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Stability of Linear Lossless Propagation Systems: Exact Conditions via
Matrix Pencil Solutions

Silviu-Iulian Niculescu, Peilin Fu, and Jie Chen

Abstract— In this paper we study the stability properties of of
a class of linear lossless propagation systems. Roughly speaking,
a lossless propagation model is defined by a system of semi-
explicit delay differential algebraic equations, that is a system
of differential equations coupled with a system of (continuous-
time) difference equations. We show that the stability analysis
(delay-independent, delay-dependent, crossing characterization)
in the commensurate delay case can be performed by computing
the generalized eigenvalues of certain matrix pencils, which can
be executed efficiently and with high precision. The results ex-
tend previously known work on retarded, and neutral systems,
and demonstrate that similar stability tests can be derived for
such systems.

Index Terms— Propagation, delay, stability, switches, matrix
pencil.

I. I NTRODUCTION

In certain control problems, we encounter partial differ-
ential equations of hyperbolic type with mixed initial, and
derivative boundary conditions in feedback interconnection,
see, for instance, processes including lossless transmission
lines, steam and/or water pipes. As seen in [1], [5], such
models can be easily described by semi-explicit delay dif-
ferential algebraic equations, that is dynamical systems of
coupled differential, and (continuous-time) difference equa-
tion, where the elements of “interconnection” are represented
by the delay terms, constant or distributed. Several examples
in this sense can be found in [15], [21].

Using the terminology proposed by Halanay and/or
Răsvan in [14], [15], [27], and without any loss of generality,
we shall call such systems with “hybrid” structure aslossless
propagation systems, . As pointed out by [18], the theoretical,
and the numerical analysis of such systems is far from
complete even for the linear (relatively simple) case (see
also [2] for further discussions).

The aim of this paper is to give a complete characterization
of exponential stability of linear propagation systems in state-
space representation, under the assumption of commensurate
(rationally-dependent) delays. The considered approach is
based on the computation of the generalized eigenvalue of
some appropriate matrix pencils, and their distribution with
respect to the unit circle of the complex plane will give the
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stability type: delay-independent/delay-dependent, and in the
second case, the existence or not of several (stability) delay
intervals, that is the characterization of the crossing direction
of the roots of the characteristic equation as a function of
the delay parameter.

The derived conditions arenecessary, and sufficient, and
to the best of the authors’ knowledge, there does not exist
any similar results in the literature. Although the proposed
method follows the lines of previous works of the authors
devoted to retarded, and/or neutral systems (see, for in-
stance, [4], [10], [22]), however the construction is quite
distinct, and it makes use of some appropriatetransformation
of the original characteristic equation. It is important to
note that the approach considered in the paper allows to
handle unitarily both retarded, and neutral systems, and
opens the perspective to give complete solutions for the
stability characterization of thesingular delay systems in
terms of matrix pencils (both retarded, and neutral cases).
Such singular cases are not treated, since they are out of
the scope of the paper, but the way to solve them is briefly
outlined.

As in the retarded, and neutral cases, the advantage of
the method lies in itssimplicity, and in the fact that the
corresponding matrix pencils arefinite-dimensional. Finally,
the approach considered here allows some new insights for
the known retarded, and neutral cases.

The remaining paper is organized as follows: Section 2
includes some preliminary results on the stability of prop-
agation systems. Section 3 is devoted to the main results,
including delay-independent, and delay-dependent character-
izations using the distribution of the generalized eigenvalues
of some appropriate finite-dimensional matrix pencils. Vari-
ous comments and interpretations in the retarded, and neutral
cases are considered in Section 4. A (simple) illustrative
example is presented in Section 5, and some concluding
remarks end the paper. For the brevity of the paper, the proofs
of the results are omitted, but the underlying (main) ideas are
presented.

II. PROBLEM FORMULATION, AND PRELIMINARY

RESULTS

We begin with a brief description of our notation. LetIR
be the set of real numbers,C the set of complex numbers,
and IR+ the set of nonnegative real numbers. Denote the
open right half plane byC+ := {s : <(s) > 0}, the closed
right half plane byC+, and the imaginary axis by∂C+.
Similarly, denote the open unit disc byID, the unit circle by
∂ID, and the closed exterior of the unit disc byIDc. For any



z ∈ C, we denote its complex conjugate byz̄. For a matrix
A, denote its spectrum byσ(A), and its spectral radius by
ρ(A). Let A⊕B denote the Kronecker sum, andA⊗B the
Kronecker product, of the matricesA andB (see, e.g., [12]).

In the sequel, we shall focus on the following system:




ẋ1(t) = Ax1(t) +
m∑

k=1

Bkx2(t− kτ)

x2(t) = Cx1(t) +
m∑

k=1

Dkx2(t− kτ),
(1)

where xi ∈ IRni , for i = 1, 2, and under some ap-
propriate initial conditions on(x1(0), x2t(·)) ∈ IRn1 ×
C([−mτ, 0], IRn2 , wherex2t(·) denotes the restriction to the
interval [t−mτ, t], translated to[−mτ, 0].

Further remarks, and examples concerning the cases when
the matrixC is not invertible, and whenn1 6= n2 can be
found in [25]. The fact that we have the same number of
delays in both differential, and (continuous-time) difference
equations does not represent a restriction since we may
consider the corresponding matricesBm = Bm−1 = . . . =
Bm1+1, or Dm = Dm−1 = . . . = Dm2+1 matrices equal to
0, where the corresponding positive integersm1,m2 < m
satisfym1 6= m2 etc.

Remark 1 (differentiation index):As mentioned in the In-
troduction, the lossless propagation system belongs to the
class of semi-explicit delay differential algebraic equations.
If we use the differentiation index1, the system (1) appears
as a neutral delay differential algebraic system of index1
(see also [18]).

Remark 2: It is easy to see that ifn1 = n2 = n, Dk = 0,
for all k = 1, . . . , m, andC = In, the system (1) rewrites as
a standard retarded (delay) system. Similarly, ifn1 = n2 =
n, C = In, and there exist at least one positive integerk0,
such thatDk0 6= 0, (1) rewrites as a linear neutral system.

Notice that there is no any rank constraint on the matrixC,
fact which opens the possibility to treat also some (particular)
singular cases for neutral systems.

In the stability analysis of (1), as seen in [16], [17], [21],
one needs explicitly the stability of thedifference operator
D : C([−mτ, 0], IRn2) 7→ IRn2 , and defined by

D(φ) = φ(0)−
m∑

k=1

Dkφ(−kτ). (2)

The stability condition is given by:

Lemma 3:The difference operatorD defined by (2) is
stable if and only if:

ρ(D) < 1, (3)

1the minimum number of times to differentiate the algebraic equation
(the continuous-time difference equation in our case) in order to determine
the derivatives ofx2 as continuous functions ofx1, andx2 [13]

where

D :=




D1 · · · Dm−1 Dm

I · · · 0 0
...

.. .
...

...
0 · · · I 0


 . (4)

Furthermore, the stability is guaranteed for all positive delay
valuesτ .

Let us consider now the case free of delays (τ = 0). We
shall say that (1) withτ = 0 is exponentially stableif the
corresponding characteristic equation defined byP(s; 0) has
all its roots inC−. With the assumption (3), it follows that
the exponential (or asymptotic) stability of the system free
of delays is reduced to theHurwitz stabilityof the matrix

A +
m∑

k=1

Bk

(
In2 −

m∑

k=1

Dk

)−1

C.

Further comments for the stability of propagation models in
the single delay case can be found in [21].

III. M AIN RESULTS

Introduce now the following matrix pencils:

Λi(z) = zUi + Vi, i = 1, 2 (5)

whereUi, Vi are given by:

U1 =




I
. ..

I
Hm


 , (6)

V1 =




0 −I · · · 0
...

...
. ..

...
0 0 · · · −I

H0 H1 · · · Hm−1


 , (7)

U2 =




0 −
m∑

k=1

Bk

0 −
m∑

k=1

Dk




, (8)

V2 =
[ −A 0
−C In2

]
, (9)

where the identity, and zero matrices have appropriate di-
mensions, and the matricesHk, k = 1, . . . , m are given as
follows:

H0 =




A⊕AT 0 In1 ⊗ CT

C ⊗ In1 −In1n2 0
In1 ⊗BT

m 0 In1 ⊗DT
m


 , (10)

Hk =




0 Bk ⊗ In1 0
0 Dk ⊗ In1 0

In1 ⊗BT
m−k 0 In1 ⊗DT

m−k


 ,

for all 1 ≤ k ≤ m− 1, (11)

Hm =




0 Bm ⊗ In1 0
0 Dm ⊗ In1 0
0 0 −In1n2


 . (12)



The construction of the matrix pencilsΛi, i = 1, 2 leads to
the following result, similar to the one developed in [22] in
the context of retarded delay systems:

Lemma 4:Assume thatρ(D) < 1. If the original system
free of delay is asymptotically stable, then the matrix pencils
Λ1, andΛ2 are both regular.

A. Delay-independent stability

Using the preliminary results, and the notations above, we
have the following:

Theorem 5:Consider the system (1), and assume that
ρ(D) < 1. Then the lossless propagation system is delay-
independent asymptotically stable if and only if:

(i) the system free of delay is asymptotically stable, and
(ii) the matrix pencilΛ1 has not generalized eigenvalues

on the unit circle, or if it does, all its generalized
eigenvaluesz0 on the unit circle are also generalized
eigenvalues of the matrix pencilΛ2 such that:

mΛ1(z0) = mΛ2(z0)2, (13)

where mΛi
(z0) (i = 1, 2) denotes the (algebraic)

multiplicity of the generalized eigenvaluez0 of the
corresponding matrix pencilΛi (i = 1, 2).

Proof idea: Some tedious algebraic manipulations prove
that the condition (ii) above is equivalent to the fact that
the characteristic equation associated to (1) has no roots
on the imaginary axis for all positive delaysτ . Using the
continuity type property of the roots with respect to the delay
parameter (in the sense of Datko [8]) and the arguments
presented in [11], [21] for the retarded case, the equivalence
between the delay-independent stability and the conditions
(i)–(ii) above follows2.

Theorem 5 simply states that the delay-independent sta-
bility problem for lossless propagation systems is reduced to
the computation of the generalized eigenvalues of two ap-
propriate finite-dimensional matrix pencils. The distribution
of these eigenvalues with respect to the unit circle of the
complex plane gives the type of stability:delay-independent
(no eigenvalues, or eigenvalues exist, but satisfying some
particular properties), ordelay-dependentstability.

Remark 6:As seen in Remark 2, the result above allows
to handleunitarily the delay-independent stability of retarded
and neutral systems. To the best of the authors’ knowledge,
there does not exist any similar approach in the open
literature.

Remark 7 (Single delay. Interpretations):In the case of a
single delay, that ism = 1, Λ1 rewrites as:

Λ1(z) = zH1 + H0,

whereH0, andH1 are given by (10), and (12), respectively.
Furthermore, the conditionρ(D) < 1 reduces toρ(D1) < 1,
that is the matrixD1 should be Schur-Cohn stable.

2See the full version of the paper [24] for a complete proof.

Some simple algebraic manipulation allow to rewrite the
system (1) as a single delay propagation model defined as
follows:



ẋ1(t) = Ax1(t) + [B1 . . . Bm] y(t− τ)

y(t) =

[
C
0

]
x1(t) +




D1 · · · Dm−1 Dm

I · · · 0 0
...

. . .
...

...
0 · · · I 0


 y(t− τ),

wherey(t)T = [x2(t)T . . . x2(t − (k − 1)τ)T ]T , and the
zero blocks have appropriate dimensions. Theorem 5 applied
to the single delay propagation model above will lead to a
different form for the matrix pencilΛ1, which is equivalent
to the form (5).

Remark 8 (Singular case. Discussions):Consider the sin-
gle delay case in (1), but withD1 = 0. It is easy to see
that the corresponding retarded system simply rewrites as a
singular delay system (in the state-variablext) of the form:

Eẋ(t) = Fx(t) + Gx(t− τ),

where the state-vectorx is given byxT = [xT
1 xT

2 ]T , and
E, F , G are appropriate real matrices inIR(n1+n2)×(n1+n2),
with E = diag(In1 , 0), and the pair(E,F ) regular in the
sense proposed by Dai [7].

In conclusion, the approach above can be applied to handle
also this case, and to the best of the authors’ knowledge, there
does not exist any complete solution for the corresponding
delay-independentstability problem.

B. Delay-dependent stability
Under the assumption that the system free of delay is

asymptotically stable, we can explicitly compute thedelay
margin, that is thefirst delay-intervalguaranteeing asymp-
totic stability if the conditions of the Theorem 5 do not hold.
Introduce now the following complex matrix:

A(z0) = A +

m∑
k=1

Bkzk
0

(
In2 −

m∑
k=1

Dkzk
0

)−1

C, (14)

for somez0 ∈ C We have the following result:

Theorem 9:Consider the system (1), and assume that
ρ(D) < 1. Then the lossless propagation system is delay-
dependent asymptotically stable if and only if:

(i) the system free of delay is asymptotically stable, and
(ii) the matrix pencilΛ1 has at least one generalized eigen-

value on the unit circlez0, which is not a generalized
eigenvalue of the matrix pencilΛ2, or if it is, then the
following condition is satisfied:

mΛ1(z0) > mΛ2(z0)2, (15)

where mΛi(z0) (i = 1, 2) denotes the (algebraic)
multiplicity of the generalized eigenvaluez0 of the
corresponding matrix pencilΛi (i = 1, 2).

Furthermore, the lossless propagation system is asymptoti-
cally stable for all delaysτ ∈ [0, τ), where:

τ = min
1≤k≤mn1(n1+2n2)

min
1≤i≤n1

αk

ωki

, (16)



whereαk ∈ [0, 2π), e−jαk ∈ σ(Λ1) − σ(Λ2), and jωki
∈

σ(A(z0)).

Proof idea : Using the continuity argument of the roots
with respect to the delay parameter [8], delay-dependent
stability is equivalent to the existence of roots crossing the
imaginary axis for some delay value, fact which is further
equivalent to the conditions (i)–(ii) in the Theorem state-
ment3. Some tedious, but straightforward algebraic manipu-
lations lead to the upper bound (16) for the corresponding
delay margin.

Notice that the ideas proposed in the remarks??–8 above
are still valid for thedelay-dependentstability analysis.

C. Crossing direction characterization

The remaining problem in the delay-dependent stability
case consists in analyzing the following two cases:

a) the characterization (if any) of other delay intervals
guaranteeing (asymptotic) stability under the assump-
tion that the system free of delay is stable;

b) the same analysis, but by relaxing the assumption on
the system free of delays.

As mentioned in [21] (see also [6]), the solution of the
cases above can be constructed if, for each root of the
characteristic equation associated to (1) on the imaginary
axis, thecrossing directionis explicitly computed. Without
any loss of generality, we assume in the sequel that all the
roots of the characteristic equation aresimple.

From the Theorems 5, and 9, it follows that the roots
crossing the imaginary axis can be easily detected by com-
puting the generalized eigenvalues of the matrix pencilsΛi,
i=1,2. Thus, the remaining problem consists in computing
thesensitivityof the root with respect to the delay parameter
when crossing the imaginary axis. If the problem of crossing
direction in the retarded, and neutral cases was largely treated
in the literature since the 80s (see, for instance, [6], [28],
[26]), explicit formulae for such quantities for delay systems
in state-space representationwere reported in the literature
only recently [23], but only for theretardedcase.

Theorem 10 (crossing characterization):Assume that the
matrix pencilΛ1 is regular. Then the characteristic equation
associated to (1) has a crossing root on the imaginary axis
for some positive delay valueτ0 if and only if the following
conditions are satisfied simultaneously:
(i) The matrix pencilΛ1 has generalized eigenvalues on

the unit circle;
(ii) There exists somez0 ∈ σ(Λ1) ∩ ∂ID, such that:

σ (A((z0)) ∩ ∂C∗+ 6= Ø, (17)

where∂C∗+ = ∂C+ − {0}4.
Furthermore, for somez0 satisfying the condition (ii) above,
the set of “crossing” delays is given by:

T (z0) =

{
Log(z0)

jω0
+

2π`

ω0
> 0 : jω0 ∈ σ(A(z0))− {0}, ` ∈ ZZ

}

(18)

3See the full version of the paper [24] for a complete proof.
4∂C+ denotes the imaginary axis without the origin,etc.

whereLog(·) denotes the principal value of the logarithm.

Definition 11: A complexz0 satisfying the conditions (ii)
in Theorem 10 will be called a crossing generator, and denote
σg the set of all such crossing generators. Then

T =
⋃

z∈σg

T (z) (19)

will be called the delay crossing generator set.

Using the definition above, Theorem 10 simply says that
the existence of crossing roots is equivalent to the property
that the delay crossing generator set is not empty.

Next, we have the following result:

Proposition 12 (switches characterization: simple roots):
Assume that the crossing roots are simple, and letz0 ∈ σg

be a crossing generator of some rootjω0 6= 0 of the lossless
propagation system (1).

Then, we have a root crossing the imaginary axis towards
instability (stability) if and only if:

Re

{
− jω0

u∗1u1

m∑
k=1

kzk
0 (u∗1Bkv2 + u∗2Dkv2)

}
> 0(< 0), (20)

where u∗1 ∈ Cn1 (v1 ∈ Cn1), and u∗2 ∈ Cn2 (v2 ∈
Cn2) represent a partition of the corresponding left (right)
eigenvectorsu∗ (v) of the eigenvaluejω0 in the spectrum of
A(z0), whereA(z0) is given by (14).

The proof can be found in the full version of the pa-
per [24], and it generalizes the results proposed by [23]
for the retarded case. It is based on the so-called Jacobi’s
formula for computing the differential of the determinant of
some square matrixM :

ddet(M) = Tr (Adj(M)dM) ,

wheredM , andddet(M) define the differentials ofA, and
of its determinant, respectively.

Remark 13:The quantity to be evaluated in (20) is well-
defined. Indeed, a simple algebraic argument proves that if
the roots on the imaginary axis∂C+ are simple, than the
corresponding ratio always exists, is different from0, and
it is finite. Finally, it is important to note that thecrossing
direction is independentof thedelayvalue (see also [26] for
a different argument).

IV. COMMENTS, AND INTERPRETATIONS

For the sake of simplicity, we shall consider in the sequel
only the single delay case (m = 1). However, the proposed
comparisons, discussions, and comments are also valid for
the general case. Our interest is to see how the results above
rewrites in the particular retarded, and neutral cases, and to
establish the existing connections between the corresponding
matrix pencils with the ones proposed in the literature [4],
[22], [10] for handling the corresponding cases. Finally, some
remarks on the corresponding nonlinear eigenvalue problem
are also presented.

For the brevity of the paper, we further consider only the
delay-independentstability analysis, but it is clear that the



same arguments apply to the delay-dependent, and crossing
root characterization cases.

A. Retarded case

It is easy to see that we completely recover thedelay-
independentconditions forretardedlinear systems including
a single delay, but with a different definition of the matrix
pencil Λ1 [4], [22].

In fact, the corresponding matrix pencil in the above
references is derived using a differentstrong linearization5

of the corresponding matrix polynomial (see also [21]):

P(z) = B ⊗ In1z
2 + A⊕AT z + In1 ⊗BT ,

leading to:

Λ̃1(z) = z

[
In2

1
0

0 B ⊗ In1

]
+

[
0 −In2

1

In1 ⊗BT A⊕AT

]
,

HereΛ1 rewrites as follows:

Λ1(z) = z

[
0 B ⊗ In1 0
0 0 0
0 0 −In2

1

]

+




A⊕AT 0 In2
1

In2
1

−In2
1

0

In1 ⊗BT 0 0


 ,

Simple computations ofdet(Λ1(z)), anddet(Λ̃1(z)) show
that:

det(Λ1(z)) = det(Λ̃1(z)),

and, in conclusion:

Proposition 14: The matrix pencilsΛ1, and Λ̃1 have the
same generalized eigenvalues on the unit circle of complex
plane.

The approach considered in this paper takes advantage on
the form ofΛ1 instead ofΛ̃1, which cannot be used directly
in the lossless propagation case. Furthermore, the form of the
pencilΛ1 is particularly adapted to handle (regular)singular
systems with delays (see, for instance, Remark 8).

B. Neutral case

Consider now the neutral system:

ẋ(t)−A−1x(t− τ) = A0x(t) + A1x(t− τ). (21)

As shown in [10], the delay-independent stability can be
expressed in terms of generalized eigenvalues of the matrix
pencil Λ̂1 defined as follows:

Λ̂1(z) = z

[
I 0
0 A1 ⊗ I −A−1 ⊗AT

0

]
+

[
0 −I

I ⊗AT
1 −A0 ⊗AT

−1 A0 ⊕AT
0 −A1 ⊗AT

−1 −A−1 ⊗AT
1

]

Let us rewrite (21) in the form (1). Simple computations
prove that:

A = A0, B = A0A−1 + A1

C = In, D = A−1.

5In the sense defined by Mackeyet al. in [19]

Some simple, but tedious computations ofdet(Λ1(z)), and
det(Λ̂1(z)) show that:

det(Λ1(z)) = det
[
((In −Dz)⊗ In)−1

]
·

det(Λ̂1(z)) · det
[(

In ⊗ (In −DT z̄)
)−1

]
,

Next, sinceρ(D) < 1, it follows that:

Proposition 15: The matrix pencilsΛ1, and Λ̂1 have the
same generalized eigenvalues on the unit circle of complex
plane.

As in the retarded case, the matrix pencil̂Λ1 cannot
be directly adapted to the lossless propagation case. It is
important to note thatΛ1 gives also a simple stability
characterization to some of thedescriptor representations
considered by Fridman [9], and opens the perspective to give
complete solutions to thesingular neutral systems (a remark
similar to Remark 8 holds also in the neutral case).

C. Matrix pencils, and nonlinear eigenvalue problems

All the matrix pencils proposed in the literature (see,
e.g. [4], [22], [10]) for handling the stability of delay systems
represent appropriate (strong)linearizationsfor the nonlinear
eigenvalue problems associated to the characteristic equa-
tions of the delay systems under consideration. As seen
above, there are several ways to express the solution of the
problem, such that the corresponding matrix pencils (Λ1, Λ̃1,
Λ̂1) share the same generalized eigenvalues on the unit circle
of the complex plane.

Further ideas, and different ways to construct matrix
pencils representing otherlinearizationsof the initial matrix
polynomials can be found in [19], [20], and can be exploited
for numerical purposes in order to reduce the computational
effort.

V. I LLUSTRATIVE EXAMPLE

For the brevity of the paper, we consider below only the
scalar (propagation) system (n1 = n2 = 1), and we shall
explicitly give the corresponding stability conditions6.

The system (1) rewrites as:
{

ẋ1(t) = ax1(t) + bx2(t− τ)
x2(t) = cx1(t) + dx2(t− τ), (22)

where a, b, c, d ∈ IR. The matrix pencilsΛ1, and Λ2 are
given by:

Λ1(z) = z

[
0 b 0
0 d 0
0 0 −1

]
+

[
2a 0 c
c −1 0
b 0 d

]
, (23)

Λ2(z) = z

[
0 −b
0 −d

]
+

[
−a 0
−c 1

]
. (24)

Applying Theorem 5 to (22) leads to the following result:

Proposition 16: The system (22) with| d |< 1 is delay-
independent asymptotically stable if and only if:

− | a | (1 + d) ≤ bc <| a | (1− d). (25)

6See, for instance, the full version of the paper [24] for further examples



By similarity, we have the following delay-dependent
stability result:

Proposition 17: The system (22) with| d |< 1 is delay-
dependent asymptotically stable if and only if:

a(1− d) + bc < 0, a(1 + d)− bc > 0. (26)

Furthermore, the lossless propagation system (22) is asymp-
totically stable for all the delaysτ ∈ [0, τ), where:

τ =

√
1− d2

(ad− bc)2 − a2
·

arcctg

(
a(1 + d2)− bcd√

((bc− ad)2 − a2)(1− d2)

)
. (27)

Finally, applying Theorem 10 it follows that:

Proposition 18: Under the assumption| d |< 1, and (26),
there does not exist any other delay-interval guaranteeing
asymptotic stability of the scalar system (22) excepting[0, τ).

VI. CONCLUDING REMARKS

This paper addressed the asymptotic stability analysis
of some lossless propagation systems including multiple
commensurate delays in their representation. More explic-
itly, necessary, and sufficient stabilityconditions have been
derived for characterizing the delay-independent, or delay-
dependent stability, and in the second case, the crossing root
behavior. The corresponding conditions have been expressed
in terms of generalized eigenvalue distribution of some ap-
propriate finite-dimensional matrix pencils. Furthermore, the
construction has given anunitary treatment of bothretarded,
and neutral systems class, and opens the perspective to
handle also thesingular systems class. To complete the
presentation, an illustrative example has been detailed.
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