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Abstract

In this note, we introduce and study a new version of neighbour-distinguishing
arc-colourings of digraphs. An arc-colouring γ of a digraph D is proper if no two
arcs with the same head or with the same tail are assigned the same colour. For
each vertex u of D, we denote by S−

γ (u) and S+
γ (u) the sets of colours that ap-

pear on the incoming arcs and on the outgoing arcs of u, respectively. An arc
colouring γ of D is neighbour-distinguishing if, for every two adjacent vertices u
and v of D, the ordered pairs (S−

γ (u), S
+
γ (u)) and (S−

γ (v), S
+
γ (v)) are distinct. The

neighbour-distinguishing index of D is then the smallest number of colours needed
for a neighbour-distinguishing arc-colouring of D.

We prove upper bounds on the neighbour-distinguishing index of various classes
of digraphs.
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1 Introduction

A proper edge-colouring of a graph G is vertex-distinguishing if, for every two ver-
tices u and v of G, the sets of colours that appear on the edges incident with u and
v are distinct. Vertex-distinguishing proper edge-colourings of graphs were indepen-
dently introduced by Burris and Schelp [2], and by Černy, Horňák and Soták [3].
Requiring only adjacent vertices to be distinguished led to the notion of neighbour-
distinguishing edge-colourings, considered in [1, 4, 7].

Vertex-distinguishing arc-colourings of digraphs have been recently introduced
and studied by Li, Bai, He and Sun [5]. An arc-colouring of a digraph is proper if
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no two arcs with the same head or with the same tail are assigned the same colour.
Such an arc-colouring is vertex-distinguishing if, for every two vertices u and v of
G, (i) the sets S−(u) and S−(v) of colours that appear on the incoming arcs of u
and v, respectively, are distinct, and (ii) the sets S+(u) and S+(v) of colours that
appear on the outgoing arcs of u and v, respectively, are distinct.

In this paper, we introduce and study a neighbour-distinguishing version of arc-
colourings of digraphs, using a slightly different distinction criteria: two neighbours
u and v are distinguished whenever S−(u) 6= S−(v) or S+(u) 6= S+(v).

Definitions and notation are introduced in the next section. We prove a general
upper bound on the neighbour-distinguishing index of a digraph in Section 3, and
study various classes of digraphs in Section 4. Concluding remarks are given in
Section 5.

2 Definitions and notation

All digraphs we consider are without loops and multiple arcs. For a digraph D, we
denote by V (D) and A(D) its sets of vertices and arcs, respectively. The underlying
graph of D, denoted und(D), is the simple undirected graph obtained from D by
replacing each arc uv (or each pair of arcs uv, vu) by the edge uv.

If uv is an arc of a digraphD, u is the tail and v is the head of uv. For every vertex
u of D, we denote by N+

D (u) and N−

D (u) the sets of out-neighbours and in-neighbours

of u, respectively. Moreover, we denote by d+D(u) = |N+
D (u)| and d−D(u) = |N−

D (u)|
the outdegree and indegree of u, respectively, and by dD(u) = d+D(u) + d−D(u) the
degree of u.

For a digraph D, we denote by δ+(D), δ−(D), ∆+(D) and ∆−(D) the minimum
outdegree, minimum indegree, maximum outdegree and maximum indegree of D,
respectively. Moreover, we let

∆∗(D) = max{∆+(D), ∆−(D)}.

A (proper) k-arc-colouring of a digraphD is a mapping γ from V (D) to a set of k
colours (usually {1, . . . , k}) such that, for every vertex u, (i) any two arcs with head
u are assigned distinct colours, and (ii) any two arcs with tail u are assigned distinct
colours. Note here that two consecutive arcs vu and uw, v and w not necessarily
distinct, may be assigned the same colour. The chromatic index χ′(D) of a digraph
D is then the smallest number k for which D admits a k-arc-colouring.

The following fact is well-known (see e.g. [5, 6, 8]).

Proposition 1 For every digraph D, χ′(D) = ∆∗(D).

For every vertex u of a digraph D, and every arc-colouring γ of D, we denote by
S+
γ (u) and S−

γ (u) the sets of colours assigned by γ to the outgoing and incoming arcs

of u, respectively. From the definition of an arc-colouring, we get d+D(u) = |S+
γ (u)|

and d−D(u) = |S−

γ (u)| for every vertex u.
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We say that two vertices u and v of a digraph D are distinguished by an arc-
colouring γ of D, if (S+

γ (u), S
−

γ (u)) 6= (S+
γ (v), S

−

γ (v)). Note that we consider here
ordered pairs, so that (A,B) 6= (B,A) whenever A 6= B. Note also that if u and
v are such that d+D(u) 6= d+D(v) or d−D(u) 6= d−D(v), which happens in particular if
dD(u) 6= dD(v), then they are distinguished by every arc-colouring of D. We will
write u ≁γ v if u and v are distinguished by γ and u ∼γ v otherwise.

A k-arc-colouring γ of a digraph D is neighbour-distinguishing if u ≁γ v for
every arc uv ∈ A(D). Such an arc-colouring will be called an nd-arc-colouring for
short. The neighbour-distinguishing index ndi(D) of a digraphD is then the smallest
number of colours required for an nd-arc-colouring of D.

The following lower bound is easy to establish.

Proposition 2 For every digraph D, ndi(D) ≥ χ′(D) = ∆∗(D). Moreover, if there

are two vertices u and v in D with d+D(u) = d+D(v) = d−D(u) = d−D(v) = ∆∗(D), then
ndi(D) ≥ ∆∗(D) + 1.

Proof. The first statement follows from the definitions. For the second statement,
observe that S+

γ (u) = S+
γ (v) = S−

γ (u) = S−

γ (v) = {1, . . . ,∆∗(D)} for any two such
vertices u and v and any ∆∗(D)-arc-colouring γ of D. �

3 A general upper bound

If D is an oriented graph, that is, a digraph with no opposite arcs, then every proper
edge-colouring ϕ of und(D) is an nd-arc-colouring of D since, for every arc uv in
D, ϕ(uv) ∈ S+

ϕ (u) and ϕ(uv) /∈ S+
ϕ (v), which implies u ≁ϕ v. Hence, we get the

following upper bound for oriented graphs, thanks to classical Vizing’s bound.

Proposition 3 If D is an oriented graph, then

ndi(D) ≤ χ′(und(D)) ≤ ∆(und(D)) + 1 ≤ 2∆∗(D) + 2.

However, a proper edge-colouring of und(D) may produce an arc-colouring of D
which is not neighbour-distinguishing when D contains opposite arcs. Consider for
instance the digraph D given by V (D) = {a, b, c, d} and A(D) = {ab, bc, cb, dc}. We
then have und(D) = P4, the path of order 4, and thus χ′(und(D)) = 2. It is then
not difficult to check that for any 2-edge-colouring ϕ of und(D), S+

ϕ (b) = S+
ϕ (c) and

S−

ϕ (b) = S−

ϕ (c).

We will prove that the upper bound given in Proposition 3 can be decreased to
2∆∗(D), even when D contains opposite arcs. Recall that a digraph D is k-regular
if d+D(v) = d−D(v) = k for every vertex v of D. A k-factor in a digraph D is a
spanning k-regular subdigraph of D. The following result is folklore.

Theorem 4 Every k-regular digraph can be decomposed into k arc-disjoint 1-factors.

3



We first determine the neighbour-distinguishing index of a 1-factor.

Proposition 5 If D is a digraph with d+D(u) = d−D(u) = 1 for every vertex u of D,

then ndi(D) = 2.

Proof. Such a digraph D is a disjoint union of directed cycles and any such cycle
needs at least two colours to be neighbour-distinguished. An nd-arc-colouring of D
using two colours can be obtained as follows. For a directed cycle of even length, use
alternately colours 1 and 2. For a directed cycle of odd length, use the colour 2 on
any two consecutive arcs, and then use alternately colours 1 and 2. The so-obtained
2-arc-colouring is clearly neighbour-distinguishing, so that ndi(D) = 2. �

We are now able to prove the following general upper bound on the neighbour-
distinguishing index of a digraph.

Theorem 6 For every digraph D, ndi(D) ≤ 2∆∗(D).

Proof. Let D′ be any ∆∗(D)-regular digraph containing D as a subdigraph. If D
is not already regular, such a digraph can be obtained from D by adding new arcs,
and maybe new vertices.

By Theorem 4, the digraph D′ can be decomposed into ∆∗(D′) = ∆∗(D) arc-
disjoint 1-factors, say F1, . . . , F∆∗(D). By Proposition 5, we know that D′ admits an
nd-arc-colouring γ′ using 2∆∗(D′) = 2∆∗(D) colours. We claim that the restriction
γ of γ′ to A(D) is also neighbour-distinguishing.

To see that, let uv be any arc of D, and let t and w be the two vertices such that
the directed walk tuvw belongs to a 1-factor Fi of D

′ for some i, 1 ≤ i ≤ ∆∗(D).
Note here that we may have t = w, or w = u and t = v. If γ(uv) 6= γ′(vw), then
γ(uv) ∈ S+

γ (u) and γ(uv) /∈ S+
γ (v). Similarly, if γ′(tu) 6= γ(uv), then γ(uv) ∈ S−

γ (v)
and γ(uv) /∈ S−

γ (u). Since neither three consecutive arcs nor two opposite arcs in a
walk of a 1-factor of D′ are assigned the same colour by γ′, we get that u ≁γ v for
every arc uv of D, as required.

This completes the proof. �

4 Neighbour-distinguishing index of some

classes of digraphs

We study in this section the neighbour-distinguishing index of several classes of
digraphs, namely complete symmetric digraphs, bipartite digraphs and digraphs
whose underlying graph is k-chromatic, k ≥ 3.

4.1 Complete symmetric digraphs

We denote by K∗

n the complete symmetric digraph of order n. Observe first that
any proper edge-colouring ǫ of Kn induces an arc-colouring γ of K∗

n defined by
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γ(uv) = γ(vu) = ǫ(uv) for every edge uv of Kn. Moreover, since S+
γ (u) = S−

γ (u) =
Sǫ(u) for every vertex u, γ is neighbour-distinguishing whenever ǫ is neighbour-
distinguishing. Using a result of Zhang, Liu and Wang (see Theorem 6 in [7]), we
get that ndi(K∗

n) = ∆∗(K∗

n)+ 1 = n if n is odd, and ndi(K∗

n) ≤ ∆∗(K∗

n)+ 2 = n+1
if n is even.

We prove that the bound in the even case can be decreased by one (we recall
the proof of the odd case to be complete).

Theorem 7 For every integer n ≥ 2, ndi(K∗

n) = ∆∗(K∗

n) + 1 = n.

Proof. Note first that we necessarily have ndi(K∗

n) ≥ n for every n ≥ 2 by Propo-
sition 2. Let V (K∗

n) = {v0, . . . , vn−1}. If n = 2, we obviously have ndi(K∗

2 ) =
|A(K∗

2 )| = 2 and the result follows. We can thus assume n ≥ 3. We consider two
cases, depending on the parity of n.

Suppose first that n is odd, and consider a partition of the set of edges of
Kn into n disjoint maximal matchings, say M0, . . . ,Mn−1, such that for each i,
0 ≤ i ≤ n − 1, the matching Mi does not cover the vertex vi. We define an n-arc-
colouring γ of K∗

n (using the set of colours {0, . . . , n − 1}) as follows. For every i
and j, 0 ≤ i < j ≤ n − 1, we set γ(vivj) = γ(vjvi) = k if and only if the edge vivj
belongs to Mk. Observe now that for every vertex vi, 0 ≤ i ≤ n− 1, the colour i is
the unique colour that does not belong to S+

γ (vi) ∪ S−

γ (vi), since vi is not covered
by the matching Mi. This implies that γ is an nd-arc-colouring of K∗

n, and thus
ndi(K∗

n) = n, as required.
Suppose now that n is even. Let K ′ be the subgraph of K∗

n induced by the set
of vertices {v0, . . . , vn−2} and γ′ be the (n−1)-arc-colouring of K ′ defined as above.
We define an n-arc-colouring γ of K∗

n (using the set of colours {0, . . . , n − 1}) as
follows:

1. for every i and j, 0 ≤ i < j ≤ n − 2, j 6≡ i+ 1 (mod n− 1), we set γ(vivj) =
γ′(vivj),

2. for every i, 0 ≤ i ≤ n− 2, we set γ(vivi+1) = n− 1 and γ(vi+1vi) = γ′(vi+1vi)
(subscripts are taken modulo n− 1),

3. for every i, 0 ≤ i ≤ n − 2, we set γ(vn−1vi) = γ′(vi−1vi) and γ(vivn−1) =
γ′(vi+1vi).

Since the colour n belongs to S+
γ (vi)∩S−

γ (vi) for every i, 0 ≤ i ≤ n−2, and does not
belong to S+

γ (vn−1) ∪ S−

γ (vn−1), the vertex vn−1 is distinguished from every other
vertex in K∗

n. Moreover, for every vertex vi, 0 ≤ i ≤ n− 2,

S+
γ (vi) = S+

γ′(vi) ∪ {n− 1} and S−

γ (vi) = S−

γ′(vi) ∪ {n− 1},

which implies that any two vertices vi and vj, 0 ≤ i < j ≤ n− 2, are distinguished
since γ′ is an nd-arc-colouring of K ′. We thus get that γ is an nd-arc-colouring of
K∗

n, and thus ndi(K∗

n) ≤ n, as required.
This completes the proof. �
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4.2 Bipartite digraphs

A digraph D is bipartite if its underlying graph is bipartite. In that case, V (D) =
X ∪ Y with X ∩ Y = ∅ and A(D) ⊆ X × Y ∪ Y ×X. We then have the following
result.

Theorem 8 If D is a bipartite digraph, then ndi(D) ≤ ∆∗(D) + 2.

Proof. Let V (D) = X∪Y be the bipartition of V (D) and γ be any (not necessarily
neighbour-distinguishing) optimal arc-colouring of D using ∆∗(D) colours (such an
arc-colouring exists by Proposition 1).

If γ is an nd-arc-colouring we are done. Otherwise, let M1 ⊆ A(D) ∩ (X × Y )
be a maximal matching from X to Y . We define the arc-colouring γ1 as follows:

γ1(uv) = ∆∗(D) + 1 if uv ∈ M1, γ1(uv) = γ(uv) otherwise.

Note that if uv is an arc such that u or v is (or both are) covered by M1, then
u ≁γ1 v since the colour ∆∗(D) + 1 appears in exactly one of the sets S+

γ1
(u) and

S+
γ1
(v), or in exactly one of the sets S−

γ1
(u) and S−

γ1
(v).

If γ1 is an nd-arc-colouring we are done. Otherwise, let A∼ be the set of arcs
uv ∈ A(D) with u ∼γ1 v and M2 ⊆ A∼ ∩ (Y ×X) be a maximal matching from Y
to X of A∼. We define the arc-colouring γ2 as follows:

γ2(uv) = ∆∗(D) + 2 if uv ∈ M2, γ2(uv) = γ1(uv) otherwise.

Again, note that if uv is an arc such that u or v is (or both are) covered by M2,
then u ≁γ2 v. Moreover, since M2 is a matching of A∼, pairs of vertices that were
distinguished by γ1 are still distinguished by γ2.

Hence, every arc uv such that u and v were not distinguished by γ1 are now
distinguished by γ2 which is thus an nd-arc-colouring of D using ∆∗(D)+2 colours.
This concludes the proof. �

The upper bound given in Theorem 8 can be decreased when the underlying
graph of D is a tree.

Theorem 9 If D is a digraph whose underlying graph is a tree, then ndi(D) ≤
∆∗(D) + 1.

Proof. The proof is by induction on the order n of D. The result clearly holds if
n ≤ 2. Let now D be a digraph of order n ≥ 3, such that the underlying graph
und(D) of D is a tree, and P = v1 . . . vk, k ≤ n, be a path in und(D) with maximal
length. By the induction hypothesis, there exists an nd-arc-colouring γ of D − vk
using at most ∆∗(D − vk) + 1 colours. We will extend γ to an nd-arc-colouring of
D using at most ∆∗(D) + 1 colours.

If ∆∗(D) = ∆∗(D− vk) + 1, we assign the new colour ∆∗(D) + 1 to the at most
two arcs incident with vk so that the so-obtained arc-colouring is clearly neighbour-
distinguishing.
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Suppose now that ∆∗(D) = ∆∗(D − vk). If all neighbours of vk−1 are leaves,
the underlying graph of D is a star. In that case, there is at most one arc linking
vk−1 and vk, and colouring this arc with any admissible colour produces an nd-arc-
colouring of D. If the underlying graph of D is not a star, then, by the maximality
of P , we get that vk−1 has exactly one neighbour which is not a leaf, namely vk−2.
This implies that the only conflict that might appear when colouring the arcs linking
vk and vk−1 is between vk−2 and vk−1 (recall that two neighbours with distinct
indegree or outdegree are necessarily distinguished).

Since d+D(vk−2) ≤ ∆∗(D) and d−D(vk−2) ≤ ∆∗(D), there necessarily exist a colour
a such that S+

γ (vk−2) 6= S+
γ (vk−1) ∪ {a}, and a colour b such that S−

γ (vk−2) 6=
S−

γ (vk−1) ∪ {b}. Therefore, the at most two arcs incident with vk can be coloured,
using a and/or b, in such a way that the so-obtained arc-colouring is neighbour-
distinguishing.

This completes the proof. �

4.3 Digraphs whose underlying graph is k-chromatic

Since the set of edges of every k-colourable graph can be partitionned in ⌈log k⌉
parts each inducing a bipartite graph (see e.g. Lemma 4.1 in [1]), Theorem 8 leads
to the following general upper bound:

Corollary 10 If D is a digraph whose underlying graph has chromatic number

k ≥ 3, then ndi(D) ≤ ∆∗(D) + 2⌈log k⌉.

Proof. Starting from an optimal arc-colouring of D with ∆∗(D) colours, it suffices
to use two new colours for each of the ⌈log k⌉ bipartite parts (obtained from any
optimal vertex-colouring of the underlying graph of D), as shown in the proof of
Theorem 8, in order to get an nd-arc-colouring of D. �

5 Discussion

In this note, we have introduced and studied a new version of neighbour-distingui-
shing arc-colourings of digraphs. Pursuing this line of research, we propose the
following questions.

1. Is there any general upper bound on the neighbour-distinguishing index of
symmetric digraphs?

2. Is there any general upper bound on the neighbour-distinguishing index of not
necessarily symmetric complete digraphs?

3. Is there any general upper bound on the neighbour-distinguishing index of
directed acyclic graphs?
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4. The general bound given in Corollary 10 is certainly not optimal. In particular,
is it possible to improve this bound for digraphs whose underlying graph is
3-colourable?

We finally propose the following conjecture.

Conjecture 11 For every digraph D, ndi(D) ≤ ∆∗(D) + 1.
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