Wim Michiels 
email: wim.michiels@cs.kuleuven.ac.be
  
Kirk Green 
email: kirk.green@bristol.ac.uk
  
Thomas Wagenknecht 
email: t.wagenknecht@bristol.ac.uk
  
Silviu-Iulian Niculescu 
email: silviu.niculescu@hds.utc.fr
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Definitions for pseudospectra and stability radii of an analytic matrix function are given, where the structure of the function is exploited. Various perturbation measures are considered and computationally tractable formulae are derived. The results are applied to a class of retarded delay differential equations. Special properties of the pseudospectra of such equations are determined and illustrated.

Introduction

Closeness to instability is a key issue in understanding the behaviour of physical systems subject to perturbation. The computation of pseudospectra has become an established tool in analysing and gaining insight into this phenomenon (see, for instance, Trefethen [START_REF] Trefethen | Pseudospectra of linear operators[END_REF], and the references therein). More explicitly, pseudospectra of a system are sets in the complex plane to which its eigenvalues can be shifted under a perturbation of a given size. In the simplest case of a matrix (or linear operator) A, the -pseudospectrum Λ is defined as Λ (A) := {λ ∈ C : λ ∈ Λ(A + P ), for some P with P ≤ }, [START_REF] Trefethen | Pseudospectra of linear operators[END_REF] where Λ denotes the spectrum and • denotes an arbitrary matrix (or operator) norm. Equation ( 1) is known to be equivalent to the following Λ (A) = {λ ∈ C : R(λ, A) ≥ 1/ }, where R(λ, A) = (λI -A) -1 denotes the corresponding resolvent operator.

Although most systems can be written in a first-order form, it is often advantageous to exploit the underlying structure of an equation in its analysis, for example, one may wish to compute pseudospectra of higher-order or delay differential equations (DDEs). In particular, this can be of importance in sensitivity investigations, where it is desirable to respect the structure of the governing system. For example, many physical problems involving vibration of structural systems and vibro-acoustics are modelled by second-order differential equations of the form A 2 ẍ + A 1 ẋ + A 0 x = 0, where A 2 , A 1 , and A 0 represent mass, damping and stiffness matrices, respectively. Stability is inferred from the eigenvalues, found as solutions of det(A 2 λ 2 + A 1 λ + A 0 ) = 0.

To understand the sensitivity of these eigenvalues with respect to complex perturbations with weights α i applied to A i , i = 0, 1, 2, the -pseudospectrum of the matrix polynomial P (λ) = A 2 λ 2 + A 1 λ + A 0 ∈ C n×n can be defined as Λ (P ) := {λ ∈ C : (P (λ) + ∆P (λ))x = 0 for some x = 0 and ∆P (λ) = δA 2 λ 2 + δA 1 λ + δA 0 with δA i ∈ C n×n and ||δA i || ≤ α i , i = 0, 1, 2},

See [START_REF] Tisseur | The quadratic eigenvalue problem[END_REF] for a survey on the quadratic eigenvalue problem, including numerical solutions and applications, and [START_REF] Tisseur | Structured pseudospectra for polynomial eigenvalue problems with applications[END_REF] for pseudospectra of polynomial matrices. More recently, pseudospectra for matrix functions that arise as characteristic equations in DDEs have been defined and analysed [START_REF] Green | Pseudospectra of delay differential equations[END_REF]. In its simplest form of one, fixed, discrete delay τ ∈ R + , the delayed characteristic is of the form Q(λ) = λI -A 0 -A 1 exp(-λτ ). Similar to (2) the associated pseudospectra is defined in [START_REF] Green | Pseudospectra of delay differential equations[END_REF] as Λ (Q) := {λ ∈ C : (Q(λ) + ∆Q(λ))x = 0 for some x = 0 and ∆Q(λ) = δA 0 + δA 1 exp(-λτ )

with δA i ∈ C n×n and ||δA i || ≤ α i , i = 0, 1}.

(

The aim of this paper is twofold: first, to present a unified theory for the definition and computation of pseudospectra of general matrix functions of the form det m i=0

A i p i (λ) = 0, (4) 
where p i is an entire function. It is easy to see that all the cases described above are in this class of matrix functions. Various perturbation measures are discussed, of which the above is only a particular case (Section 2). The second aim is to emphasise some special properties in the case of time-delay systems (Section 3). In this sense, we discuss the effects of weighting factors on the sensitivity of the eigenvalues in C + , and C -, respectively. Next, special attention is devoted to the asymptotic behaviour of pseudospectra and its relationship with root chains coming from infinity. To the best of the authors' knowledge, there does not exist any similar analysis in the literature.

It is important to mention that one of the practical applications of our results concerns the stability radius r C of (4), that is, a measure of the distance of the matrix function to instability, see also [START_REF] Michiels | An eigenvalue based approach for the robust stabilization of linear time-delay systems[END_REF][START_REF] Pappas | Robust stability of linear systems described by higher order dynamic equations[END_REF][START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF]. Specifically, if we decompose C into two disjoint regions, a desired region C d and an undesired region C u , the complex stability radius is defined as

r C (C d , • glob ) := inf λ∈Cu inf ∆ ∆ glob : det m i=0 (A i + δA i )p i (λ) = 0 , (5) 
where ∆ glob is a global measure of the perturbation ∆, a combination of the complex perturbations δA i ; this is discussed in detail in Section 2. In other words, r C defines the norm of the smallest perturbation that destroys the C d -stability, that is, having all the roots confined to C d . Furthermore, r C corresponds to the smallest value at which the -pseudospectrum has a nonempty intersection with C u . Note that for a system with continuous time, for example the DDEs discussed in Section 3 onwards,

C d = C -; for discrete time systems, C d = {λ ∈ C : |λ| < 1}.
The paper is organised as follows. In Section 2 we first develop a theory of pseudospectra for general matrix functions, leading to computable formulae for arbitrary norms measuring the size of perturbations of the matrices A i in (4). Next, the application to stability radii, as well as computational issues are discussed. It is also shown how particular results from the literature on stability radii arise as special cases within our unifying framework. In Section 3 we apply the theory to the specific case of DDEs and in Section 4 we present some numerical examples. Finally, in Section 5 we draw conclusions. The notations are standard.

Generalised pseudospectra for matrix functions

In this section, definitions and expressions for pseudospectra of Eq. ( 4) are presented. Furthermore, the connection with stability radii is clarified and computational issues are discussed.

Definition and expressions

We study the roots of the generalised matrix function given by ( 4), where A i ∈ C n×n , i = 0, . . . , m and the functions p i : C → C, i = 0, . . . , m are entire.

In particular, we are interested in the effect of bounded perturbations of the matrices A i on the position of the roots. For this, we analyze the perturbed equation, det m i=0

(A i + δA i )p i (λ) = 0. ( 6 
)
The first step in our robustness analysis is to define the class of perturbations under consideration, as well as a measure of the combined perturbation ∆ := (δA 0 , . . . , δA m ).

In this work we assume that the allowable perturbations δA i , i = 0, . . . , m, are complex matrices, that is,

∆ ∈ C n×n×(m+1) .
Introducing weights w i ∈ R + 0 , i = 0, . . . , m, where R + 0 = R + \ {0} ∪ {∞}, we define three global measures of the perturbations:

∆ glob := [w 0 δA 0 . . . w m δA m ] p , (7) 
or

∆ glob :=        w 0 δA 0 . . . w m δA m        p , (8) 
where M p is the induced matrix norm given by M p = sup x p=1 M x p , p ∈ N. Notice that w j = ∞ for some j means that no perturbation on A j is allowed when the combined perturbation ∆ is required to be bounded, that is w j = ∞ =⇒ δA j = 0, for some j. Finally, we also consider a measure of mixed-type:

∆ glob :=        w 0 δA 0 p 1 . . . w m δA m p 1        p 2 , p 1 , p 2 ∈ N 0 . (9) 
For instance, when p 2 = ∞ and all weights are equal to one, the condition ∆ glob ≤ corresponds to the natural assumptions of taking perturbations satisfying δA i p 1 ≤ , i = 0, . . . , m. In this special case, ( 9) is also equal to the p 1 -norm of the block diagonal perturbation matrix diag(δA 0 , . . . , δA m ), considered in [START_REF] Pappas | Robust stability of linear systems described by higher order dynamic equations[END_REF][START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF] for polynomial matrices.

Notice that, if all weights are finite, then the measures given by ( 7)-( 9) are norms.

For any of the above definitions of ∆ glob , we define the -pseudospectrum of (4) as the set

Λ := λ ∈ C : det m i=0 (A i + δA i )p i (λ) = 0 for some ∆ with ∆ glob ≤ .
(10) We define the function f : C → R + as the inverse of the size of the smallest perturbation which shifts a root to λ if such perturbations exist, and zero otherwise, more precisely,

f (λ) =        0, when det ( m i=0 (A i + δA i )p i (λ)) = 0, ∀∆ ∈ C n×n×(m+1) , +∞, when det ( m i=0 A i p i (λ)) = 0, (inf { ∆ glob : det ( m i=0 (A i + δA i )p i (λ) = 0)}) -1 , otherwise. (11) 
Therefore, we can also define the -pseudospectra as

Λ = λ ∈ C : f (λ) ≥ -1 . ( 12 
)
The boundary of pseudospectra is thus formed by the level sets of the function f , which can be written in a computational form as follows:

Theorem 1 For the perturbation measures (7)-(9) the function [START_REF] Burke | Optimization and pseudospectra, with applications to robust stability[END_REF] satisfies

f (λ) =    ( m i=0 A i p i (λ)) -1 α • w(λ) β , det ( m i=0 A i p i (λ)) = 0, +∞, det ( m i=0 A i p i (λ)) = 0,
where

w(λ) =        p 0 (λ) w 0 . . . pm(λ) wm        (13) 
and α = p, β = p, perturbation measure [START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF],

α = p, β = q, 1 p + 1 q = 1, perturbation measure (8), α = p 1 , β = q 2 , 1 p 2 + 1 q 2 = 1 perturbation measure (9).
PROOF. For the perturbation measure [START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF] one can directly generalise the proof of Theorem 13 of [START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF] for polynomial matrices. Therefore, we restrict ourselves to a proof for measures [START_REF] Zhou | Robust and optimal control[END_REF] and [START_REF] Michiels | Sensitivity to infinitesimal delays in neutral equations[END_REF]. For sake of conciseness we also assume that p, p 1 , p 2 and all weights w i are finite. The proof for the other cases follows the same lines.

Perturbation measure [START_REF] Zhou | Robust and optimal control[END_REF].

For any λ ∈ C, which is not a root of (4), the perturbed equation ( 6) can be written in the form det

             I -M (λ)        w 0 δA 0 . . . w m δA m                     = 0, (14) 
where

M (λ) = m i=0 A i p i (λ) -1 p 0 (λ) w 0 I . . . p m (λ) w m I . (15) 
A standard result from robust control (see, for example, [START_REF] Zhou | Robust and optimal control[END_REF], [7, Lemma 2]) yields that ( 14) has a root λ * for some perturbation ∆ if and only if

M (λ * ) = 0. Furthermore, if M (λ * ) = 0, one has inf ∆ glob : det m i=0 (A i + δA i )p i (λ * ) = 0 = 1 M (λ * ) p .
Therefore, it has become sufficient to prove that

M (λ) p = m i=0 A i p i (λ) -1 p w(λ) q .
This is trivial when w(λ) q = 0. In the other case, note first that for any

x = [x T 0 . . . x T m ] T ∈ C (m+1)n×1
, one derives using Hölder's inequality:

M (λ)x p x p ≤ ( m i=0 A i p i (λ)) -1 p m i=0 x i p i (λ) w i p x p ≤ ( m i=0 A i p i (λ)) -1 p ( x 0 p , . . . , x m p ) • |p 0 (λ)| w 0 , . . . , |pm(λ)| wm x p ≤ 1 x p m i=0 A i p i (λ) -1 p •       
x 0 p . . .

x m p        p w(λ) q = m i=0 A i p i (λ) -1 p • w(λ) q , (16) 
thus,

M (λ) p := sup M (λ)x p x p ≤ m i=0 A i p i (λ) -1 p • w(λ) q . ( 17 
)
Second, one readily verifies that the equality in ( 16) is attained for

x =        |p 0 (λ)| 2-p p-1 p 0 (λ)w 1-q 0 . . . |p m (λ)| 2-p p-1 p m (λ)w 1-q m        ⊗ x * , p = 1, x = v(λ) ⊗ x * , p = 1,
where x * is chosen such that

x * p = 1, ( m i=0 A i p i (λ)) -1 x * p = ( m i=0 A i p i (λ)) -1 p and v(λ) ∈ C (m+1)×1 is given by v i (λ) =    p i (λ) |p i (λ)| , if i ∈ Υ(λ) 0, otherwise , with Υ(λ) = i ∈ {0, . . . , m} : p i (λ) w i = max k∈{0,...m} p k (λ) w k . ( 18 
)
Perturbation measure [START_REF] Michiels | Sensitivity to infinitesimal delays in neutral equations[END_REF].

A perturbation ∆ shifts a root to λ ∈ C, again λ is not a root of (4), if and

only if, det   I - m i=0 A i p i (λ) -1 m i=0 δA i p i (λ)   = 0;
see [START_REF] Gallestey | Spectral value sets of closed linear operators[END_REF] and [START_REF] Golub | Matrix Computations[END_REF]. Necessary conditions on such perturbations are given by

m i=0 A i p i (λ) -1 m i=0 δA i p i (λ) p 1 ≥ 1, m i=0 δA i p 1 |p i (λ)| ≥ 1 ( m i=0 A i p i (λ)) -1 p 1 , (w 0 δA 0 p 1 , . . . , w m δA m p 1 ) • |p 0 (λ)| w 0 , . . . , |p m (λ)| w m ≥ 1 ( m i=0 A i p i (λ)) -1 p 1 ,
and, when using Hölder's inequality, by

       w 0 δA 0 p 1 . . . w m δA m p 1        p 2 • w(λ) q 2 ≥ 1 ( m i=0 A i p i (λ)) -1 p 1 .
Consequently, in the case w(λ) q = 0, there does not exist a perturbation shifting a root to λ, which implies f = 0 by definition, and the assertion of the theorem holds. In the other case, a perturbation ∆ can only shift a root to λ when it satisfies,

∆ glob ≥ 1 ( m i=0 A i p i (λ)) -1 p 1 w(λ) q 2 . ( 19 
)
We now prove by construction that such perturbations do exist, and, furthermore, there are perturbations for which the equality in (19) holds. Firstly, we define U as a square matrix such that det

   I - m i=0 A i p i (λ) -1 U    = 0 and U p 1 = 1 ( m i=0 A i p i (λ)) -1 p 1 .
In the case p 2 = 1 we define

∆ c = (δA 0c . . . δA mc ),
where

δA kc = w -q 2 k |p k (λ)| 2-p 2 p 2 -1 p k (λ) m i=0 w -q 2 i |p i (λ)| q 2 U, k = 0, . . . , m.
It follows that 8

∆ c glob = U p 1 m i=0 w -q 2 i |p i (λ)| q 2 m i=0 w p 2 (1-q 2 ) i |p i (λ)| p 2 p 2 -1 1 p 2 = U p 1 m i=0 w -q 2 i |p i (λ)| q 2 1-1/p 2 = 1 ( m i=0 A i p i (λ)) -1 p 1 m i=0 w -q 2 i |p i (λ)| q 2 1/q 2 = 1 ( m i=0 A i p i (λ)) -1 p 1 w(λ) q 2 , ( 20 
)
and the perturbed characteristic function satisfies det

   I - m i=0 A i p i (λ) -1 m i=0 δA ic p i (λ)    = det    I - m i=0 A i p i (λ) -1 U m i=0 w -q 2 i |p i (λ)| 2-p 2 p 2 -1 |p i (λ)| 2 m i=0 w -q 2 i |p i (λ)| q 2    = det    I - m i=0 A i p i (λ) -1 U    = 0. (21) 
From ( 19)-( 21) and the definition [START_REF] Burke | Optimization and pseudospectra, with applications to robust stability[END_REF] the statement of the theorem follows.

In the case p 2 = 1 one comes to the same conclusion when taking

∆ c := ξ(λ) T ⊗ U,
where ξ(λ) ∈ C (m+1)×1 is given by

ξ i (λ) =    p i (λ) cardΥ(λ) |p i (λ)| 2 , if i ∈ Υ(λ) 0, otherwise ,
with Υ defined in (18).

2.Connection with stability radii

As outlined in the introduction the concept of stability radii given by ( 5) is closely related to pseudospectra. To further clarify this relation and to arrive at a computable formula, we need the following continuity property of the individual roots of (4) with respect to changes of matrices A i :

Proposition 2 For all µ > 0 and λ 0 ∈ C, there exists a ν > 0 such that for all ∆ = (δA 0 , . . . , δA m ) ∈ C n×n×(m+1) with ∆ glob < ν, (6) has the same number of roots 1 as (4) in the disc {λ ∈ C : |λ -λ 0 | < µ}.

PROOF. Based on the implication ∆ glob → 0 ⇒ δA i → 0, i = 0, . . . , m and an application of [START_REF] Michiels | Sensitivity to infinitesimal delays in neutral equations[END_REF]Theorem A1].

Assume that all the roots of ( 4) are in C d . Let ∆ c be an arbitrary perturbation with ∆ c glob finite, for which there is at least one root in C u (such perturbations always exist by Theorem 1). Next, apply the perturbation ∆ := ∆ c , where ≥ 0 is a parameter. Clearly the function

∈ [0, 1] → ∆ c
is continuous with respect to the measure • glob . Consequently, by Proposition 2 one of the following phenomena must happen to the roots of the perturbed system when is continuously varied from zero to one:

(1) some roots move from C d to C u ;

(2) roots coming from infinity appear in C u (only for unbounded C u ).

If the second case can be excluded, a loss of stability is always associated with roots on the boundary of C d and it becomes sufficient to scan this boundary in the outer optimization of [START_REF] Michiels | An eigenvalue based approach for the robust stabilization of linear time-delay systems[END_REF]. In other words, the stability radius is the smallest value of for which an -pseudospectrum contour reaches the boundary of C d . Formally, using [START_REF] Burke | Optimization and pseudospectra, with applications to robust stability[END_REF] one has:

Corollary 3 Assume that all the roots of (4) are in C d . Then

r C (C d , • glob ) = inf λ∈Γ C d 1 f (λ) = 1 sup λ∈Γ C d f (λ) ,
where Γ C d is the boundary of the set C d .

The following example demonstrates that Corollary 3 does not hold if perturbations create roots coming from infinity in C u .

Example 4 The equation p(λ) = 0, with

p(λ) = λ + 1 + δa e λ ,
1 multiplicity taken into account 10 is C --stable for δa = 0. With ∆ glob = |δa|, we have

inf λ∈Γ C - 1 f (λ) = inf ω≥0 |1 + jω| |e jω | = 1,
that is, shifting roots to the imaginary axis requires |δa| ≥ 1. However, the stability radius is zero because for any real δa = 0, there are infinitely many roots in the open right half plane, whose real parts move off to plus infinity as |δa| → 0+. To see this, note that p(-λ) can be interpreted as the characteristic function of the DDE ẋ(t) = x(t) + δa x(t -1), which has infinitely many eigenvalues located in a logarithmic section of the left half plane [START_REF] Hale | Introduction to functional differential equations[END_REF].

Computational issues

From ( 12) and Theorem 1 pseudospectra of ( 4) can be computed by evaluating

m i=0 A i p i (λ) -1 α w(λ) β
for λ on a grid over a region of the complex plane. By using a contour plotter to view the results, the boundaries of -pseudospectra are then identified.

Notice that for α = 2, the left term can be computed as the inverse of the smallest singular value of m i=0 A i p i (λ). Analogously, from Corollary 3 the complex stability radius can be computed using a grid, laid on the boundary of the stability region. Such an approach is taken for the numerical examples of Section 4.

It is important to mention that for the computation of pseudospectra of specific problems (for example large matrices with a special structure) and, in particular, for optimization problems related to pseudospectra, the efficiency can often be improved by exploiting properties of the problem under consideration. See, for instance, [7, Section 6] and the references therein for an efficient algorithm to compute stability radii of polynomial matrices and [START_REF] Burke | Optimization and pseudospectra, with applications to robust stability[END_REF] for the efficient computation and optimization of so-called pseudospectral abscissa of matrices. However, this is beyond the scope of this paper, where generality is the main concern.

To conclude this section we give in Table 1 an overview of publications, where results from Theorem 1 or Corollary 3 were obtained for special cases.

reference problem perturbation measure weights [START_REF] Van Dooren | On stability radii of generalized eigenvalue problems[END_REF] matrix pencil (7) / [START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF] polynomial matrices ( 7),( 9) with p 2 = ∞ / [START_REF] Pappas | Robust stability of linear systems described by higher order dynamic equations[END_REF] polynomial matrices ( 7),( 9) with p 2 = ∞ yes [START_REF] Tisseur | Structured pseudospectra for polynomial eigenvalue problems with applications[END_REF] polynomial matrices ( 7),( 9) with p 2 = ∞ yes [START_REF] Green | Pseudospectra of delay differential equations[END_REF] delay systems (9) with p 1 = 1 and p 2 = ∞ yes Table 1 Special cases of Theorem 1/ Corollary 3, treated in the literature.

Pseudospectra of delay differential equations

We apply the results of Section 2 to linear DDEs of the form

ẋ(t) = A 0 x(t) + m i=1 A i x(t -τ i ), (22) 
where we assume that 0 < τ 1 < . . . < τ m and that the system matrices A i ∈ R n×n , i = 0, . . . , m are uncertain. In what follows we denote the spectrum of ( 22) by Λ, that is

Λ := λ ∈ C : det λI -A 0 - m i=1
A i e -λτ i = 0 .

Expressions

Pseudospectra and stability radii of (22), following the general definitions ( 5) and [START_REF] Hale | Introduction to functional differential equations[END_REF], can be computed as follows:

Proposition 5 For perturbations δA i ∈ C n×n , i = 0, . . . , m, measured by ( 7)-( 9), the pseudospectrum Λ of (22) satisfies

Λ = Λ ∪    λ ∈ C : λI -A 0 - m i=1 A i e -λτ i -1 α • w(λ) β ≥ -1    ( 23 
)
and if the zero solution of ( 22) is asymptotically stable, the associated stability radius satisfies

r C (C -, • glob ) = 1 m i=0 w -β i 1 β sup ω≥0 (jωI -A 0 -m i=1 A i e -jωτ i ) -1 α , (24) 
where w(λ) = 1 w 0 e -λτ 1 w 1 . . . e -λτm wm T and α and β are defined as in Theorem 1.

PROOF. The characteristic matrix of (22),

λI -A 0 - m i=1 A i e -λτ i ,
is affine in the system matrices (I, A 0 , . . . , A m ) and thus the characteristic equation is of the form (4). The first term λI is however assumed to be unperturbed, which one can cope with in the general framework of Section 2 by assigning an infinite weight to a perturbation of this term in the definition of • glob . In this way a direct application of Theorem 1 yields (23).

Expression (24) relies on the fact that for any M > 0, there exists a R > 0, such that all the eigenvalues in the closed right half-plane have modulus smaller than R whenever ∆ glob < M , hence roots coming from infinity are excluded. For this, note that As a consequence, Corollary 3 is applicable. Using |e -jωτ i | = 1, i = 0, . . . , m one arrives at (24). 2

det λI -(A 0 + δA 0 ) - m i=1 (A i + δA i )e -λτ i = 0 implies that |λ| ≤ A 0 + δA 0 + m i=i A i + δA i |e -λτ i |,
Remark 6 For the system

ẋ(t) = (A + δA)x(t), (25) 
with ∆ glob = δA 2 , expression (23) simplifies to

Λ = Λ ∪ λ ∈ C : R(λ, A) 2 ≥ -1 , (26) 
where R(λ, A) = (λI -A) -1 is the resolvent of A. As mentioned in the introduction, the right-hand side of (26) can also be considered as a definition for the -pseudospectrum of (25).

In general, one can formulate (22) as an abstract evolution equation over the Hilbert space X := C n × L 2 ([-τ m , 0], C n ), equipped with the usual inner product (y 0 , y 1 ), (z 0 , z 1 ) X = y 0 , z 0 C n + y 1 , z 1 L 2 , namely:

d dt z(t) = A z(t), (27) 
where

D(A) = {z = (z 0 , z 1 ) ∈ X : z 1 is absolutely continuous on [-τ m , 0], dz 1 dθ (•) ∈ L 2 ([-τ m , 0], C n ), z 0 = z 1 (0) , A z =    A 0 z 0 + m i=1 A i z 1 (-τ i ) dz 1 dθ (•)    , z ∈ D(A)
and the solutions of ( 27) and ( 22) are connected by the relation

z 0 (t) ≡ x(t), z 1 (t) ≡ x(t + θ), θ ∈ [-τ m , 0].
In this way, one can alternatively define the -pseudospectrum of (22) as the set

Λ ∪ λ ∈ C : R(λ, A) ≥ -1 . ( 28 
)
See for example [START_REF] Curtain | Functional analysis in modern applied mathematics[END_REF] for further discussions and remarks related to the abstract formulation of differential delay equations and [START_REF] Gallestey | Spectral value sets of closed linear operators[END_REF] for pseudospectra of closed linear operators on complex Banach spaces.

Definition (28) is related with the effect of unstructured perturbations of the operator A on stability. In this paper we have chosen a more practical definition, by directly relating pseudospectra to concrete perturbations on the system matrices. Notice that such a practical definition is typically used also for polynomial equations [START_REF] Tisseur | Structured pseudospectra for polynomial eigenvalue problems with applications[END_REF][START_REF] Pappas | Robust stability of linear systems described by higher order dynamic equations[END_REF][START_REF] Genin | Real and complex stability radii of polynomial matrices[END_REF].

Effect of weighting

Applying different weights to the system matrices A i of ( 22), i = 1, . . . , m, leads to changes in the pseudospectra. This can be understood by investigating the weighting function w(λ) = w(σ + jω), where

w(σ + jω) β = 1 w 0 , e -στ 1 w 1 , . . . , e -στm w m T β , ∀σ, ω ∈ R. ( 29 
)
Note that w(λ) only depends on the real part σ, that is, w(λ) ≡ w(σ). From (29) the following conclusions can be drawn:

(1) Eigenvalues in the right half-plane are more sensitive to perturbations of the non-delayed term A 0 ; (2) Eigenvalues in the left half-plane are more sensitive to perturbations of the delayed terms A i , i = 1, . . . , m;

(3) Furthermore, the intersection of an -pseudospectrum contour with the imaginary axis is independent of the weights, provided that the β-norm of w(λ) = w(0) is constant. As a consequence, under this condition also the stability radius is independent of the weights.

Asymptotic properties.

In order to characterise boundedness properties of pseudospectra, we investigate the behaviour of

f (λ) :=      λI -A 0 -m i=1 A i e -λτ i -1 α w(λ) β , λ ∈ Λ +∞ λ ∈ Λ,
as |λ| → ∞. The results follow:

Proposition 7 For all µ ∈ R, lim R→∞ inf f (λ) -1 : (λ) > µ, |λ| > R = ∞. (30) 
PROOF. Follows from sup e -λτ i : (λ) > µ = e -µτ i , i = 1, . . . , m.
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As a consequence the cross-section between any pseudospectrum Λ , > 0, and any right half-plane is bounded.

Proposition 8 Assume that w m is finite. For all γ ∈ R + , let the set Ψ γ ⊆ C be defined as

Ψ γ := λ ∈ C : (λ) < -γ, |λ| < e -( (λ)+γ)τm . ( 31 
)
Furthermore, let

l =    wm A -1 m , A m regular, 0, A m singular.
Then the following convergence property holds:

∀κ > 0, ∃γ > 0 such that |f (λ) -1 -l| < κ, ∀λ ∈ Ψ γ . ( 32 
)
PROOF. We can write:

f (λ) =    (A m -R 1 (λ)) -1 α • 1+R 2 (λ) wm , det(A m -R 1 (λ)) = 0 +∞, otherwise, (33) 
where

R 1 (λ) = (λI -A 0 )e λτm - m-1 i=1
A i e λ(τm-τ i ) and R 2 (λ) = w m w(λ)e λτm β -1. Notice that we have by (31):

lim γ→+∞ sup λ∈Ψγ R i (λ) α = 0, i = 1, 2. ( 34 
)
Case 1 -A m regular: From

f (λ) =    A -1 m (I -A -1 m R 1 (λ)) -1 α 1+R 2 (λ) wm , det(I -A -1 m R 1 (λ)) = 0 +∞, otherwise, (35) 
we obtain under the condition

A -1 m R 1 (λ) α < 1: A -1 m α w m 1 - A -1 m R 1 (λ) α 1 -A -1 m R 1 (λ) α (1 + R 2 (λ)) ≤ f (λ) ≤ A -1 m α w m 1 + A -1 m R 1 (λ) α 1 -A -1 m R 1 (λ) α (1 + R 2 (λ)). ( 36 
)
Combining ( 34) and (36) yields the statement of the proposition.

Case 2 -A m singular: From (33) we have when det(A m -R 1 (λ)) = 0:

f (λ) ≥ r σ ((A m -R 1 (λ)) -1 ) 1+R 2 (λ) wm , = 1 |λ min (Am-R 1 (λ))| 1+R 2 (λ)
wm , with r σ (•), and λ min (•) denoting the spectral radius and the eigenvalue with the smallest modulus. Hence,

|f (λ) -1 | ≤ wm|λ min (Am-R 1 (λ))| 1+R 2 (λ) ≤ wm k ( R 1 (λ) 2 ) 1/n 1+R 2 (λ) , (37) 
for some constant k, provided that R 1 (λ) 2 is sufficiently small, see [15, p.343]. The assertion of the proposition follows from (34) and (37).
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Notice that for any γ > 0 the set Ψ γ is a logarithmic sector stretching out into the left half-plane. Furthermore, the collection {Ψ γ } γ≥0 is nested in the sense

γ 1 ≤ γ 2 ⇒ Ψ γ 2 ⊆ Ψ γ 1 .
Restating the proposition in terms of pseudospectra yields:

Corollary 9 Let Ψ γ be defined as in Proposition 8.

If A m is regular, then

∀ ∈ 0, wm A -1 m α , ∃γ > 0 such that Ψ γ ∩ Λ = φ, ∀ > wm A -1 m α , ∃γ > 0 such that Ψ γ ⊂ Λ . (38) 
If A m is singular, then

∀ > 0, ∃γ > 0 such that Ψ γ ⊂ Λ . (39) 
In the case of singular A m , the pseudospectrum Λ thus stretches out along the negative real axis, for any value of > 0. Conversely, for the case of regular A m , this only happens for > w m / A -1 m α . As a consequence, infinitesimal perturbations may result in the introduction of eigenvalues with small imaginary parts (but large negative real parts).

The two cases are connected as follows: when the matrix A m is regular, we have inf

δAm∈C n×n { δA m α : det(A m + δA m ) = 0} = 1/ A -1
m α , that is, the smallest rank reducing perturbation has size 1/ A -1 m α . The smallest perturbation ∆ = (δA 0 , . . . , δA m ) on the delay equation ( 22), which introduces an eigenvalue with a predetermined very large negative real part but small imaginary part, can be decomposed into a minimal size perturbation ∆ c = (0, . . . , 0, δA m ) which makes A m singular (due to the weights we have ∆ c glob = w m / A -1 m α ), together with a very small perturbation to place the eigenvalue, according to (39).

Illustrative examples

To demonstrate the above results we first consider the following DDE,

ẋ(t) = A 0 x(t) + A 1 x(t -1) (40) 
where

A 0 =    -5 1 2 -6    and A 1 =    -2 1 4 -1    . (41) 
Figure 1(a) shows the spectrum of (40) computed using DDE-BIFTOOL, a Matlab package for the bifurcation analyses of DDEs [START_REF] Engelborghs | DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations[END_REF]. The system is shown to be stable with all eigenvalues confined to the left-half plane. To investigate how this stability may change under perturbations of the matrices A 0 and A 1 we need to compute the corresponding pseudospectra.

To this end, we consider perturbations of A 0 and A 1 using the global measure (9) with p 1 = 2 and p 2 = ∞. Pseudospectra can then be computed using Theorem 1 with α = 2 and β = 1. Specifically (for λ ∈ Λ),

f (λ) = λI -A 0 -A 1 e -λ -1 2   1 w 0 + e -λ w 1   . (42) 
By evaluating f on a grid over a region of the complex plane, and by using a contour plotter, we have identified the boundaries of -pseudospectra.

Figures 1(b)-(d)

show the -pseudospectra of (40) where different weights have been applied to A 0 and A 1 . Specifically, (w 0 , w 1 ) = (∞,

, and (w 0 , w 1 ) = (1, ∞) (d). In each panel, from outermost to innermost (or rightmost to leftmost if the curve is not closed), the curves correspond to boundaries of -pseudospectra with = 10 1.25 , 10 1.0 , 10 0.75 , 10 0.5 , 10 0.25 , 10 0 , and 10 -0.5 . It can be seen that the conclusions drawn in Section 3.2 hold, that is, perturbations of A 0 stretch pseudospectra lying in the right half-plane (d).

While perturbations applied to A 1 stretch the pseudospectra lying in the left half-plane (b). Furthermore, Fig. 2 shows the intersection of -pseudospectrum curves with the imaginary axis. In each panel, the darkest curve corresponds to an -pseudospectrum curve of Fig. 1(a), the next to a curve of Fig. 1(b), and the lightest curve corresponds to an -pseudospectrum curve of Fig. 1(c). Specifically, Fig. 2(a) shows the intersection of the three curves for = 10 1.25 , Fig. 2(b) for = 10 1.0 , and Fig. 2(c) for = 10 0.75 . For a given , these curves are seen to intersect the imaginary axis at the same point, independent of the weighting applied to the system matrices, thus, demonstrating the third conclusion of Section 3.2.

Figure 3 shows which -pseudospectrum curve intersects the imaginary axis at λ = jω, that is f -1 (jω), for each ω ∈ [-50, 50]. The minimum of this curve represents the stability radius of the system,

r C (C -, • glob ) ≈ 3.28011.
Since the minimum is reached for ω = 0 the smallest destabilizing perturba- In all other panels, from rightmost to leftmost, the contours correspond to = 10 1.25 , 10 1.0 , 10 0.75 , 10 0.5 , 10 0.25 , 10 0 , and 10 -0.5 . From (b) to (d), the weights w 0 and w 1 applied to the A 0 and A 1 matrices were (w 0 , w 1 ) = (∞, 1), (w 0 , w 1 ) = (2, 2), and (w 0 , w 1 ) = (1, ∞), respectively.

-0.41 0 0.27 (left), = 10 (middle) and = 10 0.75 (right). In the three cases the darkest contour contour corresponds to the weights (w 0 , w 1 ) = (∞, 1), the middle curve to (2, 2) and the lightest curve to (1, ∞).

tions shift an eigenvalue to the origin.

Proposition 8 applies to this problem with

l = w 1 A -1 1 2 ≈ 0.4282 w 1 . (43) 
In Figure 4(a) we show -pseudospectra for the weights (w 0 , w 1 ) = (∞, 1) (jω) Fig. 3. The function ω → f -1 (jω) for the system (40). The minimum is the complex stability radius. and = 0.1, 0.2, 0.3, 0.4, 0.5. In Figure 4(b) we take (w 0 , w 1 ) = (2, 2) and = 0.2, 0.4, 0.6, 0.8, 1. In both cases only the -pseudospectrum for the largest value of stretches out infinitely far along the negative real axis, as follows from (43).

As a second example we analyze the system

ẋ(t) = Ax(t -1), (44) 
where

A =    0 -1 0 -1   
and ∆ glob = δA 2 . The singularity of A implies by Proposition 8 and 10 -1.5 10 -1 10 -0.5 ε=0 10 0.5 10 1.5 10 Fig. 5. Boundaries of pseudospectra of (44) for different values of (solid lines), as well as the boundary of the sets Ψ γ , for various values of γ (dashed lines).

ℜ(λ) ℑ(λ) -7 -6 -5 -4 -3 -2 -1 0 
Corollary 9 that all pseudospectra stretch out along the negative real axis, in contrast to the previous example. Figure 5 shows the boundaries of the pseudospectrum Λ for = 10 -2 , 10 -1.5 , . . . , 10 1.5 . Also displayed are the sets Ψ γ , defined in Proposition 8, for γ = 1.5, 2.5, 3.5, 4.5. The remarkable correspondence indicates that the sets Ψ γ , as defined in Proposition 8, are in some sense as large as possible with respect to the validity of the convergence property (32). The latter is for instance not valid anymore on the sets,

(λ) < γ, |λ| < e -( (λ)+γ)τ γ>0 , if τ > τ m .
From the pseudospectra it follows that even arbitrarily small perturbations may lead to the introduction of eigenvalues in the vicinity of the real axis. To illustrate this, we take the perturbation

δA =    0 0 µ -µ    , µ ∈ C 0 , (45) 
which results in the characteristic equation:

(λ + e -λ )(λ + µe -λ ) = 0. ( 46 
)
Whereas the non-zero eigenvalues of the unperturbed system lie on a single 21 

the perturbed system exhibits an additional tail of infinitely many eigenvalues. The latter are lying on the curve

|λ| = |µ|e -(λ) = e -(λ)+log |µ| , (48) 
whose left part shifts along the real axis towards -∞ as |µ| → 0. This is shown in Figure 6, where the rightmost eigenvalues are displayed for µ = 0.05 and µ = 0.02.

One easily shows that any second order system of the form (44) has at most one asymptotic tail of eigenvalues if A is singular. Hence, a perturbation which destroys this topological property necessarily destroys the singularity of the matrix.

It is worthwhile to mention that the mechanism displayed in Figure 6 is in general not the only possible way in which infinitesimal perturbations of a system (22) with singular A m can create additional eigenvalues along the negative real axis. For this, we conclude with the example

ẋ(t) =    0 0 -1 0    x(t) +    0 1 -µ 0    x(t -1),
where µ ∈ C also represents a perturbation. The roots of the characteristic equation, are shown in Figure 7 for µ = 0, 10 -3 , 10 -4 . For small µ > 0, there are again two branches of eigenvalues. The right branch consists of eigenvalues, which uniformly converge on compact sets to eigenvalues of the unperturbed system, whereas the left branch contains eigenvalues whose real parts move off to minus infinity as |µ| → 0. However, for any fixed µ = 0 both branches converge to one asymptotic tail as |λ| → ∞, having a larger slope than in the unperturbed case. This happens because the term µe -2λ eventually dominates e -λ in (49). This results in one asymptotic tail characterised by|λ|/(e -(λ) ) → |µ|, in contrast to the case µ = 0 where |λ|/(e -(λ)/2 ) = 1.

λ 2 + e -λ + µe -2λ , (49) 

Concluding remarks

In the first part of this paper we presented a unifying treatment of pseudospectra and stability radii of analytic matrix functions. These may arise in the modelling and subsequent spectral analysis of systems described by higher-order differential equations, differential algebraic equations, delay differential (algebraic) equations. Various perturbation measures were considered and formulae for the computation of both pseudospectra and stability radii were derived.

In the second part we identified special properties of pseudospectra of a class of retarded delay differential equations and related these properties with the behaviour of the eigenvalues. The effect of weights in the perturbation measures on the pseudospectra was emphasised. It was shown that increased perturbations applied to the leading delay matrix stretched the pseudospectra to the left; whereas increased perturbations applied to the non-delayed matrix stretched the pseudospectra to the right. However, for all weighted perturbations, the intersections of the pseudospectrum contours with the imaginary axis and, as a consequence, the stability radius were shown to remain con-stant. Furthermore, boundedness properties of a pseudospectrum contour were shown to be directly related to the weighting applied to the perturbations of the matrix corresponding to the largest delay and to the rank of this matrix. In the singular case, where all pseudospectra were shown to stretch out along the negative real axis, the asymptotic behaviour of the eigenvalues of the system, subjected to infinitesimal perturbations, was investigated.

One of the next steps is going beyond a theoretical analysis and incorporating the information obtained from pseudospectra in a physical application requiring control. This is motivated by issues such as pole placement, the optimizing of stability, robustness, and transient behaviour.
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  i + δA i , with • any matrix norm. The bound on each δA i and thus the bound R on |λ| is implied by the bound on ∆ glob .

Fig. 1 .

 1 Fig.1. Weighted pseudospectra of the DDE (40). Panel (a) shows the spectrum of the unperturbed problem computed using DDE-BIFTOOL. In all other panels, from rightmost to leftmost, the contours correspond to = 10 1.25 , 10 1.0 , 10 0.75 , 10 0.5 , 10 0.25 , 10 0 , and 10 -0.5 . From (b) to (d), the weights w 0 and w 1 applied to the A 0 and A 1 matrices were (w 0 , w 1 ) = (∞, 1), (w 0 , w 1 ) = (2, 2), and (w 0 , w 1 ) = (1, ∞), respectively.

Fig. 2 .

 2 Fig.2. Crossings of -pseudospectrum curves with the imaginary axis, for = 10 1.25 (left), = 10 (middle) and = 10 0.75 (right). In the three cases the darkest contour contour corresponds to the weights (w 0 , w 1 ) = (∞, 1), the middle curve to (2, 2) and the lightest curve to (1, ∞).

Fig. 4 .

 4 Fig. 4. (left)--pseudospectrum curves for (w 0 , w 1 ) = (∞, 1) and = 0.1, 0.2, 0.3, 0.4, 0.5. (right)--pseudospectrum curves for (w 0 , w 1 ) = (2, 2) and = 0.2, 0.4, 0.6, 0.8, 1.

Fig. 6 .

 6 Fig. 6. (left)-Rightmost roots of (46) for µ = 0.05 ('+') and µ = 0.02 ('o'). The dotted lines correspond to the curves defined by (47) and (48). (right)-Close-up around λ = 0. curve defined by |λ| = e -(λ) ,(47)

Fig. 7 .

 7 Fig. 7. (left)-Rightmost roots of (49) for µ = 10 -3 ('+') and µ = 0 ('o'). (right)-The rightmost roots for µ = 10 -4 ('+') and µ = 0 ('o').
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