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Stability of Linear Lossless Propagation Systems: Exact Conditions via
Matrix Pencil Solutions

Silviu-lulian Niculescu, Peilin Fu, and Jie Chen

Abstract— In this paper we study the stability properties of of  stability type: delay-independent/delay-dependent, and in the
a class of linear lossless propagation systems. Roughly speaking,second case, the existence or not of several (stability) delay
a lossless propagation model is defined by a system of semi-jyiaryals, that is the characterization of the crossing direction

explicit delay differential algebraic equations, that is a system - . .
of differential equations coupled with a system of (continuous- of the roots of the characteristic equation as a function of

time) difference equations. We show that the stability analysis the delay parameter.

(delay-independent, delay-dependent, crossing characterization)  The derived conditions areecessary, and sufficierdand

in the commensurate delay case can be performed by computing to the best of the authors’ knowledge, there does not exist
the generalized eigenvalues of certain matrix pencils, which can any similar results in the literature. Although the proposed

be executed efficiently and with high precision. The results ex- thod foll the i f - ks of th th
tend previously known work on retarded, and neutral systems, method toflows the ineés of previous works of the authors

and demonstrate that similar stability tests can be derived for devoted to retarded, and/or neutral systems (see, for in-

such systems. stance, [4], [10], [22]), however the construction is quite
Index Terms— Propagation, delay, stability, switches, matrix  distinct, and it makes use of some approprtsa@sformation
pencil. of the original characteristic equation. It is important to
note that the approach considered in the paper allows to
. INTRODUCTION handle unitarily both retarded and neutral systems, and

In certain control problems, we encounter partial differopens the perspective to give complete solutions for the
ential equations of hyperbolic type with mixed initial, andstability characterization of theingular delay systems in
derivative boundary conditions in feedback interconnectiorierms of matrix pencils (both retarded, and neutral cases).
see, for instance, processes including lossless transmissfch singular cases are not treated, since they are out of
lines, steam and/or water pipes. As seen in [1], [5], sucthe scope of the paper, but the way to solve them is briefly
models can be easily described by semi-explicit delay difutlined.
ferential algebraic equations, that is dynamical systems of As in the retarded, and neutral cases, the advantage of
coupled differential, and (continuous-time) difference equahe method lies in itssimplicity, and in the fact that the
tion, where the elements of “interconnection” are representé@rresponding matrix pencils afite-dimensionalFinally,
by the delay terms, constant or distributed. Several examplé¥ approach considered here allows some new insights for
in this sense can be found in [15], [21]. the known retarded, and neutral cases.

Using the terminology proposed by Halanay and/or The remaining paper is organized as follows: Section 2
Rasvan in [14], [15], [27], and without any loss of generalityjncludes some preliminary results on the stability of prop-
we shall call such systems with “hybrid” structurelassless agation systems. Section 3 is devoted to the main results,
propagation systemsAs pointed out by [18], the theoretical, including delay-independent, and delay-dependent character-
and the numerical analysis of such systems is far frofgations using the distribution of the generalized eigenvalues
complete even for the linear (relatively simple) case (se®f some appropriate finite-dimensional matrix pencils. Vari-
also [2] for further discussions). ous comments and interpretations in the retarded, and neutral

The aim of this paper is to give a complete characterizatioffSes are considered in Section 4. A (simple) illustrative
of exponential stability of linear propagation systems in stat€€xample is presented in Section 5, and some concluding
space representation, under the assumption of commensurg@arks end the paper. For the brevity of the paper, the proofs
(rationally-dependent) delays. The considered approach g§the results are omitted, but the underlying (main) ideas are
based on the computation of the generalized eigenvalue Rfesented.
some appropriate matrix pencils, and their distribution with I

o N . PROBLEM FORMULATION, AND PRELIMINARY
respect to the unit circle of the complex plane will give the

RESULTS
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z € €, we denote its complex conjugate by For a matrix where
A, denote its spectrum by(A), and its spectral radius by

p(A). Let A® B denote the Kronecker sum, and® B the Do I - 0 0 @)
Kronecker product, of the matricesand B (see, e.g., [12]). T Lo : : :

In the sequel, we shall focus on the following system:
. Furthermore, the stability is guaranteed for all positive delay
i1(t) = Az () + Y Buaa(t — k) valuesr.
k=1 (1) Let us consider now the case free of delays=(0). We
£ = Cu (4 D t— kr), shall say that (1) withr = 0 is exponentially stablef the
z2(1) i) + ; ks ™) corresponding characteristic equation defined™y; 0) has

all its roots inC~. With the assumption (3), it follows that
where z; € R™, for i = 1,2, and under some ap- the exponential (or asymptotic) stability of the system free
propriate initial conditions on(z1(0),z2:(:)) € IR™ x  of delays is reduced to theurwitz stability of the matrix
C([—=m,0],IR"?, wherez(-) denotes the restriction to the

interval [¢ ], translated t 0 - - -
interval [t — mT,t], translated td—m, 0]. _ At ZBk I, — ZDk c
Further remarks, and examples concerning the cases when — —

the matrix C' is not invertible and whenn; # ny, can be . . .
found in [25]. The fact that we have the same number CJ:urther comments for the stability of propagation models in
Le single delay case can be found in [21].

delays in both differential, and (continuous-time) differencé

equations does not represent a restriction since we may I11. M AIN RESULTS

consider the corresponding matrics, = By = ... = Introduce now the following matrix pencils:

By 41, 0r Dy, = Dy = ... = Dy, 1 Matrices equal to

0, where the corresponding positive integetis, ms < m Ni(z) = =2U;+V;, 1=1,2 (5)

satistym, # mo etc whereU;, V; are given by:

Remark 1 (differentiation index)As mentioned in the In- M7
troduction, the lossless propagation system belongs to the )
class of semi-explicit delay differential algebraic equations. U, = - , (6)
If we use the differentiation indéxthe system (1) appears I
as a neutral delay differential algebraic system of index L Hy,
(see also [18]). O o -1 -- 0
Remark 2:1t is easy to see that if; = ny = n, Dy =0, Vv, = : o : , (7)
forall k =1,...,m, andC = I, the system (1) rewrites as o o - -1
a standard retarded (delay) system. Similarlypif= ny, = | Ho Hi -+ Hpo
n, C = I,,, and there exist at least one positive integgr i m
such thatDy, # 0, (1) rewrites as a linear neutral system. 0 —Z By,
Notice that there is no any rank constraint on the maffjx U, = k=1 ) (8)
fact which opens the possibility to treat also some (particular) 0 _Z Dy,
singular cases for neutral systems. O pry
In the stability analysis of (1), as seen in [16], [17], [21], Vo = —A 0 } , (9)
one needs explicitly the stability of thdifference operator | —C In
D : C([-mT,0],IR™) — R"?, and defined by where the identity, and zero matrices have appropriate di-
m mensions, and the matricd#,, £ = 1,...,m are given as
D(9) = 6(0) = 3 Did(~kr). (2) follows:
k=1 Ao AT 0 I,®CT
- e ) Hy = C®1L,, —Iyn, 0 , (20)
The stability condition is given by: I, BT 0 I, @ DT
Lemma 3:The difference operatoD defined by (2) is [ 0 By @ I,, 0
stable if and only if: H, = 0 D, ®1I,, 0 ,
| In, ® B, 0 I, ® D,
p(D) <1, ®) forall 1<k<m-—1, (11)
. - . . . . . 0 Bn® I, 0
(the continuous.ime diference squation in our case) n order to determmdl = | 0 Dm® L, 0 | (12)
the derivatives ofco as continuous functions af;, andzo [13] 0 0 —Inin,




The construction of the matrix pencils;, i = 1,2 leads to Some simple algebraic manipulation allow to rewrite the
the following result, similar to the one developed in [22] inSyStem (1) as a single delay propagation model defined as
the context of retarded delay systems: follows:

.. IEl(t):A.’Ill(t)‘l’[BlBm]y(t—’?’)
Lemma 4:Assume thaip(D) < 1. If the original system D ... D D
free of delay is asymptotically stable, then the matrix pencil . [
A4, and A, are both regular. y(t) = { 0 } x1(t) + . . . y(t —7),
A. Delay-independent stability 0 I 0

Using the preliminary results, and the notations above, Wevherey(t)” = [z2(t)T ... 2ot — (k — 1)7)T]T, and the
have the following: zero blocks have appropriate dimensions. Theorem 5 applied
Theorem 5:Consider the system (1), and assume thd@ the single delay propagation model above will lead to a

p(D) < 1. Then the lossless propagation system is de|a);iifferent form for the matrix pencil\;, which is equivalent
independent asymptotically stable if and only if: to the form (5). u

(i) the system free of delay is asymptotically stable, and Remark 8 (Singular case. Discussion§)onsider the sin-
(ii) the matrix pencilA, has not generalized eigenvaluesgle delay case in (1), but witD; = 0. It is easy to see
on the unit circle, or if it does, all its generalizedthat the corresponding retarded system simply rewrites as a

eigenvaluesz, on the unit circle are also generalizedsingular delay system (in the state-variahig) of the form:
eigenvalues of the matrix penall; such that:
Ei(t) = Fux(t)+ Gx(t — 1),

ma, (z0) = mA2(20)27 (13) L

~_where the state-vector is given byz” = [z7 2117, and

multiplicity _of the generali_zed‘ eigenvalugy of the iinh g = diag(I,,,0), and the pair(E, F) regular in the
corresponding matrix penci\; (i = 1, 2). sense proposed by Dai [7].

Proof idea: Some tedious algebraic manipulations prove In conclusion, the approach above can be applied to handle
that the condition (i) above is equivalent to the fact thaftlso this case, and to the best of the authors’ knowledge, there
the characteristic equation associated to (1) has no rodges not exist any complete solution for the corresponding
on the imaginary axis for all positive delays Using the delay-independerstability problem. O
continuity type property of the roots with respect to the dela

parameter (in the sense of Datko [8]) and the argumentsUnder the assumption that the system free of delay is

presented in [11], [2.1] for the retardeq.case, the equwa.'?n(é%ymptotically stable, we can explicitly compute tthelay
between the delay-independent stability and the conditiongargin, that is thefirst delay-intervalguaranteeing asymp-
(i)—(ii) above follows. L1 totic stability if the conditions of the Theorem 5 do not hold.

) ) Introduce now the following complex matrix:
Theorem 5 simply states that the delay-independent sta-

bility problem for lossless propagation systems is reduced to m . m . -

the computation of the generalized eigenvalues of two ap- A(20) = A+ > Bz | Ins =Y Diz | C, (14)

propriate finite-dimensional matrix pencils. The distribution k=1 k=1

of these eigenvalues with respect to the unit circle of thefor somez, € € We have the following result:

compl_ex plane gives the type of stab_iIittyelay—indlepe.ndent Theorem 9:Consider the system (1), and assume that

(no eigenvalues, or eigenvalues exist, but satisfying someﬁD) < 1. Then the lossless propa atié)n svstem is delav-
articular properties), odelay-dependerdtabilit P ' . bropag Y y

P prop ' y-aep Y- dependent asymptotically stable if and only if:

Remark 6:As seen in Remark 2, the result above allows (j) the system free of delay is asymptotically stable, and
to handleunitarily the delay-independent stability of retarded ji) the matrix pencilA; has at least one generalized eigen-
and neutral systems. To the best of the authors’ knowledge, value on the unit circlery, which is not a generalized
there does not exist any similar approach in the open ejgenvalue of the matrix pencil,, or if it is, then the

literature. 0 following condition is satisfied:
Remark 7 (Single delay. Interpretationdh the case of a

single delay, that isn = 1, A; rewrites as:
where my,(29) (¢ = 1,2) denotes the (algebraic)
A1(2) = 2Hy + Hy, multiplicity of the generalized eigenvalug, of the
where Hy, and H; are given by (10), and (12), respectively. ~ corresponding matrix pencil; (i = 1,2).
Furthermore, the condition(D) < 1 reduces tg(D;) < 1, Furthermore, the lossless propagation system is asymptoti-
that is the matrixD; should be Schur-Cohn stable. cally stable for all delays & [0,7), where:

Delay-dependent stability

mA, (ZO) > Ma, (20)2’ (15)

F o=

k, (16)

2See the full version of the paper [24] for a complete proof. 1§k§,,£1&1+2n2) 121;7111 Wi,



whereay, € [0,27), e 7% € o(A1) — 0(A2), andjwy, €  where Log(-) denotes the principal value of the logarithm.

J(A(ZO))_' _ o Definition 11: A complex z, satisfying the conditions (i)
Proof idea: Using the continuity argument of the rootsin Theorem 10 will be called a crossing generator, and denote

with respect to the delay parameter [8], delay-dependep, the set of all such crossing generators. Then
stability is equivalent to the existence of roots crossing the

imaginary axis for some delay value, fact which is further T = U T(2) (19)
equivalent to the conditions (i)—(ii) in the Theorem state- #€og
ment. Some tedious, but straightforward algebraic manipuwill be called the delay crossing generator set.

lations lead to the upper bound (16) for the corresponding Using the definition above, Theorem 10 simply says that

delay margin. . . . .
the existence of crossing roots is equivalent to the property
Notice that the ideas proposed in the remé2Rs8 above that the delay crossing generator set is not empty
are still valid for thedelay-dependendtability analysis. Next, we have the following result:
C. Crossing direction characterization Proposition 12 (switches characterization: simple roots):
The remaining problem in the delay-dependent stabilitAssume that the crossing roots are simple, and:Jet o,
case consists in analyzing the following two cases: be a crossing generator of some rget) # 0 of the lossless

a) the characterization (if any) of other delay intervalpropagation system (1).
guaranteeing (asymptotic) stability under the assump- Then, we have a root crossing the imaginary axis towards
tion that the system free of delay is stable; Instability (stability) if and only if:
b) the same analysis, but by relaxing the assumption on R { -
ed _

the system free of delays.

As mentioned in [21] (see also [6]), the solution of the
cases above can be constructed if, for each root of thavhere ui € C™ (v; € C€™), andus € C™ (v €
characteristic equation associated to (1) on the imaginafly’*) represent a partition of the corresponding left (right)
axis, thecrossing directionis explicitly computed. Without eigenvectors.* (v) of the eigenvalugw, in the spectrum of
any loss of generality, we assume in the sequel that all thé(zo), Where.A(z,) is given by (14).
roots of the characteristic equatlon_ aienple The proof can be found in the full version of the pa-

From the Theorems 5, and 9, it follows that the rootl%b

ing the | . . b iiv d db er [24], and it generalizes the results proposed by [23]
crossing the imaginary axis can be easlly detected by co r the retarded case. It is based on the so-called Jacobi’s

puting the generalized eigenvalues of the matrix pentils o 14 for computing the differential of the determinant of
i=1,2. Thus, the remaining problem consists in computing square matrit/:

the sensitivityof the root with respect to the delay parameter
when crossing the imaginary axis. If the problem of crossing ddet(M) = Tr(Adj(M)dM),
Fhrecﬂqn in the retgrded, and neutral cases was largely trea ﬂeredM, andddet(M) define the differentials oft, and
in the literature since the 80s (see, for instance, [6], [28],; : : ;

- - f its determinant, respectively.
[26]), explicit formulae for such quantities for delay systems
in state-space representatiomere reported in the literature  Remark 13:The quantity to be evaluated in (20) is well-
only recently [23], but only for theetarded case. defined. Indeed, a simple algebraic argument proves that if

Theorem 10 (crossing characterizationkssume that the the roots on the Imaginary ax_t§(lj+_are_3|mple than the
corresponding ratio always exists, is different frénand

matrix pencilA; is regular. Then the characteristic equation . " : o )
P ! 9 9 is finite. Finally, it is important to note that therossing

associated to (1) has a crossing root on the imaginar a%gs NN
for some positi(ve) delay valus, if%nd only if the foll?)wing irectionis independentf the delayvalue (see also [26] for

ujul

Z kz¥ (ui Byva + u;Dm)} > 0(< 0), (20)
k=1

conditions are satisfied simultaneously: a different argument). =
(i) The matrix pencilA; has generalized eigenvalues on IV. COMMENTS, AND INTERPRETATIONS
_ the unit circle; For the sake of simplicity, we shall consider in the sequel
(if)y There exists somey € (A1) N 9D, such that: only the single delay casen(= 1). However, the proposed
o (A((z0)) NOCE # O, (17) comparisons, discussions, and comments are also valid for

. 4 the general case. Our interest is to see how the results above
whered€} = 9C, — {0}". e rewrites in the particular retarded, and neutral cases, and to
Furthermore, for some, satisfying the condition (ii) above, ; - : .
the set of “crossing” delays is given by: estat_)llsh thg eX|s_t|ng connections betwe_en the (_:orrespondmg
. matrix pencils with the ones proposed in the literature [4],
T (20) = {LOQ('ZO) + 2ml >0 jwo € o(A(z0)) — {0}, £ € %} [22], [10] for handling the corresponding cases. Finally, some
Jwo wo remarks on the corresponding nonlinear eigenvalue problem
(18)  are also presented.
3See the full version of the paper [24] for a complete proof. For the brevity of the paper, we further consider only the
490, denotes the imaginary axis without the origétg delay-independenstability analysis, but it is clear that the



same arguments apply to the delay-dependent, and crossBome simple, but tedious computationsdaft(A;(z)), and

root characterization cases. det(//ﬁ (2)) show that:
A. Retarded case det(Ai(z)) = det[((In—Dz)®1,) ']
It is easy to see that we completely recover theday- det(A1(2)) - det |:(In @ (In — DTZ))A} 7

independentonditions forretardedlinear systems including

a single delay, but with a different definition of the matrix Next, sincep(D) < 1, it follows that:

pencil A; [4], [22]. . . . —
In fact, the corresponding matrix pencil in the above Proposition .15:Th'e matrix pencilsh, apd{\l have the

references is derived using a differesttong linearizatior? same generalized eigenvalues on the unit circle of complex

of the corresponding matrix polynomial (see also [21]): Plane.
P(2) = Boly2+A®ATz+ 1, @ BT, As_ in the retarded case, the matrix pemﬁ cannot
) be directly adapted to the lossless propagation case. It is
leading to: important to note thatA; gives also a simple stability
—~ I, 0 0 —1,2 characterization to some of thdescriptor representations
M) = = [ 0 B® I, ] [ I,,® BT A@ AT ] * considered by Fridman [9], and opens the perspective to give

complete solutions to theingular neutral systems (a remark

Here A, rewrites as follows: o .
! similar to Remark 8 holds also in the neutral case).

0 BRIL, 0
AM(z) = =z| 0 0 0 ] C. Matrix pencils, and nonlinear eigenvalue problems
0 0 Iz All the matrix pencils proposed in the literature (see,
A AT 0 ILg e.g. [4], [22], [10]) for handling the stability of delay systems
+ % —lz 0, represent appropriate (strorligearizationsfor the nonlinear
I, @ BT 0 0 eigenvalue problems associated to the characteristic equa-

tions of the delay systems under consideration. As seen
above, there are several ways to express the solution of the
. problem, such that the corresponding matrix pencils (A1,
det(A1(2)) = det(A1(z)), A,) share the same generalized eigenvalues on the unit circle
of the complex plane.
_ Further ideas, and different ways to construct matrix
Proposition 14: The matrix pencilsA;, and A, have the pencils representing othénearizationsof the initial matrix
same generalized eigenvalues on the unit circle of complgylynomials can be found in [19], [20], and can be exploited

Simple computations aflet(A1(z)), anddet(/\Nl(z)) show
that:

and, in conclusion:

plane. for numerical purposes in order to reduce the computational
The approach considered in this paper takes advantage effprt.
the form of A; instead ofA;, which cannot be used directly V. |LLUSTRATIVE EXAMPLE

in the lossless propagation case. Furthermore, the form of the
pencil A; is particularly adapted to handle (regulamgular
systems with delays (see, for instance, Remark 8).

For the brevity of the paper, we consider below only the
scalar (propagation) system( = ny = 1), and we shall
explicitly give the corresponding stability conditidhs

B. Neutral case The system (1) rewrites as:
Consider now the neutral system: { 1 (t) = azy (t) + baa(t — 7) 22)
i(t)— Azt —7) = Ax(t)+ Az(t — 7). (21) za(t) = ca1(t) + daa(t — 7),

As shown in [10], the delay-independent stability can b&herea,b,c,d € IR. The matrix pencilsA;, and A, are
expressed in terms of generalized eigenvalues of the matdwen by:

pencil A; defined as follows: 0 b 0 2 0 ¢
™ - I 0 M(z) = =z [ 0 d O + ch -1 0 ] , (23)
1z) = 2| 0 A er-A @Al | T 00 -1 0 d
0 ~1 Aa(2) = =z [ 8 :Z } + { :Z ? } . (24)
IQAT — Ao AT, Ac® AT — A1 @ AT, — A, ® AT

Let us rewrite (21) in the form (1). Simple computations Applying Theorem 5 to (22) leads to the following result:

prove that: Proposition 16: The system (22) with d |< 1 is delay-
A= A B=AgA_, + A, independent asymptotically stable if and only if:

C=1I,, D=A_,. —lal(14+d)<bc<|al|(l-4d). (25)

5In the sense defined by Mackey al. in [19] 6See, for instance, the full version of the paper [24] for further examples
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