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In this note, we introduce and study a new version of neighbour-distinguishing arc-colourings of digraphs. An arc-colouring γ of a digraph D is proper if no two arcs with the same head or with the same tail are assigned the same colour. For each vertex u of D, we denote by S - γ (u) and S + γ (u) the sets of colours that appear on the incoming arcs and on the outgoing arcs of u, respectively. An arc colouring γ of D is neighbour-distinguishing if, for every two adjacent vertices u and v of D, the ordered pairs (S - γ (u), S + γ (u)) and (S - γ (v), S + γ (v)) are distinct. The neighbour-distinguishing index of D is then the smallest number of colours needed for a neighbour-distinguishing arc-colouring of D.

We prove upper bounds on the neighbour-distinguishing index of various classes of digraphs.

Introduction

A proper edge-colouring of a graph G is vertex-distinguishing if, for every two vertices u and v of G, the sets of colours that appear on the edges incident with u and v are distinct. Vertex-distinguishing proper edge-colourings of graphs were independently introduced by Burris and Schelp [START_REF] Burris | Vertex-distinguishing proper edge-colorings[END_REF], and by Černy, Horňák and Soták [START_REF] Černy | Observability of a graph[END_REF]. Requiring only adjacent vertices to be distinguished led to the notion of neighbourdistinguishing edge-colourings, considered in [START_REF] Balister | Adjacent vertex distinguishing edge-colorings[END_REF][START_REF] Edwards | On the Neighbour-Distinguishing Index of a Graph[END_REF][START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF].

Vertex-distinguishing arc-colourings of digraphs have been recently introduced and studied by Li, Bai, He and Sun [START_REF] Li | Vertex-distinguishing proper arc colorings of digraphs[END_REF]. An arc-colouring of a digraph is proper if no two arcs with the same head or with the same tail are assigned the same colour. Such an arc-colouring is vertex-distinguishing if, for every two vertices u and v of G, (i) the sets S -(u) and S -(v) of colours that appear on the incoming arcs of u and v, respectively, are distinct, and (ii) the sets S + (u) and S + (v) of colours that appear on the outgoing arcs of u and v, respectively, are distinct.

In this paper, we introduce and study a neighbour-distinguishing version of arccolourings of digraphs, using a slightly different distinction criteria: two neighbours u and v are distinguished whenever

S -(u) = S -(v) or S + (u) = S + (v).
Definitions and notation are introduced in the next section. We prove a general upper bound on the neighbour-distinguishing index of a digraph in Section 3, and study various classes of digraphs in Section 4. Concluding remarks are given in Section 5.

Definitions and notation

All digraphs we consider are without loops and multiple arcs. For a digraph D, we denote by V (D) and A(D) its sets of vertices and arcs, respectively. The underlying graph of D, denoted und(D), is the simple undirected graph obtained from D by replacing each arc uv (or each pair of arcs uv, vu) by the edge uv.

If uv is an arc of a digraph D, u is the tail and v is the head of uv. A (proper) k-arc-colouring of a digraph D is a mapping γ from V (D) to a set of k colours (usually {1, . . . , k}) such that, for every vertex u, (i) any two arcs with head u are assigned distinct colours, and (ii) any two arcs with tail u are assigned distinct colours. Note here that two consecutive arcs vu and uw, v and w not necessarily distinct, may be assigned the same colour. The chromatic index χ ′ (D) of a digraph D is then the smallest number k for which D admits a k-arc-colouring.

The following fact is well-known (see e.g. [START_REF] Li | Vertex-distinguishing proper arc colorings of digraphs[END_REF][START_REF] West | Introduction to Graph Theory[END_REF][START_REF] Zwonek | On arc coloring of digraphs[END_REF]).

Proposition 1 For every digraph D, χ ′ (D) = ∆ * (D).

For every vertex u of a digraph D, and every arc-colouring γ of D, we denote by S + γ (u) and S - γ (u) the sets of colours assigned by γ to the outgoing and incoming arcs of u, respectively. From the definition of an arc-colouring, we get

d + D (u) = |S + γ (u)| and d - D (u) = |S - γ (u)| for every vertex u.
We say that two vertices u and v of a digraph D are distinguished by an arc-

colouring γ of D, if (S + γ (u), S - γ (u)) = (S + γ (v), S - γ (v)
). Note that we consider here ordered pairs, so that (A, B) = (B, A) whenever A = B. Note also that if u and v are such that

d + D (u) = d + D (v) or d - D (u) = d - D (v), which happens in particular if d D (u) = d D (v)
, then they are distinguished by every arc-colouring of D. We will write u ≁ γ v if u and v are distinguished by γ and u ∼ γ v otherwise.

A k-arc-colouring γ of a digraph D is neighbour-distinguishing if u ≁ γ v for every arc uv ∈ A(D). Such an arc-colouring will be called an nd-arc-colouring for short. The neighbour-distinguishing index ndi(D) of a digraph D is then the smallest number of colours required for an nd-arc-colouring of D.

The following lower bound is easy to establish.

Proposition 2 For every digraph D, ndi(D) ≥ χ ′ (D) = ∆ * (D). Moreover, if there are two vertices u and v in D with d + D (u) = d + D (v) = d - D (u) = d - D (v) = ∆ * (D), then ndi(D) ≥ ∆ * (D) + 1.
Proof. The first statement follows from the definitions. For the second statement, observe that

S + γ (u) = S + γ (v) = S - γ (u) = S - γ (v) = {1, . . . , ∆ * (D)}
for any two such vertices u and v and any ∆ * (D)-arc-colouring γ of D.

A general upper bound

If D is an oriented graph, that is, a digraph with no opposite arcs, then every proper edge-colouring ϕ of und(D) is an nd-arc-colouring of D since, for every arc uv in D, ϕ(uv) ∈ S + ϕ (u) and ϕ(uv) / ∈ S + ϕ (v), which implies u ≁ ϕ v. Hence, we get the following upper bound for oriented graphs, thanks to classical Vizing's bound.

Proposition 3 If D is an oriented graph, then ndi(D) ≤ χ ′ (und(D)) ≤ ∆(und(D)) + 1 ≤ 2∆ * (D) + 2.
However, a proper edge-colouring of und(D) may produce an arc-colouring of D which is not neighbour-distinguishing when D contains opposite arcs. Consider for instance the digraph D given by V (D) = {a, b, c, d} and A(D) = {ab, bc, cb, dc}. We then have und(D) = P 4 , the path of order 4, and thus χ ′ (und(D)) = 2. It is then not difficult to check that for any 2-edge-colouring ϕ of und(D),

S + ϕ (b) = S + ϕ (c) and S - ϕ (b) = S - ϕ (c
). We will prove that the upper bound given in Proposition 3 can be decreased to 2∆ * (D), even when D contains opposite arcs. Recall that a digraph

D is k-regular if d + D (v) = d - D (v) = k for every vertex v of D. A k-factor in a digraph D is a spanning k-regular subdigraph of D.
The following result is folklore.

Theorem 4 Every k-regular digraph can be decomposed into k arc-disjoint 1-factors.
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We first determine the neighbour-distinguishing index of a 1-factor.

Proposition 5 If D is a digraph with d + D (u) = d - D (u) = 1 for every vertex u of D, then ndi(D) = 2.
Proof. Such a digraph D is a disjoint union of directed cycles and any such cycle needs at least two colours to be neighbour-distinguished. An nd-arc-colouring of D using two colours can be obtained as follows. For a directed cycle of even length, use alternately colours 1 and 2. For a directed cycle of odd length, use the colour 2 on any two consecutive arcs, and then use alternately colours 1 and 2. The so-obtained 2-arc-colouring is clearly neighbour-distinguishing, so that ndi(D) = 2.

We are now able to prove the following general upper bound on the neighbourdistinguishing index of a digraph. . By Proposition 5, we know that D ′ admits an nd-arc-colouring γ ′ using 2∆ * (D ′ ) = 2∆ * (D) colours. We claim that the restriction γ of γ ′ to A(D) is also neighbour-distinguishing.

To see that, let uv be any arc of D, and let t and w be the two vertices such that the directed walk tuvw belongs to a 1-factor F i of D ′ for some i, 1 ≤ i ≤ ∆ * (D). Note here that we may have t = w, or w = u and t = v. If γ(uv) = γ ′ (vw), then γ(uv) ∈ S + γ (u) and γ(uv) / ∈ S + γ (v). Similarly, if γ ′ (tu) = γ(uv), then γ(uv) ∈ S - γ (v) and γ(uv) / ∈ S - γ (u). Since neither three consecutive arcs nor two opposite arcs in a walk of a 1-factor of D ′ are assigned the same colour by γ ′ , we get that u ≁ γ v for every arc uv of D, as required.

This completes the proof.

Neighbour-distinguishing index of some classes of digraphs

We study in this section the neighbour-distinguishing index of several classes of digraphs, namely complete symmetric digraphs, bipartite digraphs and digraphs whose underlying graph is k-chromatic, k ≥ 3.

Complete symmetric digraphs

We denote by K * n the complete symmetric digraph of order n. Observe first that any proper edge-colouring ǫ of K n induces an arc-colouring γ of K * n defined by

Bipartite digraphs

A digraph D is bipartite if its underlying graph is bipartite. In that case, V (D) = X ∪ Y with X ∩ Y = ∅ and A(D) ⊆ X × Y ∪ Y × X.
We then have the following result.

Theorem 8 If D is a bipartite digraph, then ndi(D) ≤ ∆ * (D) + 2.

Proof. Let V (D) = X ∪ Y be the bipartition of V (D) and γ be any (not necessarily neighbour-distinguishing) optimal arc-colouring of D using ∆ * (D) colours (such an arc-colouring exists by Proposition 1).

If γ is an nd-arc-colouring we are done. Otherwise, let M 1 ⊆ A(D) ∩ (X × Y ) be a maximal matching from X to Y . We define the arc-colouring γ 1 as follows:

γ 1 (uv) = ∆ * (D) + 1 if uv ∈ M 1 , γ 1 (uv) = γ(uv) otherwise.
Note that if uv is an arc such that u or v is (or both are) covered by M 1 , then u ≁ γ 1 v since the colour ∆ * (D) + 1 appears in exactly one of the sets S + γ 1 (u) and S + γ 1 (v), or in exactly one of the sets S - γ 1 (u) and S - γ 1 (v). If γ 1 is an nd-arc-colouring we are done. Otherwise, let A ∼ be the set of arcs uv ∈ A(D) with u ∼ γ 1 v and M 2 ⊆ A ∼ ∩ (Y × X) be a maximal matching from Y to X of A ∼ . We define the arc-colouring γ 2 as follows:

γ 2 (uv) = ∆ * (D) + 2 if uv ∈ M 2 , γ 2 (uv) = γ 1 (uv) otherwise.
Again, note that if uv is an arc such that u or v is (or both are) covered by M 2 , then u ≁ γ 2 v. Moreover, since M 2 is a matching of A ∼ , pairs of vertices that were distinguished by γ 1 are still distinguished by γ 2 .

Hence, every arc uv such that u and v were not distinguished by γ 1 are now distinguished by γ 2 which is thus an nd-arc-colouring of D using ∆ * (D) + 2 colours. This concludes the proof.

The upper bound given in Theorem 8 can be decreased when the underlying graph of D is a tree.

Theorem 9 If D is a digraph whose underlying graph is a tree, then ndi(D) ≤ ∆ * (D) + 1.

Proof. The proof is by induction on the order n of D. The result clearly holds if n ≤ 2. Let now D be a digraph of order n ≥ 3, such that the underlying graph und(D) of D is a tree, and P = v 1 . . . v k , k ≤ n, be a path in und(D) with maximal length. By the induction hypothesis, there exists an nd-arc-colouring γ of Dv k using at most ∆ * (Dv k ) + 1 colours. We will extend γ to an nd-arc-colouring of D using at most ∆ * (D) + 1 colours.

If ∆ * (D) = ∆ * (Dv k ) + 1, we assign the new colour ∆ * (D) + 1 to the at most two arcs incident with v k so that the so-obtained arc-colouring is clearly neighbourdistinguishing.

Suppose now that ∆ * (D) = ∆ * (Dv k ). If all neighbours of v k-1 are leaves, the underlying graph of D is a star. In that case, there is at most one arc linking v k-1 and v k , and colouring this arc with any admissible colour produces an nd-arccolouring of D. If the underlying graph of D is not a star, then, by the maximality of P , we get that v k-1 has exactly one neighbour which is not a leaf, namely v k-2 . This implies that the only conflict that might appear when colouring the arcs linking v k and v k-1 is between v k-2 and v k-1 (recall that two neighbours with distinct indegree or outdegree are necessarily distinguished).

Since

d + D (v k-2 ) ≤ ∆ * (D) and d - D (v k-2 ) ≤ ∆ * (D), there necessarily exist a colour a such that S + γ (v k-2 ) = S + γ (v k-1 ) ∪ {a}, and a colour b such that S - γ (v k-2 ) = S - γ (v k-1 ) ∪ {b}.
Therefore, the at most two arcs incident with v k can be coloured, using a and/or b, in such a way that the so-obtained arc-colouring is neighbourdistinguishing.

This completes the proof.

Digraphs whose underlying graph is k-chromatic

Since the set of edges of every k-colourable graph can be partitionned in ⌈log k⌉ parts each inducing a bipartite graph (see e. Proof. Starting from an optimal arc-colouring of D with ∆ * (D) colours, it suffices to use two new colours for each of the ⌈log k⌉ bipartite parts (obtained from any optimal vertex-colouring of the underlying graph of D), as shown in the proof of Theorem 8, in order to get an nd-arc-colouring of D.

Discussion

In this note, we have introduced and studied a new version of neighbour-distinguishing arc-colourings of digraphs. Pursuing this line of research, we propose the following questions.

1. Is there any general upper bound on the neighbour-distinguishing index of symmetric digraphs?

2. Is there any general upper bound on the neighbour-distinguishing index of not necessarily symmetric complete digraphs?

3. Is there any general upper bound on the neighbour-distinguishing index of directed acyclic graphs?

4. The general bound given in Corollary 10 is certainly not optimal. In particular, is it possible to improve this bound for digraphs whose underlying graph is 3-colourable?

We finally propose the following conjecture.

Conjecture 11 For every digraph D, ndi(D) ≤ ∆ * (D) + 1.

  For every vertex u of D, we denote by N + D (u) and N - D (u) the sets of out-neighbours and in-neighbours of u, respectively. Moreover, we denote by d + D (u) = |N + D (u)| and d - D (u) = |N - D (u)| the outdegree and indegree of u, respectively, and by d D (u) = d + D (u) + d - D (u) the degree of u. For a digraph D, we denote by δ + (D), δ -(D), ∆ + (D) and ∆ -(D) the minimum outdegree, minimum indegree, maximum outdegree and maximum indegree of D, respectively. Moreover, we let ∆ * (D) = max{∆ + (D), ∆ -(D)}.

Theorem 6

 6 For every digraph D, ndi(D) ≤ 2∆ * (D). Proof. Let D ′ be any ∆ * (D)-regular digraph containing D as a subdigraph. If D is not already regular, such a digraph can be obtained from D by adding new arcs, and maybe new vertices. By Theorem 4, the digraph D ′ can be decomposed into ∆ * (D ′ ) = ∆ * (D) arcdisjoint 1-factors, say F 1 , . . . , F ∆ * (D)

  g. Lemma 4.1 in [1]), Theorem 8 leads to the following general upper bound: Corollary 10 If D is a digraph whose underlying graph has chromatic number k ≥ 3, then ndi(D) ≤ ∆ * (D) + 2⌈log k⌉.

γ(uv) = γ(vu) = ǫ(uv) for every edge uv of K n . Moreover, since S + γ (u) = S - γ (u) = S ǫ (u) for every vertex u, γ is neighbour-distinguishing whenever ǫ is neighbourdistinguishing. Using a result of Zhang, Liu and Wang (see Theorem 6 in [START_REF] Zhang | Adjacent strong edge coloring of graphs[END_REF]), we get that ndi(K

We prove that the bound in the even case can be decreased by one (we recall the proof of the odd case to be complete).

Proof. Note first that we necessarily have ndi(

2 )| = 2 and the result follows. We can thus assume n ≥ 3. We consider two cases, depending on the parity of n.

Suppose first that n is odd, and consider a partition of the set of edges of K n into n disjoint maximal matchings, say M 0 , . . . , M n-1 , such that for each i, 0 ≤ i ≤ n -1, the matching M i does not cover the vertex v i . We define an n-arccolouring γ of K * n (using the set of colours {0, . . . , n -1}) as follows. For every i and j, 0

, since v i is not covered by the matching M i . This implies that γ is an nd-arc-colouring of K * n , and thus ndi(K * n ) = n, as required. Suppose now that n is even. Let K ′ be the subgraph of K * n induced by the set of vertices {v 0 , . . . , v n-2 } and γ ′ be the (n -1)-arc-colouring of K ′ defined as above. We define an n-arc-colouring γ of K * n (using the set of colours {0, . . . , n -1}) as follows:

1. for every i and j, 0

Since the colour n belongs to S + γ (v i )∩ S - γ (v i ) for every i, 0 ≤ i ≤ n -2, and does not belong to

which implies that any two vertices v i and v j , 0 ≤ i < j ≤ n -2, are distinguished since γ ′ is an nd-arc-colouring of K ′ . We thus get that γ is an nd-arc-colouring of K * n , and thus ndi(K * n ) ≤ n, as required. This completes the proof.