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A tight-binding model is introduced for describing the dynamics of an exciton on an extended star graph whose
central node is occupied by a trap. On this graph, the exciton dynamics is governed by two kinds of eigenstates:
many eigenstates are associated with degenerate real eigenvalues insensitive to the trap, whereas three decaying
eigenstates characterized by complex energies contribute to the trapping process. It is shown that the excitonic
population absorbed by the trap depends on the size of the graph, only. By contrast, both the size parameters
and the absorption rate control the dynamics of the trapping. When these parameters are judiciously chosen,
the efficiency of the transfer is optimized resulting in the minimization of the absorption time. Analysis of the
eigenstates reveals that such a feature arises around the superradiance transition. Moreover, depending on the
size of the network, two situations are highlighted where the transport efficiency is either superoptimized or
suboptimized.

DOI: 10.1103/PhysRevE.97.022304

I. INTRODUCTION

In large molecules and molecular crystals, understanding
how excitons carry energy from one region to another is a key
step for explaining many phenomena [1]. Examples among
many concern Frenkel exciton in photosynthetic antenna [2]
and J-aggregates [3], amide-I excitons in α-helices [4], and
vibrons in nanostructures [5]. During the last five decades,
special attention has been paid to describing impurity-induced
exciton quenching in molecular lattices [6–10]. A lattice
involves regularly distributed donor ions which exchange
excitations through various processes allowing the coherent or
incoherent delocalization of excitons. In that case, an acceptor
ion embedded in the lattice behaves as an irreversible trap
because an exciton can be transferred to the acceptor whereas
the reverse process has a negligible probability. Describing
the exciton dynamics in the presence of traps is thus of
fundamental importance for understanding many processes
such as the time evolution of the fluorescence [11] and the
exciton transport efficiency [12].

Although most studies were restricted to lattices with
translational invariance [13–15], recent investigations have
been devoted to the characterization of the trapping phenomena
in complex networks. Two kinds of systems were considered
simultaneously.

On the one hand, exciton trapping was investigated in real-
istic molecular networks with complex structures such as den-
drimers [16] and Fenna-Matthews-Olson (FMO) protein [17].
Indeed, it has been shown that a dendrimer may behave as
an artificial light-harvesting complex [18–23]. To proceed,
the functionalization of the terminal groups by chromophores
favors light harvesting. The capture of light generates excitons
that converge toward the core, which contains either a fluo-
rescent trap, a reaction center, or a chemical sensor [24,25].
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Similarly, the FMO protein, which appears in green sulfur
bacteria, is a pigment-protein complex that consists of seven
bacteriochlorophyll-a molecules. In this protein, the absorption
of light yields excitons able to propagate through the complex
until they reach the reaction center where they are finally
trapped [26–30].

On the other hand, trapping processes were studied from
a more formal point of view by considering the complex
networks one encounters in graph theory. Such studies result
from the fact that the delocalization of an exciton between
the nodes of a graph defines a continuous time quantum
walk (CTQW) [31]. As the quantum analog of classical
random walk, CTQW on complex networks appears to be a
promising route to develop high-performance quantum algo-
rithms [32,33]. The trapping problem has been studied in a
large variety of networks with a special emphasis on the com-
parison between CTQW and the classical random walk. Exam-
ples among many are hyperbranched fractals [34], Sierpinsky
fractals [35], cycle graphs with long-range interactions [36],
chains and rings [37–39], and random networks [40].

From a theoretical point of view, the exciton trapping is usu-
ally addressed using an effective non-Hermitian Hamiltonian
approach [41,42]. Within this approach, the trapping results
from the coupling with an external continuum whose influence
is encoded in an exciton Hamiltonian with complex eigenval-
ues. The real parts of these eigenvalues define the excitonic en-
ergies, whereas the imaginary parts specify the energy widths
(i.e., decay rates) resulting in an exciton finite lifetime. In that
case, a detailed study of the complex excitonic eigenvalues has
revealed the occurrence of a general phenomenon called super-
radiance transition (ST) [43]. The ST has been discovered in the
context of quantum optics [44]. It is a cooperative phenomenon
that occurs when N excited emitters interact with a common
electromagnetic field. If the wavelength of the light is greater
than the separation of the emitters, a collective spontaneous
emission arises. The emitters behave cooperatively resulting
in a decay rate proportional to N2 that is strongly enhanced
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when compared to the rate proportional to N observed when
the emitters radiate independently of each other. However,
after the works of Sokolov and Zelevinsky [41,42], the ST
has been recognized to be a general phenomenon that affects
a quantum system opens to a continuum. Not restricted to
many excitation effects, it can occur also in the presence of
a single excitation, as encountered in the exciton-trapping
problem. When the exciton is weakly coupled to a trap, all the
exciton quantum states are similarly affected. They thus exhibit
a quite similar energy width. However, as the exciton-trap
coupling increases, a reconstitution of the eigenstates takes
place. Only a few short-lived states, called superradiant states,
exhibit cooperatively enhanced decay rates. These states are
accompanied by subradiant eigenstates, that is, long-lived
states almost decoupled from the trap. As shown very recently,
the ST has a very pronounced impact on the transport efficiency
in complex networks, including formal graphs and realistic
systems [45–47].

Drawing on these concepts, we consider in this paper the
dynamics of an exciton moving on an extended star graph [48]
whose central node is occupied by a trap. Special attention is
paid to describing the ST and its consequence on the transport
efficiency when the exciton propagates from the periphery to
the core of the graph. Note that the choice of the extended star
graph is not the result of chance. Indeed, this graph is one of
the most regular structures in graph theory. Organized around a
central core, it exhibits the local tree structure of irregular and
complex networks. However, its topology remains sufficiently
simple so that analytical calculations can be carried out,
resulting in a perfect understanding of the influence of the
graph size on the transport properties. The present work can
thus be viewed as a first step, and more realistic situations will
be addressed in forthcoming papers.

The paper is organized as follows. In Sec. II the extended
star graph is introduced and the exciton Hamiltonian is defined.
Then the exciton eigenstates and the relevant observables
required for characterizing the dynamics are described. In
Sec. III a numerical analysis is performed for describing the
trapping process. Finally, the results are discussed in Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

The system we consider is the extended star graph illustrated
in Fig. 1(a). It corresponds to a two-generation dendrimer-like
structure formed by N1 branches that emanate out from a
central core. Each branch connects the central core to the
central node of N1 peripheral star graphs. Each peripheral
star graph involves N2 branches so that the total number of
sites is N = 1 + N1(N2 + 1). For describing the graph, let us
introduce the labels (�,s): (� = 0,s = 0) refers to the central
core, (�,s = 0), with � = 1, . . . ,N1, defines the central node of
the �th peripheral star, and (�,s), with � = 1, . . . ,N1 and s =
1, . . . ,N2, characterizes the sth peripheral site of the �th star.

The exciton dynamics is modeled as follows. Each site (�,s)
is occupied by a molecular subunit whose internal dynamics
is described by a two-level system with Bohr frequency
ω0 (using the Bohr frequency as the energy reference, the
convention ω0 = 0 will be used in this text). Let |�,s〉 denote

FIG. 1. (a) Representation of the extended star graph with N =
1 + N1(N2 + 1) nodes (�,s). Graphical representation of the block
Hamiltonian (b) H (k) with k �= N1, (c) H (N1), and (d) H (see the text).

the state in which the (�,s)th two-level system occupies its
first excited state, the other two-level systems remaining in
their ground state. One assumes that a trap is located on the
central core. This trap is responsible for an irreversible decay
of the exciton according to the decay rate �. In that context, the
exciton dynamics is governed by the non-Hermitian effective
Hamiltonian defined in terms of the hopping constant � as
(within the convention h̄ = 1)

H = (−i�/2)|0,0〉〈0,0| +
N1∑
�=1

�(|0,0〉〈�,0| + H.c.)

+
N1∑
�=1

N2∑
s=1

�(|�,0〉〈�,s| + H.c.), (1)

where H.c. stands for Hermitian conjugate.
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B. System eigenstates

For describing the exciton eigenstates, we take advantage of
the fact that H is invariant under the discrete rotation of angle
θ1 = 2π/N1 and centered on the central core (� = 0,s = 0).
Consequently its diagonalization is greatly simplified when
one works with an intermediate Bloch basis that involves the
local state |0,0〉 and N1(N2 + 1) orthogonal Bloch states |χk,s〉
(k = 1, . . . ,N1) defined as

|χk,s〉 = 1√
N1

N1∑
�=1

eik�θ1 |�,s〉. (2)

Since k is a good quantum number, the Hamiltonian H

becomes block diagonal. It is expressed as a direct sum H =
H (1) ⊕ H (2) ⊕ · · · ⊕ H (N1) where H (k) is the block Hamilto-
nian associated to the quantum number k.

For k �= N1, H (k) is a Hermitian operator that acts in a
subspace whose dimension is N2 + 1, as

H (k) =
N2∑
s=1

�(|χk,0〉〈χk,s| + H.c.); (3)

H (k) corresponds to the Hamiltonian of an exciton moving on
the star graph shown in Fig. 1(b). This graph, whose sites are
labeled by the index s = 0, . . . ,N2 (for each k values), involves
N2 branches that connect the central site s = 0 (i.e., the state
|χk,0〉) to N2 peripheral sites s = 1, . . . ,N2 (i.e., N2 peripheral
states |χk,s〉). As a result, H (k) is invariant under the discrete
rotation of angle θ2 = 2π/N2 and centered on the site s = 0.
Once again, its diagonalization is simplified by performing a
Bloch transformation, which now runs over the index s. In
doing so, one obtains a new basis involving the state |χk,0〉
and N2 Bloch states |χk,μq〉 (q = 1, . . . ,N2) defined as

|χk,μq〉 = 1√
N2

N2∑
s=1

eiqsθ2 |χk,s〉. (4)

Within this basis, H (k) exhibits two kinds of eigenstates.
First, its spectrum shows (N2 − 1)-fold degenerate eigenen-
ergy ω(k,q) = 0, with q = 1,. . . . ,N2 − 1, the corresponding
eigenstates being the N2 − 1 Bloch states |χk,μq〉. Second,
H (k) supports two eigenstates |χk,±〉 defined as

|χk,±〉 = 1√
2

(|χk,0〉 ± |χk,μN2〉), (5)

with eigenenergies ω
(k,N2)
± = ±√

N2�.
For k = N1, the block Hamiltonian H (N1), whose size

reduces to N2 + 2, is defined as

H (N1) = −i�/2|0,0〉〈0,0| +
√

N1�(|0,0〉〈χN1 ,0| + H.c.)

+
N2∑
s=1

�(|χN1,0〉〈χN1 ,s| + H.c.). (6)

H (N1) is equivalent to the Hamiltonian of an exciton moving
on the graph displayed in Fig. 1(c). This graph exhibits N2 + 2
sites organized as follows. The first site is associated to the state
|0,0〉 that is localized on the central core of the extended star.
It is connected to the second site associated to the state |χN1 ,0〉
through the hopping constant

√
N1�. The second site is the

center of a star graph that exhibits N2 branches. As previously,
H (N1) is invariant under the discrete rotation of angle θ2 =
2π/N2 so that its diagonalization is simplified by introducing
a new basis involving the state |0,0〉, the state |χN1 ,0〉, and N2

Bloch states |χN1 ,μq〉 (q = 1, . . . ,N2) [see Eq.(4)].
Within this basis, H (N1) exhibits (N2 − 1) degenerate eigen-

states |χN1 ,μq〉, with q = 1, . . . ,N2 − 1, whose eigenenergy is
equal to ω(N1,q) = 0. Therefore, the three remaining eigenstates
are those of the (3 × 3) non-Hermitian matrix that corresponds
to the restriction of the block H (N1) to the subspace gener-
ated by the three vectors |0,0〉, |χN1 ,0〉 and |χN1 ,μN2〉. This
restriction, denoted H, defines the Hamiltonian of an exciton
moving on the trimer shown in Fig. 1(d) and whose sites 1, 2,
and 3 are associated to the states |0,0〉, |χN1 ,0〉, and |χN1 ,μN2〉,
respectively. H is expressed as

H =
⎛
⎝−i�/2

√
N1� 0√

N1� 0
√

N2�

0
√

N2� 0

⎞
⎠. (7)

When � = 0, H is a Hermitian operator that can be diagonal-
ized exactly. It exhibits three eigenvectors, as

|
±〉 = |0,0〉 ± √
1 + r|χN1 ,0〉 + √

r|χN1 ,μN2〉√
2(1 + r)

,

|
0〉 =
√

r|0,0〉 − |χN1 ,μN2〉√
1 + r

, (8)

with r = N2/N1. The corresponding eigenvalues are
ω̂

(N1,N2)
± = ±√

N1 + N2� and ω̂
(N1,N2)
0 = 0. When � �= 0, H

is diagonalized numerically. Due to its non-Hermiticity, it
exhibits three eigenvalues that are complex numbers [49]
whose real parts define effective energies and whose
imaginary parts define decay rates (i.e., widths). These
eigenvalues are denoted ω̂

(N1,N2)
± = ω

(N1,N2)
± − iγ

(N1,N2)
± /2,

and ω̂
(N1,N2)
0 = ω

(N1,N2)
0 − iγ

(N1,N2)
0 /2. These eigenvalues are

associated to right eigenvectors |
±〉 and |
0〉 and to left
eigenvectors |
̃±〉 and |
̃0〉. Note that these eigenvectors will
be chosen to be biorthonormal (〈
̃i |
j 〉 = δi,j ) and to satisfy
the completeness relation

∑
i |
i〉〈
̃i | = It , where It is the

trimer subspace identity operator.
To summarize, the eigenstates can be divided into two

main types. First, the exciton Hamiltonian supports N1(N2 +
1) − 2 eigenstates associated to real eigenvalues. These states,
denoted |χk,μq〉 with k = 1, . . . ,N1, q = 1, . . . ,N2, and
|χk,±〉 with k = 1, . . . ,N1 − 1, are insensitive to the presence
of the trap. Then the three remaining eigenstates are those
of the restriction of the Hamiltonian to the trimer subspace.
The trimer subspace is generated by three states: |1〉 = |0,0〉
(located at the center of the extended star graph), |2〉 = |χN1 ,0〉
(uniformly distributed over the center of the peripheral star)
and |3〉 = |χN1 ,μN2〉 (uniformly distributed over the peripheral
sites). Because the trap is located at the center of the graph, the
corresponding eigenstates define decaying states characterized
by complex energies.

C. Quantum dynamics

In the present study, we consider that the exciton is initially
located on a peripheral site (�0 = 1,s0 = 1) of the extended
star graph. Its quantum state at time t = 0 is thus defined as
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|
(0)〉 = |�0,s0〉. In that context, the exciton quantum state
at time t is obtained by solving the standard time-dependent
Schrödinger equation. A formal solution is encoded in the
evolution operator U (t) = exp(−iH t) that satisfies |
(t)〉 =
U (t)|
(0)〉. From the knowledge of the exciton eigenstates,
the evolution operator can be determined easily, as

U (t) =
N1∑
k=1

N2−1∑
q=1

|χk,μq〉〈χk,μq |e−iω(k,q)t

+
N1−1∑
k=1

∑
σ=±

|χk,σ 〉〈χk,σ |e−iω
(k,N2)
σ t

+
∑

i=0,±
|
i〉〈
̃i |e−iω̂

(N1 ,N2)
i t . (9)

The characterization of both the evolution operator and the
eigenstates, allows us to compute different observables. First,
we shall focus our attention on the exciton density P�,s|�0,s0 (t)
that represents the probability to observe the exciton on a site
(�,s) at time t , as

P�,s|�0,s0 (t) = |〈�,s|U (t)|�0,s0〉|2. (10)

Then two quantities are of particular interest for describing
the exciton dynamics in the presence of a trap. The survival
probability Q(t) defines the probability that the exciton can
still be found on the graph after some time t . The absorbed
population PA(t) is the probability that the exciton is absorbed
by the trap at time t . Both quantities are defined as

Q(t) =
∑
�,s

P�,s|�0,s0 (t),

PA(t) = 1 − Q(t). (11)

Finally, the efficiency of the exciton transport is measured
by the total absorbed population PA(+∞) [47], and by the
absorption time τ , i.e., the time for which the absorbed
population reaches 99% of its maximum value.

Note that, when � = 0, P�,s|�0,s0 (t) does not converge to
a stationary value because a unitary dynamics arises [50].
Instead, it fluctuates around a long-time average distribution
called the limiting probability P̄�,s|�0,s0 , defined as

P̄�,s|�0,s0 = lim
T →∞

1

T

∫ T

0
P�,s|�0,s0 (t) dt. (12)

The exciton density, the absorbed population, the limiting
probability, and the absorption time are the central objects
of the present study. They give information about the way
the exciton propagates along the network after its initial
implementation. Their knowledge allows us to characterize the
influence of the trap, as illustrated in the next sections.

III. NUMERICAL RESULTS

A. Coherent exciton transport: � = 0

Before considering the influence of the trap, let us first
summarize what happens when the exciton moves coherently
on the extended star. In that case, since we are able to
diagonalize the system Hamiltonian, an exact expression of
the exciton density is obtained, as illustrated in the Appendix.
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FIG. 2. (a) N2 dependence of the limiting probability for N1 =
3 and (b) N1 dependence of the limiting probability for N2 = 3.
Limiting probabilities to observe the exciton on the excited site (black
full line), the excited star (green dotted line), the other stars (blue
dashed line), and the central core (red short dashed line).

Therefore, a measure of the transport efficiency is given by the
probability to observe the exciton on the central node at time
t defined as

P0,0|�0,s0 (t) =
(

2

N1 + N2

)2

sin4

(√
N1 + N2�t

2

)
. (13)

This probability is a periodic function whose period is equal to
T = 2π/

√
N1 + N2�. It varies around P̄0,0|�0,s0 = 1.5/(N1 +

N2)2, and it reaches a maximum value P max
0,0|�0,s0

= 4/(N1 +
N2)2. The size parameters N1 and N2 affect similarly the
behavior of the probability so that the larger the lattice size
is, the smaller is the probability that the exciton reaches the
core of the graph. For instance, with N1 = N2 = 3, one obtains
P max

0,0|�0,s0
= 0.11.

To understand this feature, let us discuss the behavior of the
limiting probabilities shown in Fig. 2. As illustrated in Fig. 2(a)
for N1 = 3, the limiting probabilities to observe the exciton on
the excited site (black full line) and on the excited star (green
dotted line) increase as N2 increases. The larger N2 is, the
closer are the two curves. By contrast, the limiting probability
to observe the exciton on the other stars decreases with N2

(blue dashed line). In other words, increasing the size N2 of
the peripheral stars favors a localization of the exciton on the
excited site. As shown in Fig. 2(b), a different behavior arises
when the size N1 varies. For N2 = 3, the limiting probability
to observe the exciton on the excited site (black full line) is
almost N1 independent. It slightly decreases with N1, and it
varies from 0.55 for N1 = 2 to 0.5 for N1 = 20. Conversely,
the limiting probability to observe the exciton on the excited
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star (green dotted line) increases as N1 increases, whereas
the limiting probability to observe the exciton on the other
stars decreases with N1 (blue dashed line). In that case, it
turns out that increasing the size N1 yields a localization
on the excited star. Nevertheless, inside that excited star, the
excitonic distribution is mainly governed by the N2 parameter,
as observed in Fig. 2(a).

According to Eq. (9), the probability amplitude to observe
the exciton on the central core is the sum of the probability
amplitudes associated to the different paths that the exciton can
follow to tunnel from the periphery to the core. A path defines
a transition through a specific eigenstate so that two kinds of
contributions arise. The first contribution corresponds to paths
involving the eigenstates of the restriction of the Hamiltonian
to the trimer subspace. Because of the extended nature of these
states, this contribution favors the delocalization of the exciton.
By contrast, the second contribution involves the sum of the
probability amplitudes associated to degenerate eigenstates.
This sum gives rise to quantum interferences that favor the
localization of the exciton over few sites that surround the
excited site. As the size of the network increases, the second
contribution dominates, preventing the exciton to reach the
core of the graph. Such an effect, well known in complex
networks, corresponds to the process of localization induced
by degeneracy [51,52].

B. Influence of the trap: � �= 0

When the presence of the trap is taken into account, the
part of the exciton population that reaches the central core is
now absorbed. The time evolution of the absorbed population
is shown in Fig. 3 for different values of the size parameters N1

and N2. For � = 3� [Fig. 3(a)], PA(t) first scales as t5 in the
very short-time limit, whatever the value of the size parameters.
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FIG. 3. Time evolution of the absorbed population PA(t) for
(a) � = 3� and for (b) � = 20�. (N1 = 8,N2 = 3) blue full line,
(N1 = 3,N2 = 8) blue dashed line, (N1 = 6,N2 = 3) black full line,
and (N1 = 3,N2 = 6) black dashed line.

Then it increases as time increases, and, in the long-time limit,
it converges to a constant value PA(∞). An important fact
is that PA(∞) clearly depends on the size parameters, but
it is invariant under the exchange of the latter. For (N1 =
3,N2 = 8) and (N1 = 8,N2 = 3), it reaches PA(∞) = 0.041,
whereas for (N1 = 3,N2 = 6) and (N1 = 6,N2 = 3), it is equal
to PA(∞) = 0.055. This behavior has been verified in several
simulations in which we intentionally inverted the values of
N1 and N2. To reach this asymptotic limit, PA(t) follows
an exponential function that rises to a maximum modulated
by a series of plateaus. The number of plateaus and their
duration depend on the size parameters. Consequently, for the
same absorbed population, the absorption time differs from
τ = 9.72�−1 for (N1 = 3,N2 = 6) to τ = 5.06�−1 for (N1 =
6,N2 = 3). Similarly, for (N1 = 3,N2 = 8) the absorption time
is τ = 11.95�−1, whereas for (N1 = 8,N2 = 3) it reduces to
τ = 5.16�−1.

When � = 20� [Fig. 3(b)], a similar behavior is observed,
but over different timescales. Indeed, PA(∞) is clearly �

independent so that we recover the asymptotic values obtained
in Fig. 3(a). However the time needed to reach PA(∞) is
now more important. One obtains τ = 15.97�−1 for (N1 =
3,N2 = 6) and τ = 7.86�−1 for (N1 = 6,N2 = 3). Similarly,
for (N1 = 3,N2 = 8) the absorption time is τ = 16.16�−1,
whereas for (N1 = 8,N2 = 3) it reduces to τ = 5.88�−1.
In fact, these observations are quite general, and we have
verified that the parameter � does not affect the total absorbed
population. It governs only the dynamics of the trapping
process, and it controls the value of the absorption time τ .

To illustrate these features, the � dependence of the
absorption time τ is shown in Fig. 4. To proceed, two
configurations were considered. The configuration denoted A
corresponds to (N1 = 3,N2 = 8), whereas the configuration
denoted B refers to (N1 = 8,N2 = 3). Although in both cases
the total absorbed population is the same [PA(∞) = 0.041], a
different dynamics occurs.

For configuration A, a quite long absorption time arises
for small � values. For instance, τ = 20�−1 for � = 1.7�.
However, τ decreases rapidly as � increases. It reaches a
minimum value τ = 8.80�−1 when � ∈ [4.8�,9.8�]. This
interval defines the � range for which the transport efficiency
is optimized. Then, as � increases, τ slightly increases and one
recovers τ = 20�−1 for � = 25�. Note that the curve τ versus

(ST)
B

(ST)
A

0

5

10

15

20

25

( unit)
0 5 10 15 20 25 30

FIG. 4. � dependence of the absorption time τ . Configuration A:
(N1 = 3,N2 = 8) dashed line. Configuration B: (N1 = 8,N2 = 3) full
line.
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FIG. 5. � dependence of (a) the width and (b) the energy of the
decaying states for configurations A (dashed lines) and B (full lines):
γ

(N1,N2)
0 and ω

(N1,N2)
0 (green curve); γ

(N1,N2)
± and ω

(N1,N2)
± (red curve).

� is slightly modulated by weakly pronounced plateaus. For
configuration B, a similar behavior takes place. Indeed, τ first
decreases as � increases from zero. Then it reaches a minimum
value, and finally it increases with �. The curve τ versus � is
still modulated by plateaus which are now more pronounced.
Nevertheless, a difference clearly occurs: the minimum value
of the absorption time reduces to τ = 1.77�−1, indicating that
the optimization of the transport efficiency is enhanced by
the exchange of the size parameters. This optimization occurs
when � ∈ [6.2�,8.5�].

To understand the physics behind the �-induced optimiza-
tion of the transport efficiency, as well as the influence of
the size parameters, let us study the � dependence of the
decaying eigenstates, i.e., the only states that contribute to
the absorption process. The exciton supports three decaying
eigenstates denoted |
0〉 and |
±〉 (see Sec. II).

In Fig. 5(a) the � dependence of the width of the decaying
states is shown. For configuration A, the width γ

(N1,N2)
0 of the

state |
0〉 (green dashed line) is a monotonous function that
increases as � increases. By contrast, the width γ

(N1,N2)
± of the

states |
±〉 (red dashed line) behaves differently. For small �

values, quite close to γ
(N1,N2)
0 , γ (N1,N2)

± increases as � increases.
However, it reaches a maximum value γ

(N1,N2)
± = 0.53� when

� = 6.70�. Then it decreases as � increases and becomes
extremely small for large � values. In fact, as explained by
Zhang et al. [47], the nonmonotonous behavior of γ

(N1,N2)
± is the

signature of the ST. The state |
0〉 defines the superradiant state
whose lifetime decreases as � increases. The two states |
±〉
correspond to subradiant states that become almost insensitive
to the trap for large � values. The ST occurs when � = �

(ST )
A =

6.70� (γ (N1,N2)
0 = 5.61� at ST). For configuration B, the same

features are observed. The width γ
(N1,N2)
0 (green full line) of

the superradiant state increases monotonously as � increases.
By contrast, the width γ

(N1,N2)
± (red full line) of the subradiant

states behaves nonmonotonously, and it reaches a maximum
γ

(N1,N2)
± = 2.31� for � = �

(ST )
B = 8.01� (γ (N1,N2)

0 = 3.40�

at ST). At this step, let us mention that �
(ST )
A (resp. �

(ST )
B )

belongs to the � range where the optimization of the transport
efficiency occurs for configuration A (resp. configuration B).

The � dependence of the energy of the decaying states
is illustrated in Fig. 5(b) for configurations A (dashed line)
and B (full line). Whatever the configuration, the energy of
the superradiant state is � independent. It is equal to ω0 =
0, i.e., the eigenenergy of the state |
0〉 without the trap.
A different behavior arises for the subradiant states. Equal
to ω

(N1,N2)
± = ±√

N1 + N2� for � = 0, the energies of the
subradiant states get closer to each other as � increases.
Such an effect arises around the ST. For configuration A,
the relevant Bohr frequency δω = ω

(N1,N2)
+ − ω

(N1,N2)
− is equal

to δωA = 6.14� at the ST (� = �
(ST )
A ). By contrast, for the

configuration B, it reduces δωB = 4.77� for � = �
(ST )
B . Then,

for larger � values, we have verified that the energy tends to
ω

(N1,N2)
± = ±√

N2�.
The � dependence of the decaying states is illustrated

in Fig. 6 for configurations A [Figs. 6(a) and 6(b)] and B
[Figs. 6(c) and 6(d)]. The figures show the weight �n of
each decaying state on |0,0〉 (n = 1, full line), |χN1 ,0〉 (n = 2,
dashed line), and |χN1 ,μN2〉 (n = 3, dotted line).

As shown in Fig. 6(a), For configuration A, when � = 0,
the superradiant state is an asymmetric superposition of the
states |0,0〉 and |χN1 ,μN2〉 in which the weight of |0,0〉 is
larger than the weight of |χN1 ,μN2〉. As � increases, the weight
of the state |0,0〉 increases, whereas the weight of the state
|χN1 ,μN2〉 decreases. Therefore, the weight of the state |χN1 ,0〉
switches on. It increases with � until it reaches a maximum
value near the ST (� ≈ �ST

A ). In that case, the weights of
|χN1 ,μN2〉 and |χN1 ,0〉 are almost identical. Finally, for large
� values, the weights of |χN1 ,μN2〉 and |χN1 ,0〉 decreases
with �. They tend to zero indicating that the superradiant
state becomes |0,0〉, i.e., it localized on the central core. As
illustrated in Fig. 6(b), when � = 0, the subradiant states are
superpositions delocalized over the three states |0,0〉, |χN1,0〉,
and |χN1 ,μN2〉. As � increases, the weight of the state |0,0〉
decreases, whereas the weight of the state |χN1 ,μN2〉 increases.
By contrast, the weight of the state |χN1 ,0〉 is equal to 0.5 ∀�.
As a consequence, for large � values, the weight of |0,0〉 tends
to zero so that the subradiant states become superpositions
(|χN1,0〉 ± |χN1,μN2〉)/

√
2.

For configuration B, similar features are observed. In
particular, for large � values, one recovers that the superradiant
state localizes on the central core [Fig. 6(c)], whereas the subra-
diant states become superpositions (|χN1,0〉 ± |χN1,μN2〉)/

√
2

[Fig. 6(d)]. In fact, the main difference with configuration A
is the structure of the states for small � values. As shown
in Fig. 6(c), when � = 0, the superradiant state is still an
asymmetric superposition of the states |0,0〉 and |χN1 ,μN2〉. But
now the weight of |0,0〉 is smaller than the weight of |χN1 ,μN2〉.
As � increases, the weight of the state |0,0〉, increases whereas
the weight of the state |χN1 ,μN2〉 decreases. Then the weight
of the state |χN1 ,0〉 turns on, and it increases with � until
it reaches a maximum value near the ST (� ≈ �ST

B ). In that
case, the superradiant state is fully delocalized over the three
states |0,0〉, |χN1 ,0〉 and |χN1 ,μN2〉, the corresponding weights
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FIG. 6. � dependence for configuration A of (a) the superradiant
state and (b) the subradiant states; � dependence for configuration B
of (c) the superradiant state and (d) the subradiant states. The figures
show the weight �n of each decaying state on |0,0〉 (n = 1, full line),
|χN1 ,0〉 (n = 2, dashed line), and |χN1 ,μN2 〉 (n = 3, dotted line).

being almost identical. As illustrated in Fig. 6(d), when � =
0, the subradiant states are superpositions delocalized over
the three states |0,0〉, |χN1 ,0〉, and |χN1 ,μN2〉, the weight of
the state |χN1 ,0〉 being equal to 0.5 ∀�. As � increases, the
weight of the state |0,0〉 decreases, whereas the weight of the
state |χN1 ,μN2〉 increases. Since the weight of the state |0,0〉
is larger than the weight of the state |χN1 ,μN2〉 for � = 0, it
turns out that near ST the weight of these two states is almost
identical.

A complementary description of the restructuring of the
decaying states is obtained through the characterization of
their localized nature. To proceed, let us introduce the inverse
participation ratio of a state |
i〉 as [53]

IPR(|
i〉) = 1∑3
n=1 |〈n|
i〉|4

. (14)

IPR(| ± )

IPR(| 0 )

(ST)
B

(ST)
A

IP
R

1

1.5

2

2.5

3

( unit)
0 5 10 15 20 25 30

FIG. 7. � dependence of the IPR for configuration A (dashed line)
and for configuration B (full line). Red curves refer to the subradiant
states, and green curves refer to the superradiant state.

Within this definition, a state localized on a site of the trimer
is characterized by an IPR equal to 1. By contrast, the IPR of
a state fully delocalized over the trimer is close to 3.

In that context, the � dependence of the IPR of the decaying
states is shown in Fig. 7 for configurations A (dashed line)
and B (full line). Red curves refer to the subradiant states,
whereas green curves refer to the superradiant state. For
� = 0, the extension of the decaying states over the trimer
is basically the same whatever the configuration. One obtains
IPR(|
0〉) = 1.65 and IPR(|
±〉) = 2.5. Similarly, for large
� values, the decaying states converge towards asymptotic
states whose nature does not depend on the configuration. One
obtains IPR(|
0〉) = 1 and IPR(|
±〉) = 2. However, to mi-
grate between these two asymptotic situations, the states follow
paths whose nature strongly depends on the configuration. For
configuration A, a monotonous transition occurs, indicating
that the three decaying states loose their extended nature as
� increases. However, for configuration B, a more important
state restructuring process takes place. In that case, two peaks
appear indicating that both the superradiant and the subradiant
states tend to delocalize over all the sites of the trimer. The peak
associated to the superradiant state [IPR(|
0〉) = 2.92] occurs
for � = 7.56�, whereas the peak connected to the subradiant
states [IPR(|
±〉) = 2.67] occurs for � = 9.00�. These peaks
clearly arise around the ST transition (�(ST )

B = 8.01�). At this
step, let us mention that these features have been observed
in several simulations carried out for different configurations.
For a given set of parameters (N1,N2), peaks in the IPR appear
when N1 > N2 whereas a monotonous behavior occurs when
N2 > N1.

Finally, the time evolution of specific excitonic populations
is shown at the ST in Fig. 8 for configurations A [Fig. 8(a),
� = �

(ST )
A ] and B [Fig. 8(b), � = �

(ST )
B ]. For configuration A,

as time elapses, the absorbed population PA(t) increases from
its initial value equal to zero, and it converges to 0.041 in the
long-time limit, i.e., the value of the initial population of the
state |χN1 ,μN2〉 (blue curve). At the transition, the evolution of
PA(t) is modulated by the occurrence of plateaus, indicating
that the absorbed population exhibits a series of steps during
which it remains constant. Such a behavior results from the way
the excitonic wave function propagates in the trimer subspace.
It can be understood as follows. Initially localized on the
third node of the trimer shown on Fig. 1(d) (i.e., in the state

022304-7



SAAD YALOUZ AND VINCENT POUTHIER PHYSICAL REVIEW E 97, 022304 (2018)

PA

P2

P1

P3

po
pu

la
tio

n

2

3

4

5

0

1

t
0 2 4 6 8 10

PAP2

P1

P3

po
pu

la
tio

n

(a)

(b)

0
1

2

3

4

5

10
-2

10
-2

FIG. 8. Time evolution of the population at the superradiance
transition (a) for configuration A (i.e., for � = �

(ST )
A ) and (b) for

configuration B (i.e., for � = �
(ST )
B ). The figure shows the absorbed

population PA(t) (blue curves), the population P3(t) of the state
|χN1 ,μN2 〉 (red curves), the population P2(t) of the state |χN1 ,0〉 (green
curves), and the population P1(t) of the state |0,0〉 (black curves) (see
the text).

|χN1 ,μN2〉), the excitonic wave function oscillates between
this site and the second site (that is the state |χN1 ,μN2〉).
Therefore, the population of the initial node (red curves) and
the population of the central node (green curves) oscillate.
Nevertheless, each time the excitonic wave function reaches
the central site of the trimer, a small part is transmitted to the
first site (i.e., to the state |0,0〉). Then the population of this
site turns on, and it exhibits damped oscillations (black curve).
Each time a part of the excitonic wave function is transmitted
to the first site of the trimer, the trap becomes active and the
corresponding excitonic population is absorbed. Note that the
corresponding absorption time is equal to τ = 8.80�−1.

For configuration B, a fully different behavior arises, as
illustrated in Fig. 8(b). In that case, a fast absorption takes
place. The absorbed population evolves rapidly from zero to
PA(∞) = 0.041 without exhibiting any plateau (blue curve).
Such an efficient transfer results from the dynamics of the
excitonic wave function in the trimer subspace. The initial
part of the wave function that is localized on the third site
of the trimer is directly transferred to the second site. Then it
propagates to the first site where is it absorbed without being
able to go back to the other sites. It is as if the exciton wave
function behaved as a coherent wave packet insensitive to the
dispersion of the trimer. It propagates very quickly to the trap,
preventing the occurrence of oscillations. An efficient transport
arises that gives rise to an optimized absorption time equal to
τ = 1.77�.

IV. DISCUSSION

Our numerical results reveal that the exciton dynamics
is governed by two kinds of eigenstates. First, the exciton

Hamiltonian supports N1(N2 + 1) − 2 eigenstates associated
to real eigenvalues. These states, whose degeneracy is very
pronounced, are insensitive to the presence of the trap. Then the
exciton supports three decaying eigenstates, which are those
of the restriction of the Hamiltonian to the trimer subspace
generated by the three states |0,0〉, |χN1 ,0〉, and |χN1 ,μN2〉.
Characterized by complex energies, i.e., finite lifetimes, the
three decaying states are the only states that contribute to the
trapping process.

In that context, it has been shown that the excitonic
population absorbed by the trap depends on the size
parameters only. The larger the size is, the smaller is the
absorbed population. This absorbed population is invariant
under the exchange of the parameters N1 and N2, and it
is independent of the absorption rate �. By contrast, all the
parameters N1, N2, and � control the dynamics of the trapping,
i.e., the time required to absorb the excitonic population. When
these parameters are judiciously chosen, the efficiency of the
transfer is optimized resulting in the minimization of the
absorption time. The analysis of the system eigenstates reveals
that such a feature arises around the ST.

Indeed, the decaying states are divided into two kinds of
states: one superradiant state and two subradiant states. The
width of the superradiant state increases monotonously as �

increases, whereas the width of the subradiant states behaves
nonmonotonously. The latter reaches a maximum value for a
critical value of � which is the signature of the ST. We have
shown that the transition is accompanied by a restructuring
process of the decaying states that strongly depends on the size
parameters N1 and N2. Consequently, for a same total absorbed
population, two situations have been brought to light where
the transport efficiency is either superoptimized if N1 > N2 or
suboptimized if N2 > N1.

To interpret these features, let us mention that the quantum
dynamics that emerges when the exciton is initially located on
a peripheral site of the graph exhibits two contributions [see
Eq. (9)]. First, a part of the initial wave function is projected
on the decaying states. These states exhibiting finite lifetimes,
this contribution tends to zero in the long-time limit. The
second contribution results from the projection of the initial
wave function on the remaining degenerate eigenstates. These
states being stable as time elapses, they favor a coherent exciton
dynamics during which the corresponding part of the exciton
population is conserved. However, as mentioned in Sec. III A,
the degeneracy is responsible for a localization mechanism
so that the conserved excitonic population is mainly located
on the excited star. In that context, in the long-time limit, the
unconserved part of the excitonic population disappears so that
the survival probability is given by the probability to observe
the exciton in the stable eigenstates |χk,μq〉 and |χk,±〉.
After straightforward calculations, one obtains Q(∞) = 1 −
1/N1N2, so that the absorbed population is

PA(∞) = 1

N1N2
. (15)

In a perfect agreement with what was observed in Fig. 3,
PA(∞) depends on the same way on the two size parameters.
Moreover, this quantity is always larger than or equal to the
maximum value P max

0,0|�0,s0
= 4/(N1 + N2)2 of the population

that reaches the central node without the trap (see Sec. III A).
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In other words, the presence of the trap improves the transfer
from the periphery to the core of the graph. Note that the two
populations are equal when N1 = N2.

Let us now discuss the influence of the parameters on
the optimization of the transport efficiency, specifically on
the minimization of the absorption time. This phenomenon
originates in the evolution of the structure of the decaying
states between two asymptotic vectors, as � increases from
zero to infinity. Indeed, when � = 0, the superradiant state is
a superposition involving the two states |0,0〉 and |χN1 ,μN2〉,
whereas the subradiant states are decomposed over the three
states |0,0〉, |χN1 ,0〉, and |χN1 ,μN2〉 [see Eq. (8)]. In a marked
contrast, for large � values, the superradiant state localizes on
the core of the graph and tends to |0,0〉. It is characterized by
a width equal to �. In turn, the subradiant states tend to the
superpositions (|χN1 ,0〉 ± |χN1 ,μN2〉)/

√
2, and they become

insensitive to the trap.
In that context, the way the parameter � controls the

optimization of the transport efficiency can be understood
as follows. When � increases from zero, the width of the
three decaying states increases. For small � values, the three
widths are of the same order of magnitude so that the three
decaying states participate in the absorption process over a
similar timescale. The optimization is thus obtained when the
absorption time τ is minimized, that is, when the width of the
subradiant states is maximized. This phenomenon occurs at
the ST (� ≈ �(ST )). Beyond the transition, the width of the
superradiant state still increases with �, whereas the width of
the subradiant states decreases. Consequently, the width of the
subradiant states decreases, and one deviates from the region
of the parameter space where the optimization takes place.
In addition, this deviation is enhanced by the fact that the
superradiant state localizes on the core of the graph, and it
no longer allows the transfer from the periphery to the core.

But the absorption rate � is not the only parameter that
influence the optimization process. Indeed, we have observed
that the size parameters N1 and N2 play a crucial role,
especially in the restructuring of the states that arises at the
ST. This feature can be understood by considering the two
asymptotic situations N1 � N2 and N1  N2.

When N1 � N2, the restriction of the Hamiltonian to the
trimer subspace corresponds basically to an isolated state
|0,0〉 decoupled from the two remaining states |χN1 ,0〉 and
|χN1,μN2〉 [see Fig. 1(d)]. Consequently, for small � values,
the superradiant and subradiant states look like the asymptotic
states to which they must tend for large � values. These
asymptotic states, because of their structure, prevent the
occurrence of an efficient transfer between the periphery and
the core of the graph. Therefore, as � increases, the transport
efficiency is optimized through the maximization of the widths
of the decaying states. But this transition is not accompanied
by a major restructuring of that states. We can speak of a
suboptimization induced by the ST.

Conversely, when N1  N2, the restriction of the Hamil-
tonian to the trimer subspace corresponds now to an isolated
state |χN1 ,μN2〉 decoupled form the two remaining states |0,0〉
and |χN1 ,0〉 [see Fig. 1(d)]. Therefore, for small � values, the
superradiant and subradiant states are fundamentally different
from the asymptotic states to which they must tend for large
� values. Consequently, the maximization of the width of the
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FIG. 9. Size dependence of the minimum value of the absorption
time τ .

decaying states at the superradiance transition is accompanied
by a major state restructuring. Such a restructuring results
in the occurrence of states that are almost fully delocalized
over the three trimer states |0,0〉, |χN1 ,0〉, and |χN1 ,μN2〉, thus
promoting a very efficient transfer between the periphery and
the core of the graph. In other words, the maximization of the
widths combined with the important restructuring of the states
favors a superoptimization of the transport efficiency.

Of course, whenN1 andN2 are quite similar, an intermediate
situation arises. The maximization of the width of the decaying
states at the superradiance transition is now accompanied by
a moderate state restructuring. The optimization regime of the
transport efficiency lies somewhere between the superopti-
mization and the suboptimization. This feature is illustrated
in Fig. 9 that shows the size dependence of the optimized
value of the absorption time τ . The case (N1 = 10,N2 = 3)
specifies the superoptimized regime where the minimum value
of the absorption time reduces to 1.68�−1. This absorption
time increases as one moves towards the suboptimized regime
where it reaches 9.84�−1 for (N1 = 3,N2 = 10). At the border
between the two regimes, i.e. for N1 = N2, the minimized
absorption time is typically of about 3.5�−1.

V. CONCLUSION

In this paper, a tight-binding model was introduced for
describing the dynamics of an exciton moving on an extended
star graph whose central node is occupied by a trap. On
this graph, the exciton dynamics is governed by two kinds
of eigenstates. First, the exciton exhibits many eigenstates
associated to real eigenvalues and whose degeneracy is very
pronounced. Then the exciton supports three decaying eigen-
states characterized by complex energies, i.e., finite lifetimes.
Consequently, the quantum dynamics that emerges when the
exciton is initially located on a peripheral site of the graph
exhibits two distinct contributions. First, the part of the initial
wave function projected on the degenerate eigenstates favors
a coherent dynamics during which the corresponding part of
the exciton population is conserved. Owing to the degeneracy,
this conserved population remains confined over the few sites
that surround the excited site. The second contribution results
from the projection of the initial wave function on the three
decaying states. These states exhibiting finite lifetimes, which
are the only states that contribute to the trapping process.
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In that context, it has been shown that the excitonic popula-
tion absorbed by the trap depends on the size of the graph only.
By contrast, both the size parameters and the absorption rate
control the value of the time needed to absorb the excitonic
population. When these parameters are judiciously chosen,
the efficiency of the transfer is optimized, resulting in the
minimization of the absorption time. The analysis of the
system eigenstates reveals that such a feature arises around
the so-called superradiance transition for which the width of
the subradiant states is maximized. Nevertheless, we have
shown that the transition is accompanied by a restructuring
of the decaying states that strongly depends on the size
parameters. Depending on these parameters, two situations
have been highlighted where the transport efficiency is either
superoptimized or suboptimized, for the same value of the total
absorbed population.

In the present work, superradiance-induced optimization
of the transport efficiency was investigated in a quite simple

graph. Although interesting features have been observed,
additional studies are required to investigate what happens
in more intricate situations. For instance, it could be wise
to consider more complex graphs such as dendrimers as
well as the presence of disorder inherent to realistic sys-
tems. Moreover, from a physical point of view, the exciton
does not propagate freely, but it interacts with its surround-
ings, which favors energy relaxation and/or dephasing. These
effects must be included in our formalism to establish a
more general description of the trapping phenomena at finite
temperature.

APPENDIX: PROBABILITIES

When � = 0, the Hamiltonian can be diagonalized exactly.
As a consequence, it is straightforward to calculate the exciton
density whose analytical expression is defined as

P�0,s0|�0,s0 (t) =
∣∣∣∣1 + (N1 + N2)(N2 − 1)

N2(N1 + N2)
+ N1 − 1

N2N1
cos(

√
N2�t) + cos(

√
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∣∣∣∣
2

,

P�0,0|�0,s0 (t) =
∣∣∣∣ N1 − 1
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√

N2
sin(

√
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P� �=�0,0|�0,s0 (t) =
∣∣∣∣ 1

N1
√

N2
sin(

√
N2�t) − sin(

√
N1 + N2�t)

N1
√

N1 + N2

∣∣∣∣
2

,

P� �=�0,s �=0|�0,s0 (t) =
∣∣∣∣ 1

N2(N1 + N2)
+ cos(

√
N1 + N2�t)

N1(N1 + N2)
− 1

N1N2
cos(

√
N2�t)

∣∣∣∣
2

. (A1)

The corresponding limiting probabilities are expressed as

P̄�0,s0|�0,s0 = 1

2(N1N2)2

[
2N2

1 + N2
2

(N1 + N2)2
+ 4N2

1 (N2 − 1)

N1 + N2
+ 2N2

1 (N2 − 1)2 + (N1 − 1)2

]
,

P̄�0,0|�0,s0 = 1

2(N1N2)2

[
N2

2

N1 + N2
+ N2(N1 − 1)2

]
,

P̄�0,s �=s0|�0,s0 = 1

2(N1N2)2

[
2N2

1 + N2
2

(N1 + N2)2
− 4N2

1

N1 + N2
+ 2N2

1 + (N1 − 1)2

]
,

P̄0,0|�0,s0 = 3

2(N1 + N2)2
,

P̄� �=�0,0|�0,s0 = 1

2(N1N2)2

(
N2

2

N1 + N2
+ N2

)
,

P̄� �=�0,s �=0|�0,s0 = 1

2(N1N2)2

[
1 + 2N2

1 + N2
2

(N1 + N2)2

]
. (A2)
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