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Abstract

We consider a viscous incompressible fluid governed by the Navier-Stokes system written in a domain
where a part of the boundary can deform. We assume that the corresponding displacement follows a damped
beam equation. Our main results are the existence and uniqueness of strong solutions for the corresponding
fluid-structure interaction system in an LP-L? setting for small times or for small data. An important
ingredient of the proof consists in the study of a linear parabolic system coupling the non stationary Stokes
system and a damped plate equation. We show that this linear system possesses the maximal regularity
property by proving the R-sectoriality of the corresponding operator. The proof of the main results is then
obtained by an appropriate change of variables to handle the free boundary and a fixed point argument to
treat the nonlinearities of this system.

LP regularity.
AMS subject classifications. 35Q35, 76D03, 76D05, 74F10.
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In this work, we study the interaction between a viscous incompressible fluid and a deformable structure located
on a part of the fluid domain boundary. More precisely, we denote by F the reference domain for the fluid.
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We assume that it is a smooth bounded domain of R?® such that its boundary OF contains a flat part I's
corresponding to the reference domain of the plate. We assume I's = § x {0}, where S is a smooth domain
of R? and we set I'g := OF \ T's. The set Ty is rigid and remains unchanged whereas the plate domain I'g
can deform through exterior forces and in particular the force coming from the fluid and if we denote by 7 is
displacement, then the plate domain changes from I'g to

Ls(n) == {(s,n(s)) ; s € S}.

In our study, we consider only displacements 7 regular enough and satisfying the boundary conditions (the plate
is clamped):
n=Vsm-ns=0 on OS (1.1)

and a condition insuring that the deformed plate does not have any contact with the other part of the boundary
of the fluid domain:

We have denoted by ng the unitary exterior normal to dS and in the whole article we add the index s in the
gradient and in the Laplace operators if they apply to functions defined on & C R? (and we keep the usual
notation for functions defined on a domain of R?).

With the above notations and hypotheses, I'o U T'g(n) corresponds to a closed simple and regular surface
which interior is the fluid domain F(n). In what follows, we consider that # is also a function of time and its
evolution is governed by a plate equation. If n(¢, -) satisfies the above conditions, we can define the fluid domain
F(n(t)) and we then denote by (v,7) the Eulerian velocity and the pressure of the fluid and we assume that
they satisfy the incompressible Navier-Stokes system in F(7(¢)). Then the corresponding system we analyze
reads as follows:

v+ (v-V)o —divT(v,7) =0, t> 0,z F(nt),
divo=0 t> 0,z € F(n)),
v(t, s,m(t,s)) = On(t, s)es t>0,s€S, 13
v=0 t>0,z el (1.3)
attn + aA?’] - ﬁAén - ’YAaat?? = H(/{L 7’?) 7]) t> 07 s € 87
n=Vsm-ns=0 t>0,s€0S,
where (eq, e3, e3) is the canonical basis of R3. The fluid stress tensor T(v,7) is given by
~ — o~ 1, ~
T(v,7) =2vD() —7l3, D@)= 3 (Vo+va'). (1.4)

The function H corresponds to the force of the fluid acting on the plate and can be expressed as follows:

H(7,7,1) = —\/ 1+ [Vsnl> (T@ 7)7) s (nery) - €35 (1.5)

~ 1
n=—F/——- [_vsn7 1]T )

1+ [Venl?

where

is the unit normal to I's(n(t)) outward F(n(t)). The above system is completed by the following initial data

n(0,)=ninS, 9n0,)=n3inS, v(0,)=71"in F(ny). (1.6)



System (1.3) is a simplified model for blood flow in arteries (see, for instance the survey article [38]) and
«, 3,7 are non negative constants that corresponds to the physical properties of the wall tissue. Our analysis
will be done in the case a > 0, § > 0 and v > 0 and to simplify, we consider in what follows the case

a=1 p=0, y=1,

and the other cases can be done in the same way. Let us remark that the term —yAg0;n corresponds to the
damping in the plate equation. The other positive constant, appearing in (1.4) is the viscosity v.
An important remark in the study of (1.3)-(1.6) is that a solution (v, 7, n) satisfies

O:/ divﬁdx:/ i7~ﬁdF:£ n ds.
Fn(t)) T's(n(t)) dt Js

Assuming that 7{ has a zero mean, we deduce that this property is preserved for n all along. This leads us to
consider the space

L?n(S):{feLq(S); /Sf ds:O}, (1.7)

and the orthogonal projection P, : LY(S) — L% (S), that is
1
Paf=f—1g [fas  reris). (18)

Taking the projection of the plate equation in (1.3) onto LZ (S) and onto L% (S)* yields the following two
equations:
Oun + P A%y — A0 = P, (H(T,7,1)) t>0,5s€S8, (1.9)

/S%(t, s,m(t,s)) ds = /SAin(t, s)ds+ /S V14 |Ven? [(2uDo)a) (¢, s,1(t, s)) - e3 ds. (1.10)

This means that, in contrast to the Navier-Stokes system without structure, the pressure is not determined
up to a constant. In what follows, we only keep (1.9) and solve the corresponding system up to constant for
the pressure, and equation (1.10) is used at the end to fix the constant for the pressure. We thus consider the
following system

and

v+ (0-V)v—divT(v,7) =0 t >0,z € F(n(t)),

dive =0 t>0,2 € F(n(t)),

o(t, s,n(t,s)) = Onl(t, s)es t>0,s€8,

F—0 t>0,2 €Ty, (1.11)
Oun + P A2y — A0 = P, H(D, 7, n) t>0,s€8,

n=Vgm-ns=0 t>0,s€0S,

n(0,) =7 inS, 9n(0,-) =13 in S, (0,-) =" in Fny).




To state our main result, we introduce some notations for our functional spaces. Firstly W*4(Q), with s > 0
and ¢ > 1, denotes the usual Sobolev space. Let k, k' € N, k < k’. For 1 < p < 00, 1 < ¢ < 0o, we consider the
standard definition of the Besov spaces by real interpolation of Sobolev spaces

B (F) = (W’“*q(]-'), Wk’vq(f))e where s = (1= )k + 0K, 0€(0,1).
We refer to [1] and [45] for a detailed presentation of the Besov spaces. We also introduce functional spaces
for the fluid velocity and pressure for a spatial domain depending on the displacement 1 of the structure. Let
1 < p,q < oo and n € LP(0,00; WH4(S)) N W2P(0, 00; LY(S)) satisfying (1.1) and (1.2). We show in Section 2
that there exists a mapping X = X, such that X(¢,-) is a C'-diffeomorphism from F onto F(n(t)) and such
that X € LP(0, 00; W24(F)) N W2P(0, 00; L4(F)). Then for T € (0, 00], we define

LP(0,T; LYF(n(-))) == {vo X~ ; ve LP(0,T; LY(F))},

LP(0, T; W9(F(n(:)))) :=={vo X~ ; v e LP(0, T; WU(F))},
WP (0,T; LY(F(n(-)))) := {voX Ly ve WHP(0,TiLY(F))},
Co[0, T WH(F(n(-)) == {vo X~ ; ve CO0,T]; W”’( )}

)
CO([O,T};BS,%‘””)(JT(U( ) = {ro X715 v e O, Ty B (F))

where we have set (vo X~1)(t,z) :== v(t, (X(¢,-)) " *(z)) for simplicity.
Finally, let us give the conditions we need on the initial conditions for the system (1.11): we assume

ny € B227UPN(S), n) e B2ONPN(S), 30 e B2OYP(F(n))) (1.12)

with the compatibility conditions

=Vl -ns=0 ondS, TyNTs(n?) =0, /77(1) ds =0, /ng ds =0, divi®=0 in F(n}), (1.13)
s s

and
~ ~ ~ . 1 1
(s,n0(s)) -7’ =n9(s)es -0’ se€S, ’-n’=0 onTy it -+ 2> 1,
p q
1 1
(s,m)(s)) =n3(s)es s€S, =0 onTy, ny=0 ondS if » + % <1, (1.14)
1 1 1

Here 70 is the unit exterior normal to I's(n?) outward F(n?).
We are now in a position to state our main results. The first one is the local in time existence and uniqueness
of strong solutions for (1.11).
Theorem 1.1. Let p,q € (1,00) such that
1 1 1 1 1 1 3 3
-+ —#1, —+—%#- and —+—< . 1.15
P 2 P 2" 2 P 2 2 (1.15)

Let us assume that n = 0 and (n9,7°) satisfies (1.12), (1.13), (1.14). Then there exists T > 0, depending
only on (nY,2°), such that the system (1.11) admits a unique strong solution (U, 7,n) in the class of functions
satisfying

€ LP(0,T; WI(F(n(-)))) N L0, T; By P (F(n(-))) N WHP(0,T; LUF (n(-)))),
T e LP(0,T; Wi (F(n(-)))),
n € LP(0, T, WH(8)) N L>®(0,T; BZG~VP)(S)) nWhP(0,T; W>4(S)),
A e LP(0,T; W4(8)) N L=(0, T; 132<1 UP/(8)) nWLP(0,T; LY(S)).
Moreover, To NTg(n(t)) =0 for allt € [0,T).



Our second main result asserts the global existence and uniqueness of strong solution for (1.11) under a
smallness condition on the initial data.

Theorem 1.2. Let p,q € (1,00) satisfying the conditions (1.15). Then there exists By > 0 such that, for all
B € [0, Bo] there exist eg and C > 0, such that for any (n?,7n9,7°) satisfying (1.12), (1.13), (1.14) and

12l g1 (s + 8l pata-s0m sy + Bl paa-arm sy < <o, (1.16)

the system (1.11) admits a unique strong solution (U,7,n) in the class of functions satisfying

¥ € L5(0, 00, W4(F(n(-)))) N L (0, 003 By /P (F(n(-))) N W5 P(0, 003 LUF (1(-)))),

7 € Lz (0,00, W (F(n(-)))),

n € LE(0, 00; WH9(8)) N L (0, 00; BYE~1/P(8)) n WP (0, 00 W24(S)),

0 € L5(0,00; W>9(8)) N LF (0, 003 BQ(l P)(8)) N W57 (0, 00; LU(S)).
Moreover, T'o NTs(n(t)) =0 for all t € [0,00).

In the above statement, we have used a similar notation as in (1.7):
L9 (F) = {f € LI(F) ; / f=0 dx}, W29(F) = W(F) A LS, (F).
‘F
We also set

Wit(S) = W>4(8) N LT, (S).
We denote by W;"(S) the closure of C°(S) in W#4(S) and we set

Wed (S) = We9(Q) N LY, (S).

0,m

We define similarly Wi (F), Wyl (F).
Finally, we also need the following notation in what follows: for T € (0, co],

Wo2((0,7); F) = LP(0, T; W9(F)) n W'P(0, T LY(F)),
W2H(0,T);8) = LP(0, T; WH4(8)) N WHP(0, T; W9(8)) N WP(0,T; LY(S)),
W22((0,7);S) = LP(0, T; W>(8S)) N W'P(0,T; LU(S)).

We have the following embeddings (see, for instance, [2, Theorem 4.10.2, p.180]),
W2 ((0,T); F) < CY([0,T); By~ (F)), (1.17)
Wed((0,T);:8) = CP([0,T); BiS~/P(8)) n €y ([0, T); BoG~H/P)(S)) (1.18)

where C{f is the set of continuous and bounded functions with derivatives continuous and bounded up to the
order k. In particular, in what follows, we use the following norm for VVpl;qQ((O7 T); F):

£z 0.0y 7= W llzeo.wzacmy + I lwreomzamy) + 1 lcoory20-172 )

and we proceed similarly for the two other spaces.
For § > 0, p € [1,00] and for X a Banach space, we also introduce the notation

L’B’(O, 00; X) :={f; t— ePLf(t) e LP(0,00;X)},

((0,00); F), W22 ((0,0); S), etc.

and a similar notation for W o

pqﬁ



Let us give some remarks on Theorem 1.1 and Theorem 1.2. First let us point out that the system (1.11)
has already been studied by several authors: existence of weak solutions ([9], [26], [37]), uniqueness of weak
solutions ([25]), existence of strong solutions ([7], [32], [34]), feedback stabilization ([40], [5]), global existence
of strong solutions and study of the contacts ([22]). Some works consider also the case of a beam/plate without
damping (that is without the term —Ag0n): [21], [23], [6]. We refer, for instance, to [24] and references therein
for a concise description of recent progress in this field. It is important to notice that all the above works
correspond to a “Hilbert” framework whereas our results are done in a “LP-L9” framework. Working in such
a framework allows us to extend the result obtained in the “Hilbert” framework, but it should be noticed that
several questions on fluid-structure interaction systems, in the “Hilbert” framework, have been handled by
considering a “LP-L?” framework: for instance, the uniqueness of weak solutions (see [20], [8]), the asymptotic
behavior for large time (see [16]), the asymptotic behavior for small structures (see [31]), etc.

For this approach, several recent results have been obtained for fluid systems, with or without structure. For
instance, one can quote [19] (viscous incompressible fluid), [15], (viscous compressible fluid), [28], [27] (viscous
compressible fluid with rigid bodies), [18], [35] (incompressible viscous fluid and rigid bodies). Here we consider
an incompressible viscous fluid coupled with a structure satisfying an infinite-dimensional system and we thus
need to go beyond the theory developed for instance in [35].

Our approach to prove Theorem 1.1 and Theorem 1.2 is quite classical. Since the fluid domain F(n(t))
depends on the structure displacement 7, we first reformulate the problem in a fixed domain. This is achieved
by “geometric” change of variables. Next we associate the original nonlinear problem to a linear one. The linear
system preserves the fluid-structure coupling. A crucial step here is to establish the LP-L? regularity property
in the infinite time horizon. This is done by showing the associate linear operator R-sectorial and generates an
exponentially stable semigroup. We then use the Banach fixed point theorem to prove existence and uniqueness
results. Note that for Theorem 1.2, we assume the same conditions on (p,¢) than for Theorem 1.1 but the
result should be also true for % + % = % However to deal with this case one needs some precise results on the
interpolation of Besov spaces (see for instance Lemma 2.1).

Let us also remark that this work could also be done in the corresponding 2D /1D model, that is F a regular
bounded domain in R? such that OF contains a flat part I's = S x {0}, where S is an open bounded interval of
R. In that case, we would obtain the same result as in Theorem 1.1 and in Theorem 1.2 but with the following
condition on p, g: . . . . . L1 3

p+2q7€1, p+2q7é2 and p+q<2'

The plan of the paper is as follows. In the next section, we use a change of variables to rewrite the governing
equations in a cylindrical domain and we also restate our result after change of variables. Then, in Section 3,
we recall several important results about maximal LP regularity for Cauchy problems and in particular how to
use the R-sectoriality property. We use these results to study in Section 4 the linearized system. Finally in
Section 5 and in Section 6, we estimate the nonlinear terms which allows us to prove the main results with a

fixed point argument.

2 Change of Variables

In order to prove Theorem 1.2, we first rewrite the system (1.11) in the cylindrical domain (0,00) x F by
constructing an invertible mapping X (¢, ) from the reference configuration F onto F(n(t)). More generally, for
any 1 € C1(S) satisfying (1.1) and a smallness condition

[l (sy < co (2.1)

that ensures in particular (1.2), we can construct a diffeomorphism X, : 7 — F(n). To do this, we follow the
approach of [5]: there exists o > 0 such that

Voo =8x(-a,0) CF, Vu:=8x(0,0) CR*\ F. (2.2)



Notice that, 9V, N OF =TI's. We consider 1 € C°(R) such that
Yp=1in(—a/2,a/2), »=0nR\ (—a,a), 0<9 <1 (2.3)

Let us extend 7 by 0 in R\ S so that n € C}(R) and let us define X,, by

Y1 Y1 Y1
(1) (b)) C[E]=)
Y3 Y3 + ¥ (y3)n(y1, ye) Y3

If we choose ¢y in (2.1) as
1

2 oy
then X,, is a C''-diffeomorphism from F onto F(n) with X, (I's) = I's(n). Note that (2.1) and (2.5) yield that
n| < «/2in S.

Let us assume now that 7 depends also on time and satisfies for all ¢ relation (2.1) with ¢y given by (2.5).
We can define

Co - (25)

D
=

X(t, ) = Xn(t)- (2
In particular, X(¢,-) is a C'-diffeomorphism from F onto F(n(t)). For each ¢t > 0, we denote by Y (¢,")

m |l

X(t, )71, the inverse of X(t,-). We have X € CP([0,00); C1(F)) and for all t € (0,00), y = [y1 y2 y3]"
S x (—a/2,a/2),
10 _ayln(ta ylay2)
det VX(t,y) =1,  Cof(VX)(t,y) = |0 1 —9y,n(t,y1,y2) (2.7)
0 0 1
We consider the following change of unknowns
v(t,y) = Cof VX T (t,9)0(t, X (t,y)), w(t,y) = 7(t, X(t,y)), (t,y) € (0,00) x F. (2.8)
The system (1.11) can be rewritten in the form
o —divT(v,7) = F(v,m,1n) t>0,y €F,
dive =10 t>0,y€rF,
v(t,s,0) = On(t, s)es t>0,s€S8,
v=>0 t> an S F07
Oun + Pn (Agn) — A0y (2.9)
= —Pm(T(v,ﬂ')\pseg-eg) +Pm<H(U,7T,77)) t>0,s€S8,
n=Vm-ns=0 t>0,5€ 08,
7](07 ) = 77? in 87 at’r}(oa ) = 773 in 87 U(Oa ) = UO in F,
where
() := Cof VX T(0,5)3"(X(0,y)) = Cof VX, (4)7°(X,0(y))- (2.10)
Let us write
a:=Cof(VY)", b:=Cof(VX)" (2.11)
so that
v(t,y) = b(t, y)o(t. X(t,y)), o(t,z) = alt,z)v(t, Y (t ). (2.12)



After some standard calculation, we find that in (2.9), the expressions of F' and H are

9? aZ Oda; Ovy, Y,
w(v,mn) =v g bm k X)vg + 2v E bma k(X)é‘yI;axj(X)
1,5,k i,k

8%v,, Yy oY, Ovg 02 Yg
v Zm OYeOYm <6x3( ) Ox; 5 &)= %0 ’J) +VZ ye 3:17

3L,
- E on (d t(VX) (X)aYk( )—5a,16k,i>
ox;
j : 6azk 1
- J - mboﬂ . a]m(X)UkUm - det(VX) [(U : V)U]a

= [b(8ra)(X)v], = [(VO)(8:Y)(X)],,  (213)

3 2
Oa; Oa Oa
sy =5 (S B o) - )
k=1 \i=1 v
3

2
+ Z (Z 851.’17 {a,k(X)gZ(X) + agk(X) g? (X):| -2 [agk(X)giZ(X> — (52’k(52)g:|> ?;;Z}(t, S, 1). (2.14)
k=1 \i=1 ¢

We prove the following result

Lemma 2.1. Let 1 < p,q < oo such that

1.3 3
LA 2.15

and (n?,0°) satisfies (1.12). Then v° defined by (2.10) satisfies v° € By (1 1/p) (F).
Proof. By using (2.15), we deduce that 79 € C1(S). In particular, the map
"= 0" =1"0 X0 (2.16)

is linear and continuous from LI(F(n?)) into L9(F). Let us show that it is also continuous from W24(F(n?))
into W24(F): Some computation yields
52@0 9?0 0X,0,0, 0X,04 o’ O X,o 1
Z X0 ()2 () — 2= () + 5— (X0 (1) 2= (1)
5’%‘33/] 5’1‘@5’1% ! Ay, Ay Oxy, M Oy0y;

(2.17)

Using that ¥ € C1(S), we deduce that the first term in the right-hand side of the above relation belongs to

00" 1 0 Xog 1 2(1-1
L9(F). For the second term, we first note that a—(X()) € WH4(F) and ﬁ € Bq(p /P)(F). Therefore
T ’

92X, 0
by [45, Theorem(i), page 196], o9 (,;h’ € We+4(F) for any s; < 2(1 — 1/p). Applying standard result on the

product of Sobolev spaces we conclude that the second term in (2.17) also belongs to L(F).
Then by interpolation, we deduce that the map (2.16) is linear continuous from By (1 1/p) (F(n!)) into
337(;71/;;)(}.) Therefore, if v° € By (1 1/p)(]:(n?)), we have

Cof VX, € By b2 "VP(F), 2% e BIy~VP(F)

and we deduce that the product v° € B2(1 1/p) (F) by using [42, Theorem 2, pp.191-192, relation (17)]. O



Using the above lemma and the definition of X defined in (2.6), the hypotheses (1.12), (1.13), (1.14) on the
initial conditions are transformed into the following conditions:

W€ BAETUD(S), € BIITUN(S), W € BTUP(F), (2.18)

QP

=Vl -ns=0 ondS, ToNTs(n?) =0, /n? ds =0, /172 ds =0,
S S

div(®®) =0 in F, (2.19)

1 1
v2(5,0)-e3 =m3(s) s€S8, v¥-n=0 onTy if 7+2—>1,
p
1 1
v0(5,0) =n9(s)es s€S, v"=0 onTy, 7I=0 ondS if 7+2*<1, (2.20)
p q
1 1 1
Veng - ns =0 on 88 iS4 < s
P 2q 2

Here n is the unit normal to OF outward F and in particular on I'g, n = es.
Using the above change of variables Theorem 1.1 and Theorem 1.2 can be rephrased as

Theorem 2.2. Let p,q € (1,00) satisfying the condition (1.15). Let us assume that n? = 0 and (n9,v°) satisfies
(2.18), (2.19), (2.20). Then there exists T > 0, depending only on (n3,v°), such that the system (2.9) admits a
unique strong solution (v,m,n) in the class of functions satisfying

1,2 . . 2,4 .
ve W, ((0,T);F), meLP(0,T; W, F)), ne Wy, ((0,T);S)
Moreover, n satisfies (2.1) and X (t,-) : F — F(n(t)) is a C*-diffeomorphism for all t € [0,T).

Theorem 2.3. Let p,q € (1,00) satisfying the condition (1.15). Then there exists By > 0 such that, for all
B € [0, Bo], there exist g9 and C > 0, such that for any (n9,7n9,v°) satisfying (2.18), (2.19), (2.20) and

191l g2a-1/2 (5 + 121l 217w gy + 107l g2i1-1m9 2y < 0, (2.21)
the system (2.9) admits a unique strong solution (v,m,n) in the class of functions satisfying

vEW, 2 5((0,00); F), € L(0,00; WU (F)), 1€ Woit5((0,00);S)

Moreover, ) satisfies (2.1) and X (t,-) : F — F(n(t)) is a Ct-diffeomorphism for all t € [0,00).

3 Some Background on R-sectorial Operators

In this section, we recall some important facts on R-sectorial operators. This notion is associated with the
property of R-boundedness (R for Randomized) for a family of operators that we recall here (see, for instance,
[46, 10, 11, 30)):

Definition 3.1. Let X and Y be Banach spaces. A family of operators € C L(X,Y) is called R—bounded
if there exist p € [1,00) and a constant C > 0, such that for any integer N > 1, any Th,...Tn € &, any
independent Rademacher random variables r1,...,rn, and any x1,...,xNx € X,

py 1/p py\ 1/p

N
< C E ermj
Jj=1

N
E Z TjTjCL’j
Jj=1 v x

The smallest constant C in the above inequality is called the Ry-bound of € on L(X,)) and is denoted by R,(E).



In the above definition, we denote by E the expectation and a Rademacher random variable is a symmetric
random variables with value in {—1,1}. It is proved in [11, p.26] that this definition is independent of p € [1, c0).
We have the following useful properties (see Proposition 3.4 in [11)):

Rp(€1 +E2) <K Rp(&1) + Rp(&2), Rp(E1€2) < Rp(E1)Rp(E2). (3.1)

For any 8 € (0, ), we write
Y ={r e C\{0}; |arg(N)| < B}
We recall the following definition:

Definition 3.2 (sectorial and R-sectorial operators). Let A be a densely defined closed linear operator on a
Banach space X with domain D(A). We say that A is a (R)-sectorial operator of angle B € (0,7) if

¥p C p(A)
and if the set
Ry ={MA-A)""; hexg}
is (R)-bounded in L(X).
We denote by Mg(A) (respectively Rz(A)) the bound (respectively the R-bound) of Rg. One can replace
in the above definitions Rg by the set
Ry ={AN—-A)"1; xexs).

In that case, we denote the uniform bound and the R-bound by Mﬁ (A) and @(A)
This notion of R-sectorial operators is related to the maximal regularity of type LP by the following result
due to [46] (see also [11, p.45]).

Theorem 3.3. Let X be a UMD Banach space and A a densely defined, closed linear operator on X. Then the
following assertions are equivalent:

1. For any T € (0,00] and for any f € LP(0,T;X), the Cauchy problem
v =Au+f in (0,7), u(0)=0 (3.2)
admits a unique solution u with v, Au € LP(0,T; X) and there exists a constant C' > 0 such that
1w e 0, 120) + [ Aul| L 0,752) < Clfllr0,1320)-

2. A is R-sectorial of angle > 3.

We recall that X' is a UMD Banach space if the Hilbert transform is bounded in LP(R; X) for p € (1, 00).
In particular, the closed subspaces of L4(f2) for ¢ € (1,00) are UMD Banach spaces. We refer the reader to [2,
pp.141-147] for more information on UMD spaces.

Combining the above theorem with [13, Theorem 2.4] and [44, Theorem 1.8.2], we can deduce the following
result on the system

W =Au+f in (0,00), u(0)= uop. (3.3)

Corollary 3.4. Let X be a UMD Banach space, 1 < p < oo and let A be a closed, densely defined operator in X
with domain D(A). Let us assume that A is a R-sectorial operator of angle > T and that the semigroup generated
by A has negative exponential type. Then for every ug € (X, D(A))1-1/p,p and for every f € LP(0,00;X), the
system (3.3) admits a unique solution in LP(0,00; D(A)) N WP(0, 00; X).

Let us also mention, the following useful result on the perturbation theory of R-sectoriality, obtained in [29,
Corollary 2].
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Proposition 3.5. Let A be a R-sectorial operator of angle 8 on a Banach space X. Let B : D(B) — X be a
linear operator such that D(A) C D(B) and such that there exist a,b > 0 satisfying

[Bz|lx < allAz|x +bllzllx (€ D(A)). (3.4)
If
a < 1N and A\ > bMéEA)RﬁiA) ,
Ms(A)Rs(A) 1 —aMg(A)Rps(A)

then A+ B — X\ is R-sectorial of angle 3.

4 Linearized System

In order to study the system (2.9), we linearized it and use the theory of the previous section. To this aim, we
introduce the operator 7 : L?(S) — L?(9F) defined by

(Tn)(y) = (Pmn(s))es if y=(s,0) €,

(To))=0 i yeT )
We consider the following linear system

0w —divT(v,m) = f in (0,00) x F,
dive =0 in (0,00) x F,
v="Tn on (0,00) X OF
O = ma in (0,00) x S, (4.2)
oo + Py (A2m1) — Agno = — P, (T(’U,ﬂ')h"seg . 63) + Pph in (0,00) X S,
m=Vsn-ns=0 on (0,00) x 98,
m(0,)=ninS, n2(0,-) =73 inS, v(0,-) =2"in F.

One can simplify the system (4.2): using that dive = 0 in F and v; = v2 = 0 on I's we deduce that
(Dv)|rges - es = 0. Thus

—-P,, (T(U, 7)|re€s - 63) = VT,

where 7, is the following modified trace operator:
1 .
Ymf = P (flrs) = f(-,0) — E/Sf(s',O) ds' (f € WH(F) with r > 1/q). (4.3)

This cancelation plays no role in our result and is only used to simplify the calculation.

4.1 The fluid operator
Here we recall some results on the Stokes operator in the L? framework. Let us introduce the Banach space
Wi, (F) ={p € LUF) ; divp € LI(F)},
equipped with the norm
lellws ) = llellLaF) + | divel L)

We recall (see, for instance, [17, Lemma 1]) that the normal trace can be extended as a continuous and surjective
map

Y2 Wi (F) = WY 24(OF),
gar—><p'n.
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In particular, we can define
LIF)={pe LYF); divp=0 inF, op-n=0o0ndF}.
We have the following Helmholtz-Weyl decomposition (see, for instance Section 3 and Theorem 2 of [17]):
LY(F) = LLF)® GI(F), where GUF)={Vp; pcW"I(F)}.

The corresponding projection operator P from L4(F) onto LZ(F) can be obtained as

where ¢ € W14(F) is a solution of the following Neumann problem
. . dp
Ap =divf in F, a—nzf-n on O.F, (4.5)

that is a solution of

/wvw dy:/ foVedy (e W (F)),
F F

where ¢’ is the conjugate exponent of q.
Let us denote by Arp = PA, the Stokes operator in LZ(F) with domain

D(Ap) = W»U(F) N Wy I(F) N LL(F).

Theorem 4.1. Assume 1 < g < co. Then the Stokes operator Ar generates a C°-semigroup of negative type.
Moreover Ap is an R-sectorial operator in LL(F) of angle 8 for any B € (0,7).

For the proof, we refer to Corollary 1.2 and Theorem 1.4 in [19].

4.2 The structure operator

Let us set
Xs = Work(S) x LE(S)

and let us consider the operator Ag : D(As) — Xs defined by

0 Id
D) = (W) nWEA(S) x WEAS), As=(_p 2 W)

where P, is defined by (1.8).

Theorem 4.2. Let us assume that 1 < q < co. Then there exists y1 > 0 such that Ag — v1 is an R-sectorial
operator on Xg of angle 51 > /2.

Proof. We first consider
X9 =W US) x LY(S)

and the operator A% defined by

D(A%) = (W4»Q(s> mwng(S)) x W2U(S), A% = (OAQ IAd).

Applying Theorem 5.1 in [12], we have that A% is R-sectorial in X of angle By > /2.
Now we can extend Ag on D(AY%) by Ag = A% + Bg where

_ 0 0 s 1
o ((Id —P) A2 0) o (d=Bn)Am = | (VAm) s ds.
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Using standard result on the trace operator, we see that Bg satisfies the hypotheses of Proposition 3.5 and
in particular for any a > 0 there exists b > 0 such that (3.4) holds. Therefore, there exists v; > 0 such that

As — 71 is an R-sectorial operator on X< of angle .
Let A # 0, (g1,92) € Xs and (n1,72) € D(AY) such that

e m g1
A—A = )
K= As) M [92]
We can write this equation as
AL —1m2 = g1 inS,
>\772 + PmA2771 - AUQ = g2, in S,
m=Vsn -ns=mnm =V -ns=0  ondS.

Integrating the first two equations over S we find that (n1,72) € D(Ag). Thus

(= 4g)7] =49

Using basic properties on R-boundedness, we deduce the result. O

4.3 The fluid-structure operator

In this subsection we rewrite (4.2) in a suitable operator form. The idea is to eliminate the pressure from
both the fluid and the structure equations. To eliminate the pressure from the fluid equation we use the Leray
projector P defined in equation (4.4). Following [39], we first decompose the fluid velocity into two parts Pv and
(Id =P)v. Next, we split the pressure into two parts, one which depends on Pv and another part which depends
on 72. This will lead us to an equation of evolution for (Pv,n1,72) and an algebraic equation for (Id —P)v.

The advantage of this formulation is that the R-boundedness of the fluid-structure operator can be obtained
just by using the fact that the operators Arp and Ag are R-sectorial and a perturbation argument. This idea
has been used in several fluid-solid interaction problems in the Hilbert space setting as well as in L9-setting
(see, for instance, [41, 27, 36, 34] and the references therein).

Let us consider the following problem :

—divT(w,v) = f inF,
divw =0 in F,
w="Tg ondF, (4.6)

/fwdx:O.

From [43, Proposition 2.3, p. 35], we have the following result:

Lemma 4.3. Assume 1 < ¢ < co. For any f € LY(F) and g € W&’%(S), the system (4.6) admits a unique
solution (w, ) € W4(F) x WLI(F).

This allows us to introduce the following operators: we consider
Dy € LWeih(S),W4(F)) and Dy € LIWgih(S), W, !(F)) (4.7)

defined by
Dyg=w, Dpg=1, (4.8)

where (w, ) is the solution to the problem (4.6) associated with g and in the case f = 0.
Second, we consider the Neumann problem

Ap=0in F, a—"O:honé']-', /godx:(). (4.9)
871 F
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Let us denote by N the operator defined by
Nh = . (4.10)

Using classical results (see for instance Theorem 4.2 and Theorem 4.3 of [33]), we have the following properties
of N:
N € L(Wa VUOF), WEI(F)), N € L(Wn'/"(0F), WL (F)),

4.11
N € LL,(0F), Wi /175 (7), -
for any e > 0. We recall that Wi, /99 (0F) is defined as follows:
W /29(0F) = {h € WYHOF) 5 (0 1)y ssaa g -vsarr = 0} (4.12)
where ¢’ the conjugate exponent of g.
We also define
. g(s) if y=(s,0)€lg,
Nsg = Nh th  h(y) = 4.13
sg=Nh with h(y) {0 P (1.13)
From the above properties of NV, we deduce that
Ns € L(LE,(S), Wt/ a=4(F)), (4.14)
for any € > 0.
Finally, we introduce the operator Nyw € L(LI(F), WL4(F)) defined by
Nuw [ = o, (4.15)

where ¢ solves (4.5).
Using the above operators, we can obtain the following proposition. The proof is similar to the proof of [36,
Proposition 3.7]. For the sake of completeness, we provide a short proof here.

Proposition 4.4. Let 1 < p,q < oco. Assume

ve WI},V;((()’OO)?]:)) IS I/p(o7007 WTZQ(‘F))’
e Wﬁjj((Opo);S), N2 € W;ﬁ’q?(((),oo);g).

Then (v, m,m1,m2) is a solution of (4.2) if and only if

Pv' = ApPv — ApPDyny + Pf in (0,00),

Oy = 1o in (0,00),

(Id 49, Ns)0¢n2 + P A0y — Any = 4, N(VAPv - 1) + Pph + v Naw [ in (0, 00), (4.16)
[P, .2 (0, ) = [P, n?,m3] " '
(10—P)o = (10—P) Do in (0,00),

7= NWAPv-n) — NsOina + Naw f in (0,00).

Proof. Considering the equation satisfied by (v — Dyg, ™ — Dyg), we obtain (4.16), and (4.16). Using (4.4) and
(4.5), it follows that A(Id —P)v = 0 in F. Thus applying the divergence and normal trace operators to (4.6),
we infer that

oY

Ay =divf in F, a—=f~n+VA’Pv-n—T8tn2~non8]:. (4.17)
n

Note that div APv = 0 and therefore APv - n belongs to Wrﬁl/ 299 F). The expression of 1/ then follows from
the definition of the operators N, Ng and Npw defined in (4.10), (4.13) and (4.15) respectively. Finally, using
the expression of the pressure 7 we can rewrite the equation satisfied by 7, as in (4.16),. O
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In the literature, the operator
Mg :=1d +v,, Ng

is known as the added mass operator. We are going to show that it is invertible.

Lemma 4.5. The operator Mg = Id+,,Ng € L(L%,(S)) is an automorphism in W9(S) for any s € [0,1).
Moreover, Mg' —1d € L(L3,(S), W54(S)), for any s € [0,1). In particular, Mg" —1d is a compact operator on
L3.(S).

Proof. At first, we show that Mg is an invertible operator on L% (S). Since
YmNs € L(LE,(S), Wy =(S)),
for any e € (0,1], it is sufficient to show that the kernel of Mg is reduced to {0}: assume
(Id +4mNg) f = 0. (4.18)

Then f € WL=549(S) C L2,(S) for € small enough. In particular (see (4.13)), ¥ = Ngf € H(F) is the weak
solution of

AY=0in F, @:fonfs, — =0on I.
on on

Multiplying (4.18) by f and using the above system, we deduce after integration by parts,

Id +7,, N, ds = 2d VY92 dy = 0.
/S[( tymNs)f] f ds /Sf s+/f| 2dy=0

Thus f = 0 and Mg is an invertible operator on L% (S). Let s € [0,1) and f, € W54(S). By the above argument,
there exists a unique f € L% (S) such that

(Id +ymNs)f = fo-

As vy Ngf € W59(S) we conclude that f € W59(S). Thus Mg is an invertible operator on W359(S). Finally,
the compactness of the operator Mg 1 _1d follows from the following identity

Mgt —1d=Mg' — Mg'Mg = —Mg'7,,Ns.

O
We are now in a position to rewrite the system (4.2) in a suitable operator form. Let us set
X =Li(F) x Xs (4.19)
and consider the operator Apg : D(Aps) — X defined by
D(Aps) = {[v,m,m]" € [W29(F) N LL(F)] x D(As) 5 v~ PDyne € D(AF) },
and
Arps = AYg + Brs,
with
Ap 0 —ApPDy
Abg:= 10 0 Id (4.20)
0 —P,A? A
and
0 0 0
Brs = 0 0 0 . (4.21)

M Yy NWA() -n) —(Mg' —1d)P,A% (Mg' —1d)A
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Combining Proposition 4.4 and Lemma 4.5, we can rewrite the system (4.2) as

d Pu Pv Pf Pv P

7 lm| = Aps {m |+ [0 |, |m|©)=/|n ], (4.22)

t T 0

72 72 h 72 3
(14 ~P)v = (1d—P) Dy, (4.23)
7= NWAPv-n) — NsOina + Naw f, (4.24)

where 7

h=Mg'P,h+ Mg 'y, Nuwf. (4.25)

4.4 R-sectoriality of the operator Apg.
In this subsection we prove the following theorem

Theorem 4.6. Let 1 < g < oco. There exists y2 > 0 such that Aps — 72 is an R-sectorial operator in X of angle
> 7/2. Moreover the operator Apg generates an exponentially stable semigroup on X : there exist constants
C >0 and By > 0 such that

et 4o 0, )L < o 0 05 0) (426)
Proof. Observe that

0t M= AR AR\ — AR)TITPDAN — Ag) !
AA=Ars) = 0 AMA—Ag)! ’

where D, [f1, fg]—r = D, f5. Using a standard transposition method and Lemma 4.3, we see that
D, € L(LL(S), LY(F)). (4.27)

Therefore by Theorem 4.1 and Theorem 4.2, there exists v > 0 such that A% g — 7 is R-sectorial operator in X
of angle > 7/2.

Next, we want to show Brg € L(D(AFrs), X) is a compact operator. Assume [v,71,72] € D(Apg). Then
Av € Li(F) and div Av = 0 and thus from the trace result recalled in Section 4.1,

(Av) -n € W, Y99 F).
This yields N((Av) -n) € WL4(F), vmN((Av) - n) € Wnlfl/q’q(S) and, using Lemma 4.5,
Mg 'y N((Av) - n) € W H/e4(S).
On the other hand, using again Lemma 4.5, we deduce
(Mg —1d)P,, A% € LWH(S), W =4(S)), (Mg —Id)A € LIWEYS), W =9(S))

for any € > 0. Therefore, Brs € L(D(Ars),X) is a compact operator and by [14, Chapter III, Lemma 2.16],
Brs is a A% g-bounded operator with relative bound 0. Finally, using Proposition 3.5 we conclude the first part
of the theorem. In particular Apg generates an analytic semigroup and to show the second part of the theorem,

it is sufficient to show that
Ct={\eC; ReA >0} C p(Ars)-

Moreover, using that Apg has a compact resolvent and the Fredholm alternative theorem, we can show the
above relation by proving that ker(A — Apg) = {0} for X\ € C*. Assume A € C* and

(v, 1,1, 112) € WPU(F) x W t(F) x Wt(S) x Wii(S)
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satisfy

Av—divT(v,7) =0 in F,
dive =0 in F,
v="T on OF,
2 , (4.28)
A —n2 =0 in S,
)\772 + P’rnAQ'r]l - ATD = TYmT in 87
m=Vsm -ns=0 on OS.
First we notice that
(v, 7,m1,m2) € WH2(F) x W 2(F) x Wi (S) x WH2(S). (4.29)

If ¢ > 2 then it is a consequence of Holder’s inequality. Let us assume that 1 < ¢ < 2 and let us take \g € p(Aps)
(see Theorem 4.6). We have
(Mo = Aps)[v,m1,m2] T = (Ao — Ao, m1,m2] "

By following the calculation done in Section 4.3, we see that the system (4.28) can be written as

Pu Puv
M—Ars) [m | =Ko—A) | m |,
2 72

(Id =P)v = (Id —P)Dyns2,
7= NWAPv-n) — ANgns.
Since W24(F) C L3(F), W24(S) C L*(S) and (A\g — Aps) is invertible, we deduce (4.29).
Using (4.29), we can multiply (4.28), by v and (4.28), by 72, and we obtain after integration by parts:

)\/ o]? dy—|—21// D)2 dy—&-A/ s ds+X/ A P ds+/ Va2 ds = 0.

F F s s s

Since ReX > 0, from the above equality and using the boundary conditions we obtain that v =7 =1n; =1y = 0.
This completes the proof of the theorem. O

In order to obtain a result of well-posedness on the system (4.2), we need to impose some compatibility
conditions on the data:

=V -ns=0 ondS, /775J ds =0, /778 ds =0, dive®=0in F, (4.30)
S s
and 1 .
vo-n:Tn2~n on OF if -4+ —=—>1,
P 2q
1 1
v =Tne ondF, ny=0 ondS if ];+2—q<1, (4.31)
. 1 1 1
Vsng~n3=00n88 if §+?q<§
We deduce from Theorem 4.6 the following result
1 1 11 1
Corollary 4.7. Let p,q € (1,00) with ’ + % * 3D + % #1 and let B € [0, By], where By is the constant in
Theorem 4.6. Assume
W e BXOTYP(F), i € BIGTHYP(S), ng e BIGTP(S), (4.32)

f € L5(0,00; LYF)), h e LE(0,00; LY(S))
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satisfy the compatibility conditions (4.30) and (4.31). Then the system (4.2) admits a unique strong solution

ve W;,iﬁ((o’ o) F), mE Lg(o, 00; iniq(]:)),
m € Wi 5((0,00);8) N LP(0, 005 LY, (S)),
2 € W2 5((0,00);8) N LP(0, 005 L, (S)).

Moreover, there exists a constant Cy, depending on p,q and the geometry such that

”UHW;)’;ﬁ((O,oo);]-') + ||7T||Lg(o,oo-,w71{q(}-)) + ||771||W;,;ﬁ((0700);8) + Hn2HW$:§)B((O,oo);S)
< CL(HUOHB%II)—UP)(]_—) + Hn?”BSfS*””(s) + Hng”B;(;q/p)(s)
+ ||f||Lg(0,oo;Lq(f)) + ||hHLZ(O7oo;L'1(S))>' (4.33)

Proof. Let us first consider the case § = 0. Using (4.25), (4.15) and Lemma 4.5 we can also verify that
h € LP(0,00; L2, (S)).

The compatibility conditions (4.30), (4.31) and the interpolation results [3, Theorem 3.4] and [4, Theorem
4.9.1 and Example 4.9.3]) yield

T
[onangang] € (X5D(AFS))1—1/p,p

and T
[Pf,0,h] € LP(0,00; X).

From Theorem 4.6, we know that Apg generates an analytic exponentially stable semigroup on X and is a
‘R-sectorial operator on X. Therefore by Corollary 3.4

(Pv,m1,1m2) € LP(0,00; D(AFs)) N Wl’p(O, 00; X).

We deduce from (4.23), (4.7) and (4.27) that v € W,:2((0,00); F) and next using relations (4.11), (4.14) and
(4.15), we obtain 7 € LP(0, c0; W,L9(F)).

The case 8 > 0 can be reduced to the previous case by multiplying all the functions by e?* and using the
fact that Apg + B is a R-sectorial operator and generates an exponentially stable semigroup. O

5 Local in time existence

The aim of this section is to prove Theorem 1.1 and Theorem 2.2. Throughout this section we assume the
following

Assumption 5.1. 1) =0, (p,q) € (1,00) satisfies (1.15) and (n3,v°) satisfies (2.18), (2.19), (2.20).
For T'> 0 and R > 0, we define St g as follows
St,r = {(fa h) € LP(0, T3 LY(F)) x LP(0,T5 LU(S)) 5 [ flleo,rLa) + 1hllLeo,miLa(s)) < R}~ (5.1)
In order to prove Theorem 2.2, we show that for R fixed and for T" small, we can define the map
Nrr:Str — St (f,h) — (F(v,m,m), H(v, 7, 1)), (5.2)
where (v, 7, n) is the solution to the system (4.2) in (0,T") x F (see Corollary 4.7) and where F' and H are given
by (2.13)-(2.14). Then we show that for 7' small enough and R fixed N7 r(St,r) C St.r (see Proposition 5.2

below) and that, N7 grls, , is a strict contraction (see Proposition 5.3 below). This shows that N7 r admits a
unique fixed point and allows us to deduce Theorem 2.2.
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First, we deduce from Corollary 4.7 that
ollwz2omy7) + 17l oo riwiio iy + 1lwzso,mys) < CUR I g2a-1/m 2y + 121l g23-17m sy + R)- - (5:3)

We take in what follows
= 191 gz-1m z) + I8l g2 s
and the constants below may depend on R, but not on 7. In order to simplify the computation, we also assume
that T € (0,1).
With these conventions, by using [45, (7), p.196], we have that for any s; € (0,2(1 — 1/p)), with s; not an
integer,
11l Lo 0,75 2+5100(8)) + Inllwro 0, mws19(8)) + [Vl Lo 0,75we1.0(F)) < C. (5.4)

Since 7(0, ) = 0, we have

Il L= 0. 72w (syy < CTYP(10m| Lo (0.msw2a(sy) < CTHP' . (5.5)

Thus, by interpolation between (5.4) and (5.5) ([44, Theorem 2, p. 317]), we deduce that for any s; € (0,2(1 —
1/p)), there exists € = (s1) > 0 such that

70| oo 0,752+ 51.0(5)) < CT*. (5.6)

From (1.15), there exists s; € (0,2(1 — 1/p)), such that s; + 1 > 3/¢ and thus with the Sobolev embeddings,
we deduce that

||77HL0<>(0,T;01(§)) < OT. (5.7)
Therefore, for T' small enough, 7(¢,-) satisfies (2.1) for all ¢ € [0,7] where ¢y is defined in (2.5). We can
thus construct X by (2.6) so that X (¢,-) is a C'-diffeomorphism from F onto F(n(t)). We can also consider

F(v,m,n) and H(v,m,n)) given by (2.13)-(2.14). In order to estimate these expressions, we also note that by
(real or complex) interpolation ([44, Theorem 2, p. 317]) for 6 € (0, 1),

lo(t, lwzaiz) < Cllvt ) igdhagm 0 2oy, 2= 20+ (1= 0)s1,

if s5 is not an integer. We can find 0 € (0,1/3) and s; € (0,2(1 — 1/p)) such that s2 > 2/q so that by Sobolev
embeddings,

[oll s 0,75280()) < CT* HU||L°° 0,T;W51-4(F)) ||v||%P(O,T;W2’<1(]-')) <CT* (5.8)

and similarly,
V20l Lov 0,3 3a(s)) + [0emll Lav 0,3 30(s)) < OT*, (5.9)
IVl aore 0,7 2802 (7)) + IVl owr2 0,1s280/2(8)) + V5Ol anrz 0,1 100/2(s)) < CT. (5.10)

We are now in position to prove the following result:

Proposition 5.2. With the above assumptions (in particular Assumption 5.1), there exists T > 0 small enough
such that the map Nt g (see (5.2)) is well-defined and satisfies N, r(St,r) C St,R-

Proof. From (2.4) and (5.7), we deduce that for T' > 0 small enough

IVX = I3[ Lo (0,100 (7)) + IVY(X) = Isll Lo (0,700 (7))
+a(X) = Il g 0,00 @) + 10 = Il e o700y < CT7, - (5.11)

3
| det(VX) — 1||Loo(0,T;CO(?)) < OT”, < | det VX||Loo(o,T;c°(?)) < 9 (5.12)

1
2
)

VX oo 01007y + IVY (X)) e 0,700 @) + 16X Lo 0.7,00F)) + 10l £oc 0,7:00F)) < C- (5.13)
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We recall that a and b are defined by (2.11).
By using standard properties of linear algebra, we have that

VX
and thus for all i, j, k,
8@1‘
‘ 3;()()‘ <CIVX|<C (Il +[Venl +1V2n]) , (5.15)
J
82ai 2
' S (0| < O (|V2X [+ [VAX]) < C ((Inl + Vol + V20])” + [Vin] ). (5.16)
J
0:a(X)| < O (|V2X| + |[VE:X]) < C (Inl + [Venl + [Vin| + [V0in]) - (5.17)
We also have
10,Y (X)] < C|oX] < Clognl, (5.18)
%Y,
‘ax‘z( <SCOVEX| < C(Inl + [Vl +[VEnl) - (5.19)
J

Combining the above estimates with (5.8), (5.9) and (5.10), we deduce that F' defined by (2.13) satisfies

1 Cos 70 M 2o 0,750 ) < O (5.20)

Using trace theorems, we deduce from (5.3) and from (5.10) that

IVVllLeo,r;pa07)) < €, vl Lsvrz(0,1;050207)) < CTF.
From this relation, the above estimates and (5.9), (5.10), we deduce that H defined by (2.14) satisfies
1 ) o g0y < COT7 (5.21)
Relations (5.20) and (5.21) yield that N (Br,g) C Br g for T small enough. O

Proposition 5.3. With the above assumptions (in particular Assumption 5.1), there exists T > 0 small enough
such that the map Nt r (see (5.2)) is a strict contraction on Sr g.

Proof. The proof is similar to the proof of Proposition 5.2, we only give the main ideas and omit the details.
We consider (f®,h("), i =1,2. We have

NT,R(f(l), h(l)) _ NT,R(f@), h(2))
— (F(U(l)’ﬂ(l)m(l)) _ F(U(Q),W(Q),n(g)),H(v(l),w(l),n(l)) _ H(U(Q))ﬂ-@)’n@)))’ (5.22)

where (v, 7 5(*) is the solution to the system (4.2) in (0, T)xF (see Corollary 4.7) associated with (£, h(?)),

¢ = 1,2 and where F' and H are given by (2.13)-(2.14). By taking T as Proposition 5.2, we have for each ¢ that

(v(i), 7@, n(i)) satisfies the same property obtained in the proof of Proposition 5.2 and in particular, X, Y ®,

a®, b defined by (2.6) and (2.11) satisfy also the same properties obtained in the proof of Proposition 5.2.
We write

v =) _ @

S ) W _ @ p o pO @ g ) @)

, N=1
Applying Corollary 4.7, we first obtain

HU”Wp (o,ry;F7) T H7T||Lp(0 rwkar)y T H77||W]§;;‘((0,T);5) S CUIfllero 750y + 1Pl Lo (o,1;L0(5)))- (5.23)
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As in the proof of Proposition 5.2, the constants below may depend on R, but not on T" and we assume T' € (0, 1)
to simplify. Following the proof of (5.7), we can obtain

0l L0700 @)y < CT(If e 0,7520(7)) + 1Bl Le0,7;09(5))) (5.24)
and following the proof of (5.8), (5.9) and (5.10)7 we deduce
[vll L2e 0,127y + IV 20l L20(0,75220(5)) + [10en|| L20 (0,7;120(5))
< CTE(”fHLP(O,T;LQ(J-‘)) + ||h||LP(o7T;Lq(3))) (5.25)

and

Vol Lar/2 (0,75 3072 (F)) + HV§W||L3p/2(o,T;L3q/2(s)) + IV 50l Lavr2(0,7;030/2(s))
S CT*([flzeo,750(7)) + 1Bl Lo (0,1500(5)))- (5.26)
Using trace theorems, we deduce from the above estimates that
Vol Lo o,7;0007)) < CUflLro,msza 7)) + 1l Leo,1509(8)))
vl 3w r20, 1802 07)) < CT (I fllLe(0,7;0a(F)) + 1Bl Le(0,7;4(5)))-
We also deduce from the above estimate and from (2.6) that
IVXD = VX e o 7,000 + 1TV OXD) = VYO KD o 1,000
+[la® (X M) - a(Q)(X(Q))”Loo 0,7;00(F)) T o™ — b(Q)HLoo(o T;00(F))
| det(TXD) = det(VX )] e o 10y < CT (oo im0y + Bl oo minacsy)- (5:27)

From (5.14) and from the above estimates, we obtain for all 7, j, k,

dall aa
Tj(X(l)) Or. (X(Q)) <C|V? n+CT([[fllzro.1;LeF) + Al Lr 0,1 L9(5))) (|V§7](1)| + W?UQ)D ; (5.28)
J Lj
32 a2a(2)
Mzwm>—£%um><c«w%W+w 1) V2 + Vil )
J J

+ CT=(If s 70 + Il oo,izasn) (1+192D R + 93D 4+ 9232 4 [Vin®)) - (5.29)

‘ﬁta(l)(X(l)) _ ata(2)(X(2))’ <C (|v nl+ |V, 3m|)

+ CT(|fllze(o,1s2a(F)) + IRlleo,7;L0(5))) <1 + (V2| + |V33t77(1)|) , (5.30)

oy M (x W) — 3tY(2)(X(2))’ < Clom|+CT(|f e 0, 7;29F)) + 1Al Le0,7;19(5))) <|8m(1)| + |5t77(2)|) , (5.31)

(1)
82}/’@ X(l

a2y(2)

3xj

(X®)| < |V

+ CT*(| fllLe(o,r;9(7)) + Rl Le0,7;09(s))) (1 +[Vin M|+ |V§77(2)|) - (5.32)
Combining the above estimates with (5.11)—(5.19), with (5.8)—(5.10) and with (5.25)—(5.26), we deduce that

HNT,R(f(”,h(”) —NT,R(f@),h@))‘

LP(0,T;L4(F))x LP(0,T;L4(S))
< CT(Ifler o, 7529F)) + 1Pl L0, 7510(s)))- (5-33)
Thus for T small enough, we deduce the result. O
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6 Global in time existence

The aim of this section is to prove Theorem 1.2 and Theorem 2.3. The proof is similar to the proof of Theorem 1.1
and Theorem 2.2 given in Section 5. Throughout this section we assume the following

Assumption 6.1. (p,q) € (1,00) satisfies (1.15) and (n?,19,v°) satisfies (2.18), (2.19), (2.20).

Let us fix 8 € [0, Bo], where By is introduced in Corollary 4.7 and for R > 0, we define Sg as follows

S = { (f,h) € 50,00 L(F)) x 15(0,00,L9(S)) ; flgosieiry + Iz ocicisy < R} (61
We take in what follows
= 1%l g2/ () + 031|217 5 + 1l 21700

and to simplify the computation, we assume that R € (0,1).
In order to prove Theorem 2.3, we show that for R small, we can define the map

Ng:Sg —Sg (f,h)— (F(v,m,n),H(v,m,n)), (6.2)

where (v, 7, 1) is the solution to the system (4.2) in (0, 00) x F (see Corollary 4.7) and where F' and H are given
by (2.13)-(2.14). Then we show that for R small enough Ng(Sg) C Sg (see Proposition 6.2 below) and that,
NERls, is a strict contraction (see Proposition 6.3 below). This shows that Mg admits a unique fixed point and
allows us to deduce Theorem 2.3.

First, we deduce from Corollary 4.7 that

[llw22 (0,000 F 1Tl Lz (0,00wramy) F 0l (0,000:5) < COR- (6.3)
By using [45, (7), p.196] and the Sobolev embeddings, we deduce from the above estimate

1111 5 0,00:01. 3y < OR- (6.4)

Therefore, for R small enough, n(t,-) satisfies (2.1) for all ¢ € [0,00) where ¢ is defined in (2.5). We can thus
construct X by (2.6) so that X (¢, -) is a C'!-diffeomorphism from F onto F(n(t)). We can also consider F (v, m,n)
and H(v,m,n)) given by (2.13)-(2.14).

As in the previous section, we use (real or complex) interpolation results ([44, Theorem 2, p. 317]) to deduce
that

2/3
ot Mweza iy < Clolt L 0 im 00 S s

for any so < 2(1+ s1)/3. Using (1.15), there exists s; € (0,2(1 — 1/p)) such that s > 2/q so that by Sobolev
embeddings,

[0l 220 0,020y < CUNONZE 0 0oiwrer 0o 1015 0, o2y < CR: (6.5)
and similarly,
”vg’r]HLZ"(Qoo;L?‘q(S)) + Hat'r]||sz(o7oo;L3q(5)) <CR (6.6)
and [
||vv||LZT’/2(O,OO;L3Q/2(]:)) + HVﬁnHLgp/2(o7oo;qu/z(s)) + ||vsat77||sz/z(o,oo;mqﬂ(s)) < CR. (6.7)

Using trace theorems, we deduce from (6.3) and from (6.7) that

IVl £z (0,00;L907)) < OR, < CR. (6.8)

”””LZ‘)”(moo;mW(af))

We are now in position to prove the following result:
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Proposition 6.2. With the above assumptions (in particular Assumption 6.1), there exists R > 0 small enough
such that the map Ng (see (6.2)) is well-defined and satisfies Nr(Sr) C Sgr.

Proof. From (2.4) and (6.4), we deduce that for T' > 0 small enough

IVX = Iall L 0,00:00 7)) T IVY (X) = Bl L 0,00:00 7))
F[1alX) = T3]l L (0,00500F)) F 110 = Bll L2 0,00500 7)) < OR, - (6.9)

3

| det(VX) — 1||L;§°(0700;CO(?)) < CR, < |l det VX”Lgc(o,oo;cﬂ(?)) S 3 (6.10)

1
2
||VX||L;;°(0,oo;CU(?)) + ||VY(X)HL3°(0,OO;CO(?)) + ||a(X)HLg°(o,oo;CO(?)) + HbHL;O(o,oo;CO(?)) <C (6~11)

We recall that ¢ and b are defined by (2.11).
Using the above estimates, relations (5.15)—(5.19), (6.3), (6.5), (6.6), (6.7) and (6.8) we deduce that F' and
H defined by (2.13), (2.14) satisfy

| (v, Fv”)HLg(O,oo;Lq(]:)) + ”H(U?77’77>||L2(0,00;Lq(5)) < CR?, (6.12)

which yields that Nr(Sg) C Sg for R small enough. O

We can also prove the following result by following the method used to prove Proposition 5.3 (we omit the
proof).

Proposition 6.3. With the above assumptions (in particular Assumption 6.1), there exists R > 0 small enough
such that the map N (see (6.2)) is a strict contraction on Sg.

By combining Proposition 6.2 and Proposition 6.3, we deduce Theorem 2.3.
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