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ANALYTICAL STABILITY STUDY OF A
DETERMINISTIC CAR FOLLOWING MODEL UNDER

MULTIPLE DELAY INTERACTIONS

Rifat Sipahi 1 Silviu-Iulian Niculescu

HeuDiaSyC (UMR CNRS 6599), Université de Technologie de
Compìegne, Centre de Recherche de Royallieu, BP 20529,

60205, Compìegne, France.

Abstract: Analytical stability study of some deterministic car following models under
time-delay influences is presented and various case studies are demonstrated. Interest-
ingly, for some control law deployed by human drivers,more than one stability interval
in the domain of time delayis revealed. Physical interpretations along with comparisons
conclude the study.
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1. INTRODUCTION

Traffic flow problem has been one of the focus re-
search topic for researchers since 1930s, for math-
ematical modeling see (Orosz, et al. 2004, Treiber
a, et al. 2000, Bando, et al. 1996, Chandler, et al.
1958, Orosz, Stepan 2004), for empirical studies see
(Hoogendoorn, Ossen 2005, Treiber a, et al. 2000,
Kerner 1998) and for software development see (Hel-
bing 2001). Among many parameters defining the
traffic dynamics, there exists a critical one which is
recognized in the traffic studies as early as in 1958s
(Chandler, et al. 1958): it is thetime delay. It mainly
originates due to the time needed by human opera-
tors in sensing, decision making and acting against
dynamical variations in the evolution of traffic flow.
For this reason, traffic dynamics, and ultimately its
mathematical models,inherentlycarry time delays. In
this sense, see for instance (Orosz, et al. 2004, Sipahi,
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Niculescu 2006) for some models, related discussions
and interpretations.

Time delay may drastically deteriorate the interpreted
characterizations of the delay-free traffic models since
its existence may not guaranteestabilityor instability.
Therefore, a thoroughstability analysisof the dynam-
ics in time delay domain is needed in order to un-
derstand allowable time-delay margins of the human
operators.

Origin of Time Delay:Before mentioning the mathe-
matical models, we wish to introduce the modelling
of time-delay in traffic flow dynamics. From (Sipahi,
Niculescu 2006), we summarize the classification of
time delay according to its origin in traffic dynamics.
This is of importance as it presents how time delays
should appear in mathematical models. Without go-
ing into details, the following three components form
the time-delay, (inspired by (Bando, et al. 1996) and
(Green 2000)):

• Physiological delay,̄τ : (human operators), the
period of time between receiving a stimulus and
performing a control action. It appears as apure
time delayin mathematical models.

• Mechanical time delay,̃τ : period of time be-
tween the action of the driver and the time



the vehicle responds. This time delay isfol-
lowing the physiological delay in an accelera-
tion/deceleration action and it also appears as a
pure time delay in mathematical models.

• Delay time of vehicle motion,̄T : not physically a
pure time delay. It is defined as the period of time
that a vehicle changes its velocity to the velocity
of the preceding vehicle.

In this work we only focus on the time-invariant part
of the delay and leave the treatment of time-varying
and stochastic components of the delays for another
study. For more detailed modelling of time delays, see
(Hoogendoorn, Ossen 2005).

Quantitative Measure of Time DelayThe time delays
in the action of drivers are in the order of asecond,
although different ranges are stated in the literature,
(Sipahi, Niculescu 2006, Green 2000). A delay of 0.75
- 1.0 sec, and a braking response time at the level
of 1.2 - 1.35 sec with a standard deviation of 0.6
sec, is realistic. Moreover, sensing velocity variations
need more time as pointed out in (Allen, et al. 2005):
as a general remark, it is mentioned that response
time of a human operator, when following a vehicle,
decreases by 0.8 sec for each increase in acceleration
of the preceding vehicle by 0.3m/sec2. For a detailed
discussion see (Sipahi, Niculescu 2006).

Once the delay modeling is established, mathemat-
ical models are needed for the stability analysis of
the traffic flow dynamics. In this work, we particu-
larly consider linear car following models, (Nagatani
1999, Nakayama, Sugiyama, et al. 2001, Rothery
1998, Treiber c, et al. 2005). Such an approach will
allow some simplification in the model, but as we
present below, time delay presence will induce fur-
ther complications. The references mentioned above
assume that the drivers create decisions with a time-
delay, but following more than one vehicle in their
decision-making offers larger stability margin in time
delay domain. However, we wish to point out that
by using a different model, an extended one from
(Helbing 2001), some interesting conclusions can be
arrived: one can suggest a more realistic model with
multiple (non-identical) time delays for sensing the
motion of different vehicles. The contribution of the
present work is as follows:

1 We analyze the time-delayed traffic dynamics ana-
lytically via systems and control engineering per-
spective. Exact stability margins (maximum allow-
able time-delay for drivers) of the traffic flow when
more than one preceding vehicle is followed, are
presented on a low order dynamics.

2 A simple assumption is followed: a driver senses
the motion of a nearer vehicle in front faster than
sensing a vehicle further ahead. In other words,
time delayed information obtained from different
vehicles ahead of a vehicle arenon-identical, i.e.
independentfrom each other. This assumption is
more realistic and it originates from the fact that

drivers update their information more frequently
from a nearer vehicle than from a further one.

To our best knowledge, an analytical study in the
above perspective has not been pursued in the open lit-
erature and we form our main objective along this line.
Our aim is also to demonstrate the opportunities of ap-
proaching the stability study of traffic dynamics from
systems and control engineering perspective, which
may surface interesting physical interpretations.

It is noteworthy to state that dynamics witha single
delay is mostly preferred in the literature as a depar-
ture point of thestability analysis in the delay domain.
This is mainly due to the fact that single delayed
dynamics are easier to handle as can be seen in the
literature (Olgac, Sipahi 2002, Niculescu 2001, Stepan
1989).

In presence ofindependent(non-identical) time delays
in the dynamics, we demonstrate that, compared to
taking into account asingle delayfor all the sens-
ing delays of the drivers,a) the stability regions may
appear in a bounded delay domain,b) a stability re-
gion which is independent of one of the delays (un-
bounded stability regions) may surface, orc) stability
cannot be recovered from an unstable non-delayed
dynamics no matter how delays are chosen. Our re-
sults ina) andb) above are especially of interest due
to the fact that larger stability regions correspond to
more degree of robustness (Stepan 1989, Hale, Huang
1993, Niculescu 2001, Michiels 2002), which are al-
ways desirable under the presence of non-negligible
modelling errors.

In all the case studies, we deploy the CTCR2 , (Olgac,
Sipahi 2002, Sipahi, Olgac 2005, Sipahi 2005) in or-
der to arrive in the stability pictures in delay-parameter
space. Note that one can also follow a recently de-
velopedgeometric characterizationmethodology to
reach exactly the same results, (Gu, et al. 2005).

2. ANALYSIS OF TIME DELAY EFFECTS

The model proposed in (Helbing 2001) is extended
here for the analysis. The objective is to discuss on this
continuous-time linear traffic model and, via stability
analysis, elaborate the physical features that surface
under presence ofsingleandmultiple time delays. For
this purpose, a conceptual circular traffic is consid-
ered, Figure 1 (a configuration usually preferred in the
literature, see (Orosz, Stepan 2004) and colleagues’
works)

2.1 Multiple Vehicle Following Strategy with a Single
Time Delay

This subsection deploys a linear time invariant traffic
dynamics with a single time delay. It can also be in-

2 Cluster Treatment of Characteristic Roots



terpreted as the linearization of a non-linear dynamics
with multiple vehicle following strategy at its equilib-
rium solution, (Sipahi, Niculescu 2006):

ẋn(t) =
k∑

j=1

αn,j(xn+j(t− τ)− xn(t− τ)) (1)

wheren = 6 vehicles are considered,k an integer
which is taken ask ∈ [1, 4] representing how many
vehicles ahead are followed by the drivers, and the
time delayτ ∈ R+. Note on the above equation that
τ represents sensing delay of the drivers. Originally,
equations carry acceleration terms on the left hand
side and velocity terms on the right hand side of the
equality. We just reduce the order of the differential
equation by one. The right hand side of the above
equation can be seen as a feedback control law of the
human drivers. We stress that dynamics in (1), when
αn,j = β = 0, j > 1, is the simplest representation
of traffic dynamics as proposed in 1950 by Reuschel,
see (Helbing 2001). In our work, the constantαn,j are
taken asαn,1 = γ = 1.05, αn,j = β = 0.8, j > 1.
The aim of this section, as mentioned before, is to
detect analytically the exact stability regions of the
dynamics Eq.(1) in single time-delay domainτ , when
k registers various values,k ∈ [1, 4].

2.1.1. Stability analysis results Using the circular
path in Figure 1 forn = 6 vehicles, the characteristic
equation of the dynamics, whenk = 4, is given as:

CE(s, τ) = s6 + (18β + 6γ)s5(e−τs) + (90βγ

+15γ2 + 126β2)s4(e−τs)2 + (20γ3 + 492γβ2

+174γ2β + 428β3)s3(e−τs)3 + (657β2γ2

+156γ3β + 15γ4 + 1158β3γ + 705β4)s2(e−τs)4

+(450β5 + 990β4γ + 798β3γ2 + 6γ5

+306β2γ3 + 54βγ4)s(e−τs)5 = 0
(2)

Note that this equation represents the most compli-
cated characteristic equation taken into account,k =
4. The non-delayed dynamics for this case, i.e., when
τ = 0, possesses six roots;s1 = 0, s2 = −2γ −
2β, s3,4 = −3β − 3γ/2 ∓ iγ

√
3/2, s5,6 = −5β −

γ/2 ∓ iγ
√

3/2 (with i =
√
−1), all of which have

negative real parts (sinceγ > 0 andβ > 0) except the
zero pole (invariant pole) on the origin of the complex
plane. This pole represents the rigid body motion of
the vehicles travelling around the circular path, i.e., it 
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Fig. 1. Circular path scenario withn vehicles traveling.

Table 1. Stability Margin vs. the number of
vehicles followed (k).

k Stability Margin,τ [sec] ∈
1 [0, 0.498)
2 [0, 0.349)
3 [0, 0.304)
4 [0, 0.297)

is the motion mode where there is no relative displace-
ment of vehicles with respect to each other,k ∈ [1, 4].
Using the continuity principle argument (Niculescu
2001), it follows that the remaining poles are still in
C− for small delay values,τ = ε > 0. In conclusion,
the computation of the delay margin makes sense.

Remark:The presence of an invariant root in the non-
delayed characteristic equation of a time-delayed dy-
namics may sometimes induce instability by allow-
ing a second root to cross from left to right half
of the complex plane, across theorigin, for a finite
time delayτ . This delay should satisfy concurrently
dCE(s,τ)

ds |s=0 = 0 and (2). However, in the charac-
teristic equations (k ∈ [1, 4]) we consider here this
is never the case, i.e.,dCE(s,τ)

ds |s=0 6= 0. Thus an
instability never occurs by a pole crossing the origin.

In the following, we present the analytical stability
analysis results on the dynamics Eq.(1) inτ domain,
i.e., we wish to present the time delay margin in which
the dynamics preserves its stability, and next to check
if there exists larger delay values for which stability
can be recovered.

2.1.2. Physical Interpretations Assuming the time
delays influencing the drivers are identical to each
other, drivers selecting a strategy of following more
than one vehicle ahead of them causenarrowerstabil-
ity margins in the entire traffic dynamics, see Table
1. According to the mathematical model at hand, it
is preferable that the drivers follow only the vehicles
in front of them, since this selection offers a wider
stability margin for the linear stability of the entire
dynamics.

With this case study, we also aim to merge systems
and control theory into the stability analysis of traffic
dynamics. From the analysis, one may surface some
unexpected phenomena, such as in the above analysis.
Note that, this approach has not been pursued thor-
oughly in the open literature except a few publications
(Orosz, Stepan 2004, Orosz, et al. 2004), and the cur-
rent work, as to our knowledge, seems to be the first
one in that direction.

2.2 Multiple Vehicle Following with Multiple Time
Delays

In this case study, we compare two different traffic
scenarios using an extended version of the dynamics
in (1). In the first one, a single vehicle is followed by



all the drivers with an identical reaction time delay,
τ . In the second scenario, all drivers follow the two
vehicles ahead of them, however sensing a nearer
vehicle is assumed to be faster than a further one, thus
there exists two independent time delays, giving rise
to a multiple time-delayed dynamics. Note that, all
drivers pay more attention to a nearer vehicle in front
of them than to a vehicle in further distance; hence
such an assumption is quite realistic.

First of all, we taken = 3 vehicles on the circular
path given in Figure 1. Before we proceed, we wish to
classify the analysis of this part since we construct the
feedback law in three different ways:

Strategy 1 Drivers follow either one or two vehicles
ahead of them, by performingonly position feed-
back, i.e.

ẍn(t) =
2∑

j=1

αn,j(xn+j(t− τj)− xn(t− τj))

(3)
Strategy 2 Drivers follow either one or two vehicles

ahead of them, by performingonly velocity feed-
back, i.e.

ẍn(t) =
2∑

j=1

αn,j(ẋn+j(t− τj)− ẋn(t− τj))

(4)
Strategy 3 Drivers follow either one or two vehicles

ahead of them, by performing acombination of
position and velocity feedback, i.e.

ẍn(t) =
2∑

j=1

(αn,j(xn+j(t− τj)− xn(t− τj) (5)

+ẋn+j(t− τj)− ẋn(t− τj)))

The main objective here is to understand how different
control laws under the influence of single and multiple
time delays may reveal different stability features of
the dynamics, and whether or not the stability would
be improved further when multiple car following strat-
egy is selected (αn,2 6= 0). Similar to the previous
case study, we takeαn,1 = γ = 1.05. When a single
vehicle is followed by the driversαn,2 = β = 0, and
when two vehicles are followedαn,2 = β = 0.8. In
the following we present the results obtained.

2.2.1. Stability analysis results The stability anal-
ysis in singleandmultipmetime delay domains will
be analyzed by the CTCR technique, (Sipahi, Olgac
2005, Sipahi 2005).

Stability results and physical interpretations for posi-
tion feedback:

• Following one vehicle ahead:(αn,2 = 0 in
Eq.(3)), dynamics is single time-delayed. A sta-
bility analysis declares that the dynamics is al-
ways unstable no matter whatτ is.

• Following two vehicle ahead:For this case, same
result follows as above. Drivers following two

cars ahead of them cannot improve the stability
of the entire traffic dynamics. The dynamics is
always unstable for any selection of time delays,
τ1 and τ2. The instability picture, (Figure 2)
demonstrates that no stable regions appear inτ1

vs τ2 parametric domain.

Conclusion:Note that using only a position feedback
control law makes the non-delayed dynamics unstable,
and the presence of time delay is not able to suggest
a stability recovery although multiple vehicles are
followed by the drivers. 

Unstable 
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Fig. 2. Instability picture under position feedback,
Strategy 1.

Stability results and physical interpretations for veloc-
ity feedback:

• Following one vehicle ahead:The dynamics in
Eq.(4) becomes single time-delayed. A stability
analysis declares the stability margin asτ ∈
[0, 0.576) sec.

• Following two vehicles ahead:For this case, the
dynamics in Eq.(4) is stable in the shaded region
given inτ1 vs τ2 domain, Figure 3. Interestingly,
the entire dynamics has anunboundedstability
region alongτ2 for τ1 < 0.1374 sec. Physically,
this explains that if drivers can act no later than
τ1 = 0.1374 sec for their velocity feedback de-
cisions based on the nearer vehicle, no matter
have late they act for their decisions they make
based on the velocity of the further (2nd vehicle
ahead) vehicle, the traffic dynamics remains sta-
ble.

Furthermore, we split the stability region into
two using the45◦ dashed red line. We focus on
the region whereτ2 > τ1, since we assumed that
τ1 is smaller thanτ2 (sensing a nearer vehicle
is less time-delayed compared to sensing a fur-
ther one). If0.1374 < τ1 < 0.5 sec, stability
independent ofτ2 disappears, and decreasingτ1

allows largerτ2 values, or vice versa. Clearly,
there exists a trade-off in this picture, and both
delays cannot be independently increased with-
out destroying the stability of the dynamics.

Conclusion:We stress that in contrast to position feed-
back only, velocity feedback control law is prefer-
able since it makes the non-delayed dynamics stable.
Moreover, ifτ1 = 0 is selected and a stability analysis
is performed, one finds that this dynamics is stable
independent ofτ2. This suggests that there maybe a
τ1 > 0 beyond which this stable independent of delay
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Fig. 3. Stability picture (shaded) under velocity feed-
back, Strategy 2.

region may not exist (it is only a possibility); which is
the case in this analysis.

Stability results and physical interpretations for veloc-
ity and position feedback:

• Following one vehicle ahead:Again the dy-
namics in Eq.(5) becomes single time-delayed.
A stability analysis declares that the dynamics
is stable for time delays in the range ofτ ∈
[0, 0.291) sec.

• Following two vehicles ahead:For the dynamics
in Eq.(5), the stability picture is depicted in Fig-
ure 4 inτ1 vs τ2 parametric domain. The shaded
region, which isboundedon both axis, represents
the stable region of the entire dynamics. In order
to designate our assumptionτ2 > τ1, we mark
the figure with a dashed red line. If drivers can
act earlier thanτ1 = 0.4 sec for sensing the
velocity and position variations between their
vehicle and the preceding vehicle, they can have
larger stability margins alongτ2 for sensing ve-
locity and position variations between their vehi-
cles and the one further (2ndvehicle followed).
But note that, the stability region is improving
along τ2 (i.e., maximum allowable delay along
this axis is increasing) while it is getting nar-
rower alongτ1, or vice versa. Hence for the
given example dynamics, there exists a trade-off
between the two delays, similar to the previous
example with velocity feedback law only.

 

τ 2
  [

se
c]

 

τ1  [sec] 

Fig. 4. Stability picture (shaded) under velocity and
position feedback, Strategy 3.

Conclusion:It is interesting to see that, compared to
only velocity feedback, combination of velocity and
position feedback is not suggesting an improvement
over the stability regions (compare Figure 3 and Fig-
ure 4). Furthermore, the stable independent ofτ2 re-
gion disappears with the additional position feedback

terms in Eq.(5). The stability margin becomes0 ≤
τ2 < 1.07 sec whenτ1 = 0. We wish to stress that
evenoneposition feedback component is sufficient to
destroy this stable independent ofτ2 region, i.e., if a
position feedback is added to Eq.(4) as follows

ẍn(t) =
2∑

j=1

αn,j(ẋn+j(t− τj)− ẋn(t− τj)) (6)

+αn,ν(xn+ν(t− τν)− xn(t− τν))

with ν = 1, 2. The stability margin whenτ1 = 0 and
ν = 1 reveals0 ≤ τ2 < 1.16 sec. If ν = 2 is taken,
an interesting stability picture surfaces. The dynamics
becomes stable in two different intervals ofτ2, when
τ1 = 0. These intervals are0 ≤ τ2 < 1.347 sec and
4.061 ≤ τ2 < 4.063 sec. We wish to shortly elaborate
on this result in the following remark.

Remark:It is very well known that time-delayed dy-
namics may exhibit more than one stability interval
(Olgac, Sipahi 2002, Stepan 1989, Niculescu 2001,
Gu, et al. 2005), and this is very advantageous from
systems and control engineering perspective since it
offers more options in the time-delay domain where
the feedback controller can be utilized for stabilization
of the dynamics. However, to our best knowledge this
phenomenon has neither been recognized in the stabil-
ity analysis of traffic flow nor it has been constructed
for controlling it as a stabilization tool. We reserve
further elaboration of this interesting feature for future
work.

2.3 Comments

Respecting the simplifications of the existing litera-
ture, especially by considering a single delay, it is
critical to point out the following:

1. As seen from case studies, following multiple vehi-
cles may not be advantageous compared to following
the preceding vehicle only. Moreover, a single delay
implementation may never offer stability when a posi-
tion feedback control law is suggested. Larger stability
margin may be possible for velocity feedback only as
opposed to velocity and position feedback together.

2. Dynamics under certain control law may perform
multiple stability intervals as demonstrated over the
dynamics in (6) whenν = 2. This especially car-
ries importance for controller implementation since
it offers more options in the time-delay domain for
constructing the controller.

3. Considering more realistic multiple time delays
may reveal larger stability regions that may exist in
a traffic dynamics. For instance, unbounded stability
regions may exist, or stability improvement along one
of the delays may require narrower stability margin
along the other delay, which can be seen as atrade-off
between the time delays.



4. Multiple delays can be treated as multiple parameter
dynamics which could offer more flexibility on how
to choose them to achieve stability improvement (sta-
bilization and control synthesis). This study demon-
strates there exists research potential that can be pur-
sued on the problem with the integration of systems
and controls engineering perspective.

3. CONCLUSION

In this work, the stability of some car following traffic
dynamics under the influence of time-delays is ana-
lyzed. Time delay mainly appears due to the limited
sensing and acting capabilities of human drivers. The
backbone of the approach is based onsystem and con-
trol engineeringperspective. Comparisons between
the models with respect to stability improvement in
single and multiple delay domains are presented and
physical interpretations are given. Via the approach,
some interesting features may be obtained in the delay
domain;a) more than one stability interval may ex-
ist, b) stability independent of one of the delays may
surface orc) stability regions may be enhanced.
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