of
each decaying state on |0, 0〉 (n = 1, full line), |χN1

, 0〉
(n = 2, dashed line) and |χN1

, µN2
〉 (n = 3, dotted line).

As shown in Fig. 6a, For configuration A, when Γ = 0,
the superradiant state is an asymmetric superposition of
the states |0, 0〉 and |χN1

, µN2
〉 in which the weight of
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FIG. 6: (Color online) Γ dependence for configuration A
of (a) the superradiant state and (b) the subradiant
states; Γ dependence for configuration B of (c) the

superradiant state and (d) the subradiant states. The
figures show the weight Πn of each decaying state on
|0, 0〉 (n = 1, full line), |χN1 , 0〉 (n = 2, dashed line) and

|χN1 , µN2〉 (n = 3, dotted line).

|0, 0〉 is larger than the weight of |χN1
, µN2

〉. As Γ in-
creases, the weight of the state |0, 0〉 increases whereas
the weight of the state |χN1

, µN2
〉 decreases. Therefore,

the weight of the state |χN1
, 0〉 switches on. It increases

with Γ until it reaches a maximum value near the ST
(Γ ≈ ΓSTA ). In that case, the weights of |χN1

, µN2
〉
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and |χN1
, 0〉 are almost identical. Finally, for large Γ

values, the weights of |χN1
, µN2

〉 and |χN1
, 0〉 decreases

with Γ. They tend to zero indicating that the superra-
diant state becomes |0, 0〉, i.e. it localized on the central
core. As illustrated in Fig. 6b, when Γ = 0, the subra-
diant states are superpositions delocalized over the three
states |0, 0〉, |χN1 , 0〉, and |χN1 , µN2〉. As Γ increases, the
weight of the state |0, 0〉 decreases whereas the weight of
the state |χN1 , µN2〉 increases. By contrast, the weight
of the state |χN1 , 0〉 is equal to 0.5 ∀Γ. As a conse-
quence, for large Γ values, the weight of |0, 0〉 tends to
zero so that the subradiant states become superpositions
(|χN1

, 0〉 ± |χN1
, µN2

〉)/
√

2.
For configuration B, similar features are observed. In

particular, for large Γ values, one recovers that the su-
perradiant state localizes on the central core (Fig. 6c)
whereas the subradiant states become superpositions
(|χN1

, 0〉 ± |χN1
, µN2

〉)/
√

2 (Fig. 6d). In fact, the main
difference with configuration A is the structure of the
states for small Γ values. As shown in Fig. 6c, when
Γ = 0, the superradiant state is still an asymmetric
superposition of the states |0, 0〉 and |χN1

, µN2
〉. But

now the weight of |0, 0〉 is smaller than the weight of
|χN1

, µN2
〉. As Γ increases, the weight of the state |0, 0〉

increases whereas the weight of the state |χN1
, µN2

〉 de-
creases. Then the weight of the state |χN1

, 0〉 turns on
and it increases with Γ until it reaches a maximum value
near the ST (Γ ≈ ΓSTB ). In that case, the superradi-
ant state is fully delocalized over the three states |0, 0〉,
|χN1

, 0〉 and |χN1
, µN2

〉, the corresponding weights being
almost identical. As illustrated in Fig. 6d, when Γ = 0,
the subradiant states are superpositions delocalized over
the three states |0, 0〉, |χN1 , 0〉, and |χN1 , µN2〉, the weight
of the state |χN1 , 0〉 being equal to 0.5 ∀Γ. As Γ in-
creases, the weight of the state |0, 0〉 decreases whereas
the weight of the state |χN1 , µN2〉 increases. Since the
weight of the state |0, 0〉 is larger than the weight of the
state |χN1 , µN2〉 for Γ = 0, it turns out that near ST the
weight of these two states is almost identical.

A complementary description of the restructuring of
the decaying states is obtained through the characteri-
zation of their localized nature. To proceed, let us in-
troduce the inverse participation ratio of a state |Ψi〉 as
[55]

IPR(|Ψi〉) =
1∑3

n=1 |〈n|Ψi〉|4
. (14)

Within this definition, a state localized on a site of the
trimer is characterized by an IPR equal to 1. By contrast,
the IPR of a state fully delocalized over the trimer is close
to 3.

In that context, the Γ dependence of the IPR of the
decaying states is shown in Fig. 7 for the configurations
A (dashed line) and B (full line). Red curves refer to
the subradiant states whereas green curves refer to the
superradiant state. For Γ = 0, the extension of the decay-
ing states over the trimer is basically the same whatever
the configuration. One obtains IPR(|Ψ0〉) = 1.65 and

IPR(|Ψ± )

IPR(|Ψ0 )

Γ(ST)

B

Γ(ST)

A

IP
R

1

1.5

2

2.5

3

Γ (Φ unit)
0 5 10 15 20 25 30

FIG. 7: (Color online) Γ dependence of the IPR for
configuration A (dashed line) and for configuration B

(full line). Red curves refer to the subradiant states and
green curves refer to the superradiant state.

IPR(|Ψ±〉) = 2.5. Similarly, for large Γ values, the de-
caying states converge towards asymptotic states whose
nature does not depend on the configuration. One ob-
tains IPR(|Ψ0〉) = 1 and IPR(|Ψ±〉) = 2. However,
to migrate between these two asymptotic situations, the
states follow paths whose nature strongly depends on the
configuration. For configuration A, a monotonous transi-
tion occurs indicating that the three decaying states loose
their extended nature as Γ increases. However, for con-
figuration B, a more important state restructuring pro-
cess takes place. In that case, two peaks appear indicat-
ing that both the superradiant and the subradiant states
tend to delocalize over all the sites of the trimer. The
peak associated to the superradiant state (IPR(|Ψ0〉) =
2.92) occurs for Γ = 7.56Φ whereas the peak connected
to the subradiant states (IPR(|Ψ±〉) = 2.67) occurs for
Γ = 9.00Φ. These peaks clearly arise around the ST tran-

sition (Γ
(ST )
B = 8.01Φ). At this step, let us mention that

theses features have been observed in several simulations
carried out for different configurations. For a given set
of parameters (N1, N2), peaks in the IPR appears when
N1 > N2 whereas a monotonous behavior occurs when
N2 > N1.

Finally, the time evolution of specific excitonic popula-
tions is shown at the ST in Fig. 7 for the configurations

A (Fig. 7a, Γ = Γ
(ST )
A ) and B (Fig. 7b, Γ = Γ

(ST )
B ). For

configuration A, as time elapses, the absorbed population
PA(t) increases from its initial value equal to zero and it
converges to 0.041 in the long time limit, i.e. the value of
the initial population of the state |χN1

, µN2
〉 (blue curve).

At the transition, the evolution of PA(t) is modulated by
the occurrence of plateaus indicating that the absorbed
population exhibits a series of steps during which it re-
mains constant. Such a behavior results from the way
the excitonic wave function propagates in the trimer sub-
space. It can be understood as follows. Initially localized
on the third node of the trimer shown on Fig. 1.(d) (i.e.
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FIG. 8: (Color online) Time evolution of the population
at the superradiance transition (a) for configuration A

(i.e. for Γ = Γ
(ST )
A ), and (b) for configuration B (i.e. for

Γ = Γ
(ST )
B ). The figure shows the absorbed population

PA(t) (blue curves), the population P3(t) of the state
|χN1

, µN2
〉 (red curves), the population P2(t) of the

state |χN1
, 0〉 (green curves) and the population P1(t) of

the state |0, 0〉 (black curves) (see the text).

in the state |χN1
, µN2

〉), the excitonic wave function os-
cillates between this site and the second site (that is the
state |χN1

, µN2
〉). Therefore, the population of the initial

node (red curves) and the population of the central node
(green curves) oscillate. Nevertheless, each time the exci-
tonic wave function reaches the central site of the trimer,
a small part is transmitted to the first site (i.e. to the
state |0, 0〉). Then, the population of this site turns on
and it exhibits damped oscillations (black curve). Each
time a part of the excitonic wave function is transmitted
to the first site of the trimer, the trap becomes active
and the corresponding excitonic population is absorbed.
Note that the corresponding absorption time is equal to
τ = 8.80Φ−1.

For configuration B, a fully different behavior arises,
as illustrated in Fig. 7b. In that case, a fast absorption
takes place. The absorbed population evolves rapidly
from zero to PA(∞) = 0.041 without exhibiting any
plateau (blue curve). Such an efficient transfer results
from the dynamics of the excitonic wave function in the
trimer subspace. The initial part of the wave function
that is localized on the third site of the trimer is directly
transferred to the second site. Then, it propagates to the

first site where is it absorbed without being able to go
back to the other sites. It is as if the exciton wave func-
tion behaved as a coherent wave packet insensitive to the
dispersion of the trimer. It propagates very quickly to
the trap preventing the occurrence of oscillations. An
efficient transport arises that give rise to an optimized
absorption time equal to τ = 1.77Φ.

IV. DISCUSSION

Our numerical results reveal that the exciton dynam-
ics is governed by two kinds of eigenstates. First, the
exciton Hamiltonian supports N1(N2 +1)−2 eigenstates
associated to real eigenvalues. These states, whose de-
generacy is very pronounced, are insensitive to the pres-
ence of the trap. Then, the exciton supports three de-
caying eigenstates which are those of the restriction of
the Hamiltonian to the trimer subspace generated by the
three states : |0, 0〉, |χN1

, 0〉 and |χN1
, µN2

〉. Character-
ized by complex energies, i.e. finite lifetimes, the three
decaying states are the only states that contribute to the
trapping process.

In that context, it has been shown that the excitonic
population absorbed by the trap depends on the size pa-
rameters, only. The larger the size is, the smaller is the
absorbed population. This absorbed population is in-
variant under the exchange of the parameters N1 and
N2 and it is independent of the absorption rate Γ. By
contrast, all the parameters N1, N2 and Γ control the
dynamics of the trapping, i.e. the time required to ab-
sorb the excitonic population. When theses parameters
are judiciously chosen, the efficiency of the transfer is op-
timized resulting in the minimization of the absorption
time. The analysis of the system eigenstates reveals that
such a feature arises around the ST.

Indeed, the decaying states are divided into two kinds
of states : one superradiant state and two subradiant
states. The width of the superradiant state increases
monotonously as Γ increases whereas the width of the
subradiant states behaves non monotonously. The lat-
ter reaches a maximum value for a critical value of Γ
which is the signature of the ST. We have shown that
the transition is accompanied by a restructuring process
of the decaying states that strongly depends on the size
parameters N1 and N2. Consequently, for a same total
absorbed population, two situations have been brought
to light where the transport efficiency is either super-
optimized if N1 > N2, or sub-optimized if N2 > N1.

To interpret these features, let us mention that the
quantum dynamics that emerges when the exciton is ini-
tially located on a peripheral site of the graph exhibits
two contributions (see Eq.(9)). First, a part of the initial
wave function is projected on the decaying states. These
states exhibiting finite lifetimes, this contribution tends
to zero in the long time limit. The second contribution
results from the projection of the initial wave function on
the remaining degenerate eigenstates. These states be-
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ing stable as time elapses, they favor a coherent exciton
dynamics during which the corresponding part of the ex-
citon population is conserved. However, as mentioned in
Sec. III.A, the degeneracy is responsible for a localization
mechanism so that the conserved excitonic population is
mainly located on the excited star. In that context, in
the long time limit, the unconserved part of the excitonic
population disappears so that the survival probability is
given by the probability to observe the exciton in the
stable eigenstates |χk, µq〉 and |χk,±〉. After straightfor-
ward calculations, one obtains Q(∞) = 1 − 1/N1N2, so
that the absorbed population is

PA(∞) =
1

N1N2
. (15)

In a perfect agreement with what was observed in Fig.
3, PA(∞) depends on the same way on the two size pa-
rameters. Moreover, this quantity is always larger than
or equal to the maximum value Pmax0,0|`0,s0 = 4/(N1 +N2)2

of the population that reaches the central node without
the trap (see Sec. III.A). In other words, the presence
of the trap improves the transfer from the periphery to
the core of the graph. Note that the two populations are
equal when N1 = N2.

Let us now discuss the influence of the parameters on
the optimization of the transport efficiency, specifically
on the minimization of the absorption time. This phe-
nomenon originates in the evolution of the structure of
the decaying states between two asymptotic vectors, as Γ
increases from zero to infinity. Indeed, when Γ = 0, the
superradiant state is a superposition involving the two
states |0, 0〉 and |χN1

, µN2
〉 whereas the subradiant states

are decomposed over the three states |0, 0〉, |χN1
, 0〉 and

|χN1
, µN2

〉 (see Eq.(8)). In a marked contrast, for large
Γ values, the superradiant state localizes on the core of
the graph and tends to |0, 0〉. It is characterized by a
width equal to Γ. In turn, the subradiant states tend to
the superpositions (|χN1

, 0〉 ± |χN1
, µN2

〉)/
√

2 and they
become insensitive to the trap.

In that context, the way the parameter Γ controls the
optimization of the transport efficiency can be under-
stood as follows. When Γ increases from zero, the width
of the three decaying states increases. For small Γ val-
ues, the three widths are of the same order of magnitude
so that the three decaying states participate in the ab-
sorption process over a similar timescale. The optimiza-
tion is thus obtained when the absorption time τ is min-
imized, that is when the average width of the decaying
states is maximized. This phenomenon occurs at the ST
(Γ ≈ Γ(ST )). Beyond the transition, the width of the su-
perradiant state still increases with Γ whereas the width
of the subradiant states decreases. Consequently, the av-
erage width of the decaying states decreases and one de-
viates from the region of the parameter space where the
optimization takes place. In addition, this deviation is
enhanced by the fact that the superradiant state local-
izes on the core of the graph and it no longer allows the
transfer from the periphery to the core.

But the absorption rate Γ is not the only parameter
that influence the optimization process. Indeed, we have
observed that the size parameters N1 and N2 play a cru-
cial role, especially in the restructuring of the states that
arises at the ST. This feature can be understood by con-
sidering the two asymptotic situations N1 � N2 and
N1 � N2.

When N1 � N2, the restriction of the Hamiltonian
to the trimer subspace corresponds basically to an iso-
lated state |0, 0〉 decoupled form the two remaining states
|χN1

, 0〉 and |χN1
, µN2

〉 (see Fig. 1d). Consequently, for
small Γ values, the superradiant and subradiant states
look like the asymptotic states to which they must tend
for large Γ values. These asymptotic states, because
of their structure, prevent the occurrence of an efficient
transfer between the periphery and the core of the graph.
Therefore, as Γ increases, the transport efficiency is op-
timized through the maximization of the widths at the
decaying states. But this transition is not accompanied
by a major restructuring of that states. We can speak of
a sub-optimization induced by the ST.

Conversely, when N1 � N2, the restriction of the
Hamiltonian to the trimer subspace corresponds now to
an isolated state |χN1 , µN2〉 decoupled form the two re-
maining states |0, 0〉 and |χN1 , 0〉 (see Fig. 1d). There-
fore, for small Γ values, the superradiant and subradiant
states are fundamentally different from the asymptotic
states to which they must tend for large Γ values. Con-
sequently, the maximization of the width of the decaying
states at the superradiance transition is accompanied by
a major state restructuring. Such a restructuring results
in the occurrence of states that are almost fully delo-
calized over the three trimer states |0, 0〉, |χN1

, 0〉 and
|χN1

, µN2
〉, thus promoting a very efficient transfer be-

tween the periphery and the core of the graph. In other
words, the maximization of the widths combined with
the important restructuring of the states favor a super-
optimization of the transport efficiency.

Of course, when N1 and N2 are quite similar, an inter-
mediate situation arises. The maximization of the width
of the decaying states at the superradiance transition
is now accompanied by a moderate state restructuring.
The optimization regime of the transport efficiency lies
somewhere between the super-optimization and the sub-
optimization. This feature is illustrated in Fig. 9 that
shows the size dependence of the optimized value of the
absorption time τ . The case (N1 = 10, N2 = 3) specifies
the super-optimized regime where the minimum value of
the absorption time reduces to 1.68Φ−1. This absorption
time increases as one moves towards the sub-optimized
regime where it reaches 9.84Φ−1 for (N1 = 3, N2 = 10).
At the border between the two regimes, i.e. for N1 =
N2, the minimized absorption time is typically of about
3.5Φ−1.
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FIG. 9: (Color online) Size dependence of the minimum
value of the absorption time τ .

V. CONCLUSION

In this paper, a tight-binding model was introduced
for describing the dynamics of an exciton moving on an
extended star graph whose central node is occupied by a
trap. On this graph, the exciton dynamics is governed by
two kinds of eigenstates. First, the exciton exhibits many
eigenstates associated to real eigenvalues and whose de-
generacy is very pronounced. Then, the exciton supports
three decaying eigenstates characterized by complex en-
ergies, i.e. finite lifetimes. Consequently, the quantum
dynamics that emerges when the exciton is initially lo-
cated on a peripheral site of the graph exhibits two dis-
tinct contributions. First, the part of the initial wave
function projected on the degenerate eigenstates favors a
coherent dynamics during which the corresponding part
of the exciton population is conserved. Owing to the
degeneracy, this conserved population remains confined
over the few sites that surround the excited site. The sec-
ond contribution results from the projection of the initial
wave function on the three decaying states. These states
exhibiting finite lifetimes, that are the only states that

contribute to the trapping process.
In that context, it has been shown that the excitonic

population absorbed by the trap depends on the size of
the graph, only. By contrast, both the size parameters
and the absorption rate control the value of the time
needed to absorb the excitonic population. When theses
parameters are judiciously chosen, the efficiency of the
transfer is optimized resulting in the minimization of the
absorption time. The analysis of the system eigenstates
reveals that such a feature arises around the so-called
superradiance transition for which the average width of
the decaying states is maximized. Nevertheless, we have
shown that the transition is accompanied by a restructur-
ing of the decaying states that strongly depends on the
size parameters. Depending on these parameters, two
situations have been highlighted where the transport ef-
ficiency is either super-optimized or sub-optimized, for
the same value of the total absorbed population.

In the present work, superradiance-induced optimiza-
tion of the transport efficiency was investigated in a quite
simple graph. Although interesting features have been
observed, additional studies are required to investigate
what happens in more intricate situations. For instance,
it could be wise to consider more complex graphs such as
dendrimers as well as the presence of disorder inherent
to realistic systems. Moreover, from a physical point of
view, the exciton does not propagate freely but it inter-
acts with its surrounding that favors energy relaxation
and/or dephasing. These effects must be included in our
formalism to establish a more general description of the
trapping phenomena at finite temperature.

APPENDIX A: PROBABILITIES

When Γ = 0, the Hamiltonian can be diagonalized ex-
actly. As a consequence, it is straightforward to calculate
the exciton density whose analytical expression is defined
as

P`0,s0|`0,s0(t) =

∣∣∣∣1 + (N1 +N2)(N2 − 1)

N2(N1 +N2)
+
N1 − 1

N2N1
cos(

√
N2Φt) +

cos(
√
N1 +N2Φt)

N1(N1 +N2)

∣∣∣∣2
P`0,0|`0,s0(t) =

∣∣∣∣ N1 − 1

N1

√
N2

sin(
√
N2Φt) +

sin(
√
N1 +N2Φt)

N1

√
N1 +N2

∣∣∣∣2
P`0,s6=s0|`0,s0(t) =

∣∣∣∣N1 − 1

N1N2
cos(

√
N2Φt) +

1−N1 −N2

N2(N1 +N2)
+

cos(
√
N1 +N2Φt)

N1(N1 +N2)

∣∣∣∣2
P0,0|`0,s0(t) =

∣∣∣∣cos(
√
N1 +N2Φt)− 1

N1 +N2

∣∣∣∣2
P 6̀=`0,0|`0,s0(t) =

∣∣∣∣ 1

N1

√
N2

sin(
√
N2Φt)− sin(

√
N1 +N2Φt)

N1

√
N1 +N2

∣∣∣∣2
P` 6=`0,s6=0|`0,s0(t) =

∣∣∣∣ 1

N2(N1 +N2)
+

cos(
√
N1 +N2Φt)

N1(N1 +N2)
− 1

N1N2
cos(

√
N2Φt)

∣∣∣∣2 (A1)
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The corresponding limiting probabilities are expressed as

P̄`0,s0|`0,s0 =
1

2(N1N2)2

(
2N2

1 +N2
2

(N1 +N2)2
+

4N2
1 (N2 − 1)

N1 +N2
+ 2N2

1 (N2 − 1)2 + (N1 − 1)2
)

P̄`0,0|`0,s0 =
1

2(N1N2)2

(
N2

2

N1 +N2
+N2(N1 − 1)2

)
P̄`0,s6=s0|`0,s0 =

1

2(N1N2)2

(
2N2

1 +N2
2

(N1 +N2)2
− 4N2

1

N1 +N2
+ 2N2

1 + (N1 − 1)2
)

P̄0,0|`0,s0 =
3

2(N1 +N2)2

P̄` 6=`0,0|`0,s0 =
1

2(N1N2)2

(
N2

2

N1 +N2
+N2

)
P̄` 6=`0,s6=0|`0,s0 =

1

2(N1N2)2

(
1 +

2N2
1 +N2

2

(N1 +N2)2

)
(A2)
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