N
N

N

HAL

open science

Some remarks on Smith predictors A geometric point of

view

Irinel-Constantin Morarescu, Silviu-Iulian Niculescu, Keqin Gu

» To cite this version:

Irinel-Constantin Morarescu, Silviu-Iulian Niculescu, Keqin Gu. Some remarks on Smith predictors A
geometric point of view. 6th IFAC Workshop on Time Delay Systems, TDS 2006, Jul 2006, I’ Aquila,

Italy. pp.264-269. hal-02294066

HAL Id: hal-02294066
https://hal.science/hal-02294066

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02294066
https://hal.archives-ouvertes.fr

SOME REMARKS ON SMITH PREDICTORS: A
GEOMETRIC POINT OF VIEW

Constantin-Irinel Mor arescu® Silviu-lulian Niculescu 2
Keqin Gu 3

Abstract: In this paper we develop a method to obtain the stability crossing curves of
a Smith Predictor control scheme. More explicitly, we compute the crossing set, which
consists of all frequencies corresponding to all points on the stability crossing curve, and
we give their complete classification. Furthermore, the directions in which the zeros cross
the imaginary axis are explicitly expressed.

Keywords: Smith Predictor, Delay uncertainty, Stability

1. INTRODUCTION like control of congestions in high-speed networks
(see, e.g. [5]).
The stability and control of time-delay systems are

: . X = The approach considered in the paper makes use of
subject of recurring interest since tdelayis inher-

X : T . some simple geometric idea (triangles inequality), in-
ently pre_sent Invarious appllcat'lons, from _S|gnal Prop- spired by ([3]) and devoted to the characterization of
ggaﬂon in networks to population dynamics (see, for the stability crossing curves for general systems with
instance, [7, 2] for further references, and examples). two delays. The novelty of the results lies isianple

The aim of this paper is to present sonew interpre-  andeasyto follow classificationof all the situations
tationsof the Smith predictors ([10]) subject telay where uncertainty on the nominal delay value will
uncertainty This problem was largely treated in the induce instabilities in the corresponding schemes, and
literature starting with the 80s (see, for instance, [8], also considers, and gives the corresponding character-
[12], [11], [9], and the references therein), and it is izations of some of thelegenerate casesentioned,
reconsidered recently ([6]), mainly to the increasing but not discussed by [3]. Furthermore, the approach
interest of using such a methodology in applications, under consideration completes the algebraic charac-
terizations in ([7], [6]).
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Let G be the set of all pairgz,y) € R2 such that ~ Assumption 5.
x < y. It is obvious that replacing, = 71 + ¢ and

taking (71, 72) € G we can consider the following P(jw) - Q(jw) # 0forall w € O ®)
equivalent equation:
D(s,71,72) = P(s) + Q(s)e™™ — Q(s)e~*™ = 0 and then we will discuss what happens in other cases.

1)
More explicitly, we study the occurrence of any possi-
ble stability switch/reversdl resulting by increasing
the time delayr; or 7. In other words, we explicitty ~ 3.1 Regular cases
study the change of number of zeros of (1)©n as
the delaygr;, 7») vary onG. Since the main objective  In the sequel, we consider

of this study is to identify the regions dfr, ) in Q(s)
G such thatD(s, 71, 72) is (asymptotically) stable, we h(s) =

will exclude some cases, and the following assump- P(s)
tions appear naturally: and

H(s)=1+h(s)e” ™ — h(s)e™*™ (4)

For given 71 and 75, as long as assumption 5 is

Assumption 1deg(Q) < deg(P).

Assumption 2.P(0) # 0. satisfied, D(s) and H(s) share all the zeros in a
neighborhood of the imaginary axis. Therefore, we
Assumption 3.P, Q do not have common zeros. may obtain all the crossing points and direction of
crossing usingH (s) = 0 instead of D(s) = 0.
Assumption 4P and Q are such that: We may also consider the three terms Af(s) as
Qs 1 three vectors in the compl_ex plane, with magnit.udes
slirgo P(s) <3 1, |h(s)| and|h(s)| respectively. So when we adjust

the values of; andr, in fact we adjust the directions

Remark 1.If the system is of retarded type then the of the vectors represented by the second and the third
assumption 4 is automatically satisfied since its left [€rMs. Equation (4) means that if we put the first two

_ . Qs) vectors had to tail then we get the third vector. In other
hand is zero. For neutral systems,de¢ lim Pla) words they form an isosceles triangle and the existence
Then it is well known that the stability of the system condition reduces to: the sum of the equal sides exceed
(1) is possible only if the difference equation the oth_e_r side. This allows us to give the following

proposition.

x(t) +cx(t —m) —cx(t—72) =0 2
is exponentially stable. Assumption 4 guarantees theProposition 1. For some(r,72) € G, H(s) has an

stability of (2). imaginary zere = jw, w # 0 if and only if
. 1
h(jw)] = . 5)
3. IDENTIFICATION OF THE CROSSING
POINTS

Let 7 denote the set of all points, ) € G such Im

that D(s) has at least one zero on the imaginary axis. B
Any (r1,72) € T is known as a crossing point. The
set7, which is the collection of all crossing points , is
known as thestability crossing curved et 7, denote
the set of all(m, 72) € G such thatD(s) has at least
one zero fors = jw. Let ) the set of alkv for which
there exists a pairr;, 72) such thatD (jw, 71, 72) = 0.
We will refer to2 as thecrossing setObviously

T ={T,|lw e Q}. ° A Re

Next, for the clarity of the presentation we will split

our discussion in two parts. First we will consider only Fig. 1. Triangle formed by 1k (s)e~*™ andh(s)e=°"2
the case which satisfy the following non-degeneracy

condition,

Due to the symmetry and assumption 2 we only need
4 We are using the same terminology as in Cooke and Gross- to consider positiveo. So (2 is the set of ally > 0

man [1], that is a root of the characteristic equatiossingthe which Sat.iSfy (5). Alsoz for_a givew € Q2 we may find
imaginary axis, when some parameter is varying. all the pairs(ry, 72) satisfyingH (jw) = 0 as follows:



Zh(jw) 4+ 2u—1)m £ ¢

n = (W) = - ©)
u:ug,u(ijrl,ungQ,...
v Zh(jw) +2vm F q
r = 7y () = 220 NG

w
vzvoi,voi—kl,vgt—&—z...

whereq € [o, 7] is the internal angle of triangle in

Figure 1 which can be calculated by the cosine law as

1
o(i) = o5 () @
2|h(w)|
andu = uf,u = ug,v = vf,v = vy are the
smallest integers (may depend af) such that the
. uf+  ug— ub+  ug—
corresponding values,® ', 7, ° |, 7,° , T,° are
. uar—i— uar—&- ug— u,?—
nonnegative and-, > 70T > 7
The position in Figure 1 corresponds o}, 75'")

and the mirror image about the real axis corresponds TyPe 1.lt satisfies the equatiof(x)| = 5.

to (11", 7' ). If we define7f, , and7, , as the
singletons(r{* (w), 7 (w)) and (7'~ (w), 73~ (w))

respectively, then we can characterizeas follows:

U Ul u

+ + — —
u>ug ,v>vg u>ug V2,

+ —
Z},u,v lzr:),u,v

1,

Proposition 2. The crossing se® consists of a finite
number of intervals of finite length including the cases
which may violate assumption 5.

Q. Thus, for each fixed:, v andk, (6) and (7) are
continuous curves denoted &8, respectivelyZ,* ;.
We should keep in mind that, for somev and &,
part or entire curveZ, " (respectivelyZ,*.") may be
outside of the rang&;, and therefore, may not be
physically meaningful. The collection of all the points
in 7 corresponding t62; may be expressed as

Th = D D (THruTi ) ngl= U T

U=—00 V=—00 wEQ

N
T = U Tk
k=1

Our previous discussions allow us to say that the ends
of 0, must be in one of the following situation:

1

9)

Type 2.1t equals0.

If one end ofQ2;, is of type 1 thery = 0 and?;’fj is
connected with7;}, at this end. So, if both ends 6,
are of type 1 we geT * is a series of closed curves.
Obviously just the left end dR, can be 0. In this case,
asw — 0, bothr, andr, approachx. Infact7,!+ and

u,v

Tul’; approacho with asymptotes passing through the
points(h £ 4, h F §) with slopes of

L w7t Zh(0) + 20w F g(0)
w,v T{Li 4]7/(0) + (2’11, — 1)7T + q(O) ’

Proof: First one can observe easily that the number of whereq(0) is evaluated using (8) and

points in{2 violating (3) is finite. So, we only need to

show that the set of all points satisfying (5) consists of

a finite number of intervals of finite length. Because

h()] = 5 & [P(i)] = 21Q(w)]

is a polynomial equation of variable? it has a fi-
nite number of positive solutions. Therefore the so-
lution of (5) consists of a finite number of intervals.
Due to assumption 4, any sufficiently largeviolates
(5). Therefore the lengths of all intervals are finite.
In what follows we will denote these intervals as
Q1, Qo, ..., Qn and without loss of generality we may

suppose that the intervals are ordered such that for any approachingxo (%

w1 € Qg wa € Qi k1 < ky We havew, < wo.

Remark 2.If (5) is satisfied forw = 0 and sufficiently
small positive value ofu then we will take 0 as the
left end of 2;. Consideringv] the right end ofQ2,
according to assumption 2 we g8 = (0,wf], so
0¢Q.

Remark 3.From geometrical point of view an end
pointw* with |P(jw*)| = 2|Q(jw*)|, corresponds to
the limit case where internal angjeof the triangle is
0. In this case we obtail@ B = — AL on the real axis.

We will not restrictZh(jw) to be within the2r range
but make it a continuous function af within each

d

= L= 4olae)]

—[Zhjw)]

w=0 w=0

In the sequel we will say that an interval is of type 11
if both his end are of type 1, anf®); is of type 21 if his

left end is 0. Therefore, the crossing §etonsists in

a finite number of intervals of type 11, and eventually
the first interval is of type 21. It is obvious that*
consists in a series of curves belonging to one of the
following categories:

A) A series of closed curve$) is of type 11)
B) A series of open ended curves with both ends
is of type 21)

We continue this section with some illustrative exam-
ples regarding the above characterization.

Example 1.(type 1) Consider a system with
4s+1
h(s) = ————
() 4(s2+s+1)

Figure 2 (up) plot2|h(jw)| againstw. The crossing
set can be easily identified from this figure, it contains
one intervak); = [0.39, 2, 21]

(10)

As an illustration of a series oflosed curveswe
examineZ * corresponding td;, of type 11. In this
case, for a givem andv such thatr?* > 7% > 0,



24} 2h(jw)]

Fig. 2. The crossing set for the system (10) can be identified up Fig. 3. The crossing set for the system (12) can be identified up

and some crossing curves of this system are plotted down

we get7,f and7,}; are connected on the both ends
to form a closed curve. As andv vary, we obtain

a series of deformed versions of such closed curves
situated above the first bisector. A suggestive image of

a series oftlosed curvess given in Figure 2 (down)
which show7 of the system described in (10).

Example 2.(type 2] Consider a system with

h(s) = s+/2
T 283+ 524+ 8s+1

Figure 3 (up) plotsh(jw)| againstw. The crossing
set{2 can be easily identified from the Figure 3, it
contains two intervalsf); = (0,0.364] of type 21,
andQ, = [1.673,2.198] of type 11.

(11)

In the sequel, we considé€l, = [w!,wr]. Obviously,
the interval2; is open to the left if its left end i8. To
illustrate the case abpen ended curvese consider
T corresponding t6), of type 21. In this cas@; =
(0,wi] and for a givenu andv, 7,/ and 7.}, are
connected atv}. The other end off,!; extends to

u,v

infinity with asymptotes passing through the points

(h — G, h + §) with the slopem,, , and, the other end
of 7./} extends to infinity with asymptotes passing
through the point$h + g, h — §) with the slopen! .
Again, asu andv vary, we obtain a series of deformed

versions of such open ended curves situated above
the first bisector. Evidently, the slope is changing for

differentu andv. We can see a series open ended
curvesin Figure 3 (right).

A 2h(w)]

35(

u=1
VEd

L L L L Ly
0 20 40 60 80 100 120 140 160 180Ty

and some crossing curves of this system are plotted down

3.2 Degenerate cases

tion 5. Obviously, the interesting case§jw) = 0

has at least one positive solution. We can easily state

the following:

Remark 4.. Forw* # 0 satisfyingQ(jw*) = 0 itis
clear that increasing of, and/orr, has no effect w.r.t.
stability of the system. We note also thgtjw*) = 0

imply thath(jw) < % for all w in a neighborhood of

w*.

Next, we assume thaP(jw*) = 0 for w* # 0.
Using assumption 3 we gét(jw*) # 0 and therefore
1 .
lim |h(jw)| = oc. So that|h(jw)| > 3 forall win
w—w*
a neighborhood ob*. This mean thaf2 contains one

interval of type|w!, w*] and one of typéw*, w"]. Itis
clear that the first interval is open to the leftif = 0.

Proposition 3. Forw™* # 0 satisfyingP (jw*) = 0 we
get7,,- consists of the solutions of

W'y =w'r +2mm, m e ZingG.

and
Jim_q(w) = 3
lim () = 20U e 22 ),
lim () = 2EQU) LTI

In the sequel, we consider the cases violating assump-



Proof. Straightforward computations. 4. CROSSING CURVES, CHARACTERISTIC
ROOTS BEHAVIOR
Remark 5.1) 7.« consists of an infinite number of
straight lines of slope 1 of equal distance. 4.1 Tangent and Smoothness
2) lim m(w)— lim 7 (w) =2mm, meZ ) o
wowr wow® For a givenk we will discuss the smoothness of the
N

Let O = [whw?] and sy = [w*w']. In this  curvesinZ* andthusT = |J 7*. Inthis part we use

case, using proposition 3 we gé}; is connected approach based on tr]:élimplicit function theorem.
with 7.5 F andZ,; is connected witt,;" " at  For this purpose we considet and 7, as implicit
the end corresponding t*. Using (9) and remark  functions ofs = jw defined by (1).

5 we obtain that each crossing curveZji consist  For a givenk, ass moves along the imaginary axis
of an union of one straight line of slope 1 and the within Q, (71, 7) = (Tfi(w),T;i(w)) moves along
curve corresponding t@; \ {w*}. From Remark 5 7 For a giverw € €, let

we deduce that one end of the curve corresponding to

Qi \ {w*} is on the line in7,,- which correspond to

the pair(u, v). In the following if P(jw*) = 0 we will R R j 0D(s,71,72)
say thatv* is an end point of type 0. 0= Os s=jw
1 . : —JjwT
Example 3.(type 20 and 0¥ Consider a system with =~ Re {[W (jw) = mh(jw)] e
+ [mh(jw) = K (jw)] e 7™},
s+2  0D( )
_ _ jOD(s, 71,7
") = 42 fo=Im (a)]

= %Im {[W (jw) = Tih(jw)] e <™

Figure 3 (up) plots$ againstw. The crossing
[A(jw) ' + [reh(jw) — B (jw)] e 7 }

setQ contains two intervals2; = (0, /2] of type

. d
20, and2, = [v/2, 3.046] of type 01. Figure 4 (down) an
lots 7:2F which are two curves of type 01.
plotsigy typ Ry — e (1 8D(s,71,72)> — (<1 Re (W)
s or s=jw
I;=Im <178D(S’TI’T2)) =(-1)!"tm (h(jw)efj"”'l) ,
s oty s—jw
18 g for 1=1,2. Then, sinceD(s, 7, 72) is an analytic

“ function of s, 7, andr, the implicit function theorem
indicates that the tangent @ can be expressed as

or
08 I ]. ROI2 - IOR2

0 = — 13
" Ll Ry ey 2 <10R1 —Ror, ) 3
' dw

provided that

Ryl — Roly # 0. (14)

It follows that 7}, is smooth everywhere except possi-
bly at the points where either (14) is not satisfied, or

when a  d
n
oW 0. (15)

From the above discussions, we can conclude:

Proposition 4. The curveT* is smooth everywhere
% r & & s do 12 e n except possibly at the points corresponding te jw
a multiple solution of (1).

Fig. 4. The crossing set for the above system can be identified up

24 ;
and?;j’4 of this system are plotted down 4.2 Direction of crossing

Next, we will discuss the direction in which the solu-
tions of (1) cross the imaginary axis és,72) devi-
ates from the curv@®. We will call the direction of



the curve that corresponds to increasinthe positive

the one in [6], but derived using a different (algebraic)

direction We will also call the region on the left hand approach.

side as we head in the positive direction of the curve
the region on the left

To establish the direction of crossing we need to con-
siderr; andr, as functions ok = o + jw, i.e., func-
tions of two real variables andw, and partial deriv-
ative notation needs to be adopted. Since the tangenﬁ)

of 7* along the positive direction iégll, 872) , the

Ow
normal to7 * pointing to the left hand side of positive
direction is (—87—2, on . Corresponding to a pair
Ow’ Ow

of complex conjugate solutions of (1) crossing the

imaginary axis along the horizontal directidm;, 72)

87’1 87’2
o’ 0o

of complex conjugate solutions of (1) cross the imag- [1]

inary axis to the right half plane, then,

(87’1 87’2 87‘2 87’1

Loz &u%>s_jw > 0, (16) [2]

moves along the directio . So, if a pair

i.e. the region on the left af * gains two solutions on
the right half plane. If the inequality (16) is reversed [3]
then the region on the left af* loses has two right
half plane solutions. Similar to (13) we can express

)_ [4]

5]

dT1
& 1 RoRs + Il
g2 RyIy — Rolh \ —RoR1 — Iohh
do

s=jw
Using this, we arrive to the following:

Proposition 5.Let w € (w},w}) and (r1,72) €

T* such thatjw is a simple solution of (1) and
D(jw’,Tth) 7& 0, V' > 0, W' 7& w (le (’7'1,7'2) is
not an intersection point of two curves or different sec-
tions of a single curve of ). Then a pair of solutions
of (1) cross the imaginary axis to the right, through
s = +jw if Roly — R1Is > 0. The crossing is to the
left if the inequality is reversed.

[6]
[7]
(8]

5. ILLUSTRATIVE EXAMPLES [9]
In this paragraph we reconsider one example already
treated in the literature [6]. Consider:

P(s) = (kika+1)s+(a+k1), Q(s) = k1(kas+1).

[6] assume: > 0 and(a+k1)/(ki1k2+1) > 0, which
guarantees internal stability of the closed-loop system.[11]
The so-called “practical stability” criterion is given

. . . k1ko
b tion 4 which ly stat
y assumption 4 which simply states— e

1

5 =4 —1/3 < k1ky < 1. Fora = 1, ki = 2, ko =

1/4 we getQ = (0,2.37], and, in conclusions}
consists of one interval of type 21. More precisely, we
obtain a series of open ended curves with both ends
approaching infinity, conclusion which is similar to

[10]

[12]

6. CONCLUDING REMARKS

This paper focuses on the stability crossing curves for
class of delay systems controlled by a Smith predic-
r, subject tauncertaintyin the delay. More precisely,

the particular form of the closed-loop system allows
an easy derivation of the stability crossing curves
(crossing set characterization, direction of crossing,
smoothness). Regular, and degenerate cases are both
treated. Various examples complete the presentation.
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