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Abstract: Stability of linear systems with norm-bounded uncertainties and uncertain
time-varying delays is considered. The delays are supposed to be bounded and
fast-varying (without any constraints on the delay derivative). Sufficient stability
conditions are derived via complete Lyapunov-Krasovskii functional (LKF). A new
LKF construction, which was recently introduced for systems with uncertain delays,
is extended to the case of norm-bounded uncertainties: to a nominal LKF, which is
appropriate to the system with the nominal value of the coefficients and of the delays,
terms are added that correspond to the perturbed system and that vanish when the
uncertainties approach 0. Numerical examples illustrate the efficiency of the method.
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1. INTRODUCTION

The stability and control of time-delay systems
is a subject of recurring interest, and a lot of
research has been devoted to the field in the last
decade using both frequency- and time-domain
methods. Most of the results devoted to the the
robust stability of systems with norm-bounded
uncertainties and uncertain delays consider as as-
sumption the stability of the system free of de-
lays, and next, in the time-domain, use appropri-
ate Lyapunov-Razumikhin functions or Lyapunov-
Krasovkii functionals combined with Linear Ma-
trix Inequalities (LMIs) to derive some bounds on
the delay values µi (finite), such that the uncertain
system will be stable for all delays intervals of the
form [0, µi]. Without any loss of generality, we can
define such a case as stability characterization of
uncertain ’small’ delays (see e.g. Li & de Souza,
1997, Moon et al., 2001, Fridman & Shaked, 2002).

Systems with uncertain ’non-small’ delays, where
the nominal delay values are non-zero and con-
stant appears in different applications such as
high-speed networks, biological systems (Kol-
manovskii & Myshkis, 1999). Such systems may
be not stable for the zero values of the delays and
thus their stability can not be analyzed via simple
LKFs (Gu, Kharitonov & Chen, 2003). The analy-
sis in such case becomes largely more complicated
than in the ‘small’ delay case.

Only a few works have been devoted to the sta-
bility analysis of such systems. Thus, for exam-
ple, the Lyapunov-based methods have been de-
veloped in the case of known constant delays
and norm-bounded uncertainties (Kharitonov &
Zhabko, 2003), (Mondie et al., 2005) or in the case
of uncertain ’non-small’ delays and known coef-
ficients (Kharitonov & Niculescu, 2003). Robust
stability of uncertain systems with ’non-small’ de-



lay has been analyzed also in the frequency domain
(Gu et al., 2003; Kao & Lincoln, 2004). However,
only Lyapunov-based methods can be applied to
the problems, where the knowledge of the ini-
tial function is important (see e.g. Tarbouriech &
Gomes da Silva, (2000) for application of LKF to
the estimate on the domain of attraction of the
nonlinear system, modeled as a linear uncertain
system).

Recently, a new construction of LKF for stabil-
ity analysis of systems with uncertain delays was
suggested (Fridman, 2004): to a nominal LKF,
which is appropriate to the nominal system (with
nominal delays and coefficients), the terms are
added which correspond to the perturbed sys-
tem and which vanish when the uncertainties ap-
proach 0. In (Fridman, 2004) the simple descriptor
nominal LKF was considered. In (Fridman, 2006)
such LKF construction was extended to the com-
plete nominal LKF. Unlike the existing complete
LKFs (see e.g. Repin, 1965; Datko, 1971; Huang,
1989; Kharitonov & Zhabko, 2003; Kharitonov &
Niculescu, 2003), the derivative of the complete
nominal LKF of (Fridman, 2006) along the tra-
jectories of the nominal system depends on the
state and the state derivative which allows a less
conservative treatment of the delay perturbation.

To the best of our knowledge, the stability of
the systems with both, norm-bounded uncertain-
ties and uncertain non-small delays, has not been
studied yet via complete LKF. Note that the dis-
cretized Lyapunov functional method (Gu et al.,
2003), which gives the sufficient conditions only,
can not always be applicable. In the present paper
we provide stability analysis of such uncertain sys-
tems via comlete LKF. We extend the construction
of LKF started in (Fridman, 2006) to the case of
norm-bounded uncertainty. In the case of known
constant delays, the derivative of the complete
nominal LKF along the trajectories of the nominal
system depends only on the state. The results for
this case are simpler and less restrictive than the
existing ones. The numerical examples illustrate
the efficiency of the method.

Notation: Throughout the paper the superscript
‘T ’ stands for matrix transposition, Rn denotes
the n dimensional Euclidean space with vector
norm |·|,Rn×m is the set of all n×m real matrices,
and the notation P > 0, for P ∈ Rn×n means
that P is symmetric and positive definite. The
symmetric elements of the symmetric matrix will
be denoted by ∗.

2. PROBLEM FORMULATION

We consider the following linear system with un-
certain coefficients and uncertain time-varying de-
lays τi(t) (i=1,2):

ẋ(t) = (A0 + H∆E0)x(t)

+
2∑

i=1

(Ai + H∆Ei)x(t− τi(t)),
(1)

where x(t) ∈ Rn is the system state, A0, A1, A2

H, E0, E1 and E2 are constant matrices of ap-
propriate dimensions and ∆(t) is a time-varying
uncertain matrix that satisfies

∆(t)T ∆(t) ≤ I. (2)

The uncertain delays τi(t) are supposed to have
the following form:

τi(t) = hi + ηi(t), i = 1, 2, h1 > 0, h2 = 0,(3)

where hi are nominal constant values and ηi(t) are
time-varying perturbations satisfying the follow-
ing inequalities: |η1(t)| ≤ µ1 ≤ hi, 0 ≤ η2(t) ≤ µ2

with the known upper bounds µ1 and µ2.

We derive stability sufficient conditions via Lyapunov-
Krasovskii technique. As suggested in (Fridman,
2004) we consider the following form of LKF:

V = Vn + Va, (4)

where Vn is a nominal LKF which corresponds to
the nominal system

ẋ(t) = A0x(t) +
2∑

i=1

Aix(t− hi), (5)

and Va consists of additional terms and depends
on µi,H, Ei(i = 1, 2) and Va → 0 for µ1 +
µ2 → 0,H → 0, E1 → 0, E2 → 0. The latter will
guarantee that if the conditions for the stability
of the nominal system are feasible, then the sta-
bility conditions for the perturbed system will be
feasible for small enough delay perturbations and
norm-bounded uncertainties.

For the nominal system in the present paper we
choose the complete LKF. The results are easily
generalized to the case of a finite number of small
uncertain delays.

3. MAIN RESULTS

We assume that h2 = 0 and that the nominal
system (5) is asymptotically stable. Then (Frid-
man, 2006) there exists the nominal ’complete’
LKF Vn(xt) such that Vn(xt) > ε|x(t)|2, ε > 0
and along the trajectories of the nominal system
(5)

V̇n = −xT (t)W0x(t)− ẋT (t)W1ẋ(t). (6)

It has the following form:



Vn(φ) = φT (0)U(0)φ(0)

+2φT (0)

0∫
−h1

U(h1 + θ)A1φ(θ)dθ

+

0∫
−h1

0∫
−h1

φT (θ2)AT
1 U(θ2 − θ1)A1φ(θ1)dθ1dθ2

+V̄n,

(7)

where

U(θ) = U0(θ) + U1(θ), θ ∈ R,

U0(θ) =

∞∫
0

KT (t)W0K(t + θ)dt, θ ∈ R,

U1(θ) =

∞∫
0

K̇T (t)W1K̇(t + θ)dt, θ ∈ R,

(8)

V̄n =

0∫
−h1

φT (θ2)AT
1 W1{A1φ(θ2)

+2[A0e
A0(θ2+h1)φ(0)

+

θ2∫
−h1

A0e
A0(θ2−θ1)A1φ(θ1)dθ1]}dθ2.

Here K(t) is a fundamental matrix associated with
the nominal system (5), i.e. K(t) is an n×n-matrix
function satisfying

K̇(t) = (A0 + A2)K(t) + A1K(t− h1), t ≥ 0,

with the initial condition K(0) = I and K(t) = 0
for t < 0.

Similarly to (Kharitonov & Niculescu, 2003),
(Fridman, 2006) we represent the perturbed sys-
tem in the form:

ẋ(t) = (A0 + A2 + H∆(E0 + E2))x(t)
+(A1 + H∆E1)x(t− h1)− (A1 + H∆E1)×

×
t−h1∫

t−h1−η1

ẋ(s)ds− (A2 + H∆E2)

t∫
t−η2

ẋ(s)ds.(9)

Differentiating Vn along the trajectories of (9), we
find

V̇n(xt) = −xT (t)W0x(t)− ẋT (t)W1ẋ(t)

+
4∑

i=0

δi(t),
(10)

where

δ0(t) = −2

t−h1∫
t−h1−η1

ẋT (s)AT
1 [U(0)x(t)

+

0∫
−h1

QT (h1 + θ)A1x(t + θ)dθ]ds,

Q(h1 + θ) = U(h1 + θ) + W1A0e
A0(h1+θ), (11)

δ1(t) = −2

t∫
t−η2(t)

ẋT (s)AT
2 [U(0)x(t)

+

0∫
−h1

QT (h1 + θ)A1x(t + θ)dθ]ds,

δ2(t) = 2[xT (t)(ET
0 + ET

2 )
+xT (t− h1)ET

1 ]∆T HT [U(0)x(t)

+

0∫
−h

QT (h + θ)A1x(t + θ)dθ]ds,

δ3(t) = −2

t−h1∫
t−h1−η1(t)

ẋT (s)ET
1 ∆T HT [U(0)x(t)

+

0∫
−h1

QT (h1 + θ)A1x(t + θ)dθ]ds,

δ4(t) = −2

t∫
t−η2(t)

ẋT (s)ET
2 ∆T HT [U(0)x(t)

+

0∫
−h1

QT (h1 + θ)A1x(t + θ)dθ]ds.

By applying standard bounding, for n×n-matrices
R1 > 0, R11 > 0 and scalars r2 > 0, r12 > 0, ρij >
0, i = 1, ..., 4, j = 1, 2 the following is obtained:

δ0(t)

≤ |
t−h1∫

t−h1−η1(t)

ẋT (s)AT
1 (R−1

1 + r−1
2 I)A1ẋ(s)ds|

+|
t−h1∫

t−h1−η1(t)

xT (t)U(0)R1U(0)x(t)dt|

+r2|
t−h1∫

t−h1−η1(t)

0∫
−h1

xT (t + θ)AT
1 Q(h1 + θ)

×QT (h1 + θ)A1x(t + θ)dθds|

≤
t−h1+µ1∫

t−h1−µ1

ẋT (s)AT
1 (R−1

1 + r−1
2 I)A1ẋ(s)ds

+µ1x
T (t)U(0)R1U(0)x(t)

+µ1r2

0∫
−h1

xT (t + θ)AT
1 Q(h1 + θ)

×QT (h1 + θ)A1x(t + θ)dθ,

(12)



δ1(t)

≤
t∫

t−µ2

ẋT (s)AT
2 (R−1

11 + r−1
12 I)A2ẋ(s)ds

+µ2x
T (t)U(0)R11U(0)x(t)

+µ2r12

0∫
−h1

xT (t + θ)AT
1 Q(h1 + θ)

×QT (h1 + θ)A1x(t + θ)dθ,

(13)

δ2(t)
≤ (ρ11 + ρ12)xT (t)UT (0)HHT U(0)x(t)

+(ρ21+ρ22)

0∫
−h1

xT(t + θ)AT
1 Q(h1 + θ)H

×HT QT (h1 + θ)A1x(t + θ)dθ

+(ρ−1
11 + ρ−1

21 )xT (t)(E0 + E2)T

×(E0 + E2)x(t)
+(ρ−1

12 + ρ−1
22 )xT (t− h1)ET

1 E1x(t− h1),

(14)

δ3(t) ≤ ρ31µ1x
T (t)UT (0)HHT U(0)x(t)

+(ρ−1
31 + ρ−1

32 )

t−h1+µ1∫
t−h1−µ1

ẋT (s)ET
1 E1ẋ(s)

+ρ32µ1

0∫
−h1

xT (t + θ)AT
1 Q(h1 + θ)H

×HT QT (h1 + θ)A1x(t + θ)dθ,

(15)

δ4(t) ≤ ρ41µ2x
T (t)UT (0)HHT U(0)x(t)

+(ρ−1
41 + ρ−1

42 )

t∫
t−µ2

ẋT (s)ET
2 E2ẋ(s)ds

+ρ42µ2

0∫
−h1

xT (t + θ)AT
1 Q(h1 + θ)H

×HT QT (h1 + θ)A1x(t + θ)dθ.

(16)

We choose

V (xt) = Vn(xt) +
3∑

i=1

Vai(xt),

Va1(xt) = (ρ−1
12 + ρ−1

22 )

t∫
t−h1

xT (s)ET
1 E1x(s)ds,

Va2(xt) =

µ1∫
−µ1

t∫
t+θ−h1

ẋT (s)[AT
1 (R−1

1 + r−1
2 I)A1

+ET
1 (ρ−1

31 + ρ−1
32 )E1]ẋ(s)dsdθ,

+

0∫
−µ2

t∫
t+θ−h1

ẋT (s)[AT
2 (R−1

11 + r−1
12 I)A2

+ET
2 (ρ−1

41 + ρ−1
42 )E2]ẋ(s)dsdθ,

Va3(xt) =

0∫
−h1

t∫
t+θ

xT (s)AT
1 Q(h1 + θ)[(µ1r2

+µ2r12)I + HHT (ρ21 + ρ22 + µ1ρ32

+µ2ρ42)]QT (h1 + θ)A1x(s)dsdθ.

where Vn is defined by (7), we obtain that V̇ < 0
if the following inequalities are satisfied: Φ E

T
0 + E

T
2 E

T
0 + E

T
2 E

T
1 E

T
1

∗ −ρ11I 0 0 0
∗ ∗ −ρ21I 0 0
∗ ∗ ∗ −ρ12I 0
∗ ∗ ∗ ∗ −ρ22I

 < 0, (17)


Ψ 2µ1E

T
1

0
2µ1E

T
1

0
µ2E

T
2

0
µ2E

T
2

0
∗ −2µ1ρ31I 0 0 0
∗ ∗ −2µ1ρ32I 0 0
∗ ∗ ∗ −ρ41I 0
∗ ∗ ∗ ∗ −ρ42I

 < 0, (18)

where

Ψ =

 −W1 2µ1A
T
1 2µ1A

T
1 µ2A

T
2 µ2A

T
2

∗ −2µ1R1 0 0 0
∗ ∗ −2µ1r2I 0 0
∗ ∗ ∗ −µ2R11 0
∗ ∗ ∗ ∗ −µ2r12I

,

Φ = −W0 + [ρ11 + ρ12 + µ1ρ31

+µ2ρ41]UT (0)HHT U(0)
+UT (0)(µ1R1 + µ2R11)U(0)
+[µ1r2 + µ2r12]AT

1QA1

+[ρ21 + ρ22 + µ1ρ32 + µ2ρ42]AT
1QHA1,

Q =

0∫
−h1

Q(h1 + θ)QT (h1 + θ)dθ,

QH =

0∫
−h1

Q(h1 + θ)HHT QT (h1 + θ)dθ.

(19)

We have proved the following

Theorem 1. Assume that h2 = 0 and that the
nominal system (5) is asymptotically stable. Let
U(θ), Q(θ), θ ∈ [0, h], Q and QH be defined by
(8), (11), (19). Then (1) is asymptotically stable
for all piecewise-continuous delays |η1(t)| ≤ µ1 ≤
h1, 0 ≤ η2(t) ≤ µ2 if there exist n× n ma-
trices W0,W1, R1, R11 and scalars r2, r12, ρij , i =
1, ..., 4, j = 1, 2 that satisfy (17), (18).

In the case when delays are known (η1 = 0, η2 =
0), we choose W1 = 0. Here δ0 = δ1 = δ3 = 0 and
we obtain the following:

Corollary 2. Assume that h2 = 0, η1 = η2 = 0
and that the nominal system (5) is asymptotically
stable. Let

U(θ) = U0(θ)

=

∞∫
0

KT (t)W0K(t + θ)dt, θ ∈ R,
(20)

Q and QH be given by (19), where Q(θ) =
U0(θ), θ ∈ [0, h]. Then (1) is asymptotically stable
if there exist a n×n-matrix W0 and scalars ρij , i =
1, 2, j = 1, 2 that satisfy (17), where

Φ = −W0 + [ρ11 + ρ12]UT
0 (0)HHT U0(0)

+[ρ21 + ρ22]AT
1QHA1.



In the case when the delays are uncertain, but
system coefficients are known (∆ = 0 or H =
0, Ei = 0, i = 0, 1, 2), Theorem 1 implies the result
of (Fridman, 2006).

Example 1: (Kharitonov & Niculescu, 2003) Con-
sider (1) with

A0 =
[

0 1
−1 −2

]
, A1 =

[
0 0
−1 1

]
, H = I,

Ei = eiI, i = 0, 1, ei ∈ R, τ1 ≡ 1,
(21)

where A2 = E2 = 0. It was found in (Mondie et
al. 2005) that the system is robustly stable for
e0 = 0.016 and e1 = 0.02. The latter bounds
on the perturbations of the system matrices were
less conservative than those given in (Kharitonov
& Zhabko, 2003). The improvement was achieved
due to the cross term which was inserted into the
time derivative of the complete LKF. By applying
a simpler nominal complete LKF of (7), (6), where
W0 = I and W1 = 0 and Corollary 2, we obtain
a larger stability margins e0 = 0.04 and e1 =
0.05. The result is less conservative because of the
proper construction of LKF in the form of (4),
where (similar to simple LKFs) the terms of Va

compensate the perturbations (and not complete
LKF itself).

Example 2: Consider (1) with

A1 =
[

0 0
−0.4 0

]
, A2 =

[
0 1
−2 0

]
, H = I,

A0 = E0 = 0, Ei = eiI, i = 1, 2, ei ∈ R.
(22)

which was analyzed in (Kharitonov & Niculescu,
2003) for τ2 = 0. The nominal non-delayed system
(i.e. (22) with τ1 = τ2 = 0 and H = 0) is
not asymptotically stable and thus simple nominal
LKFs are not applicable. For the case of constant
delay τ1 = 4 + η1 and e1 = e2 = 0 the follow-
ing stability interval was found by the frequency
domain analysis (Kharitonov & Niculescu, 2003):
τ2 = 0, −0.6209 < η1(t) < 0.7963.

For h1 = 4, h2 = 0,∆ = 0 the following stability
interval was found in (Fridman, 2006) by using
complete LKF of (7), (6), where W0 = W1 = I:
0 ≤ η2(t) ≤ 0.002, |η1(t)| ≤ 0.002.

By Theorem 1 for e1 = e2 = 10−4 we ver-
ify that the system is asymptotically stable for
η2 = 0, |η1(t)| ≤ 0.01 and for 0 ≤ η2(t) ≤
0.001, |η1(t)| ≤ 0.001.

4. CONCLUSIONS

Stability of linear retarded type system with un-
certain time-varying delays and norm-bounded
uncertainties is analyzed via complete LKF. A
new Lyapunov functional construction, which

was recently introduced for systems with uncer-
tain delays, is extended to the case of norm-
bounded uncertainties. This leads to effective
method for robust stability of linear uncertain sys-
tems with time-varying delays in the cases, where
other Lyapunov-based methods are not applicable.
Moreover, the new results improve and simplify
the existing ones.
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