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groups into PU(2, 1) through Lefschetz fibrations

Ruben Dashyan
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Abstract

We obtain infinitely many (non-conjugate) representations of 3-manifold
fundamental groups into a lattice in Isom(H2

C), the holomorphic isometry
group of complex hyperbolic space. The lattice is an orbifold fundamental
group of a branched covering of the projective plane along an arrangement
of hyperplanes constructed by Hirzebruch. The 3-manifolds are related to a
Lefschetz fibration of the complex hyperbolic orbifold.

1 Introduction

Spherical Cauchy-Riemann structures (spherical CR manifolds) are geometric struc-
tures which have been studied since the work of Cartan (see [2, 1]). Those are the
(S3, Isom(H2

C
))-structures, where S3 is seen as the boundary at infinity ∂∞H2

C
of the

complex hyperbolic plane H
2
C
. These structures are not part of Thurston’s eight ge-

ometries. A spherical CR structure on a manifold M is called uniformizable if there
exists an open subset Ω of S3 on which ρ(π1(M)) acts freely and properly discon-
tinuously, so that M is homeomorphic to quotient manifold ρ(π1(M))\Ω. Like the
complete (G,X)-structures, for any representation ρ : π1(M)→ Isom(H2

C
), there is

at most one uniformizable spherical CR structure on the manifold M with holon-
omy ρ. Given a spherical CR structure with holonomy ρ or just a representation ρ,
a candidate open subset is the discontinuity domain of ρ(π1(M)), that is the largest
open subset of S3 on which ρ(π1(M)) acts properly discontinuously. In particular,
whenever the discontinuity domain is empty, then the representation ρ cannot be
the holonomy representation of a uniformizable spherical CR structure.

Only few examples of 3-dimensional hyperbolic manifolds carrying such struc-
tures and not many more representations of fundamental groups into Isom(H2

C
)

are known. For instance, if M is the complement of the figure-eight knot, Falbel
has shown that there are essentially two representations of π1(M) into Isom(H2

C
),

that the author denotes by ρ1 and ρ2, whose boundary representations π1(∂M)→
Isom(H2

C
) are unipotent [7]. The representation ρ1 is not the holonomy of a uni-

formizable structure since the domain of discontinuity of its image is empty. How-
ever it is shown that ρ1 is the holonomy of a branched spherical CR structure on
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the figure-eight knot. Later, Falbel and Wang have shown that the complement
of the figure-eight knot admits a branched spherical CR structure with holonomy
ρ2 [8] and Deraux and Falbel have shown it admits a uniformizable spherical CR
structure with holonomy ρ2 [5].

We introduce a method for constructing infinitely many non-conjugate represen-
tations of fundamental groups of closed hyperbolic 3-dimensional manifolds into a
lattice in Isom(H2

C
). The domain of discontinuity of those representations happens

to be empty, so that they cannot arise as holonomies of uniformizable structures,
unlike the example of Deraux-Falbel. Nevertheless, they still may be the holonomies
of branched spherical CR structures.

Besides, since these representations take actually their values in a lattice in
Isom(H2

C
), their existence may also be interpreted from the angle of the Kahn-

Marković theorem.

The method relies on the careful examination of the properties of a complex
hyperbolic surface, in section 2. It focuses on the particular example of Hirzebruch’s
surface Y1, which was originally introduced as an example of a complex hyperbolic
surface, that is the quotient of the complex hyperbolic plane H2

C
by a uniform lattice,

isomorphic to π1(Y1) [11, 19].
On the one hand, Y1 is a branched covering space of degree 55 of a complex

surface, denoted by P̂2, which is the blow-up of the complex projective plane P2

at 4 points (none three of which lie on the same line). The 6 lines in P
2 passing

through each pair among those 4 points form the complete quadrilateral arrangement

of lines (see figure 1). Besides, the preimage by the blow-up P̂2 → P
2 of each of

the 4 points is isomorphic to the complex projective line P1. The branched covering

map Y1 → P̂2 ramifies exactly over those 10 = 6 + 4 lines in P̂2, with ramification
index 5.

On the other hand, the conics in P2 passing through those 4 points give rise to
a rational map P

2 → P
1, called the pencil of conics. It lifts to a Lefschetz fibration

P̂2 → P1 (see section 3).

P̂2
blow-up

//

Lefschetz fibration

��
✷✷
✷✷
✷✷

✷✷
✷✷
✷✷
✷ P2

pencil of conics

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

P1

The Lefschetz fibration P̂2 → P1 admits sections P̂2 ←֓ P1. Furthermore, the union

of the singular fibers under P̂2 → P1 consists of the proper transforms in P̂2 of the
6 lines of the complete quadrilateral arrangement in P2. This Lefschetz fibration is
related to a Lefschetz fibration Y1 → C over a complex curve C of genus 6 which is
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derived as shown in the following commutative diagram (see proposition 5.1).

Y1

branched covering

����

fibration
xxxx♣♣
♣♣♣

♣♣
♣♣♣

♣♣
♣

C

branched covering

����

*



section

88♣♣♣♣♣♣♣♣♣♣♣♣♣

P̂2

fibration
xxxxqq
qq
qq
qq
qq
qq
q

P1
+
�

section

88qqqqqqqqqqqqq

In particular, the branched covering map Y1 → P̂2 induces, by restriction, a branched

covering map from each fiber under Y1 → C into a fiber of P̂2 → P
1. Hence the

properties of Y1 → C may be read from those of P̂2 → P1. The generic fibers of
Y1 → C are smooth curves of genus 76. There are also 4 × 52 singular fibers, each
of which consists of 10 smooth curves intersecting normally at 52 points in total

(see proposition 5.4). Denoting by Y1
u → P̂2

u
and Cu → (P1)u the corresponding

(unbranched) covering maps, one obtains the diagram

Y1
u

covering

����

fibration
wwww♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥

Cu

covering

����

)
	

section

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥

P̂2
u

fibration
wwww♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦

(P1)u
*



section

77♦♦♦♦♦♦♦♦♦♦♦♦♦

where there is neither ramification nor singular fibers anymore.
Section 4 is devoted to the careful study of the monodromy of the fibration

P̂2
u
→ (P1)u (see corollary 3.7) and hence that of Y1

u → Cu too. Since the

fibers under P̂2
u
→ (P1)u are spheres with four punctures, the fibration induces a

representation of π1((P1)u) into the mapping class group Mod0,4 of a sphere, with
4 marked points. The monodromy representation proves to be an isomorphism
and those groups are moreover isomorphic to the principal congruence subgroup
Γ(2) in PSL2(Z) (of index 6). That fact has motivated the choice of the complex
hyperbolic surface Y1, so that the calculations and proofs are simpler than with
more complicated mapping class groups. The elements in π1((P1)u) whose images
in Mod0,4 are pseudo-Anosov or reducible mapping classes are precisely determined:
the classification corresponds to the classification of the elements of PSL2(Z) as
hyperbolic and parabolic elements (Γ(2) contains no elliptic element).
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Let F0 denote the generic fiber of Y1 → C. For any γ in π1(Cu), let Mγ denote
the 3-dimensional manifold, obtained as the surface bundle over the circle with fiber
F0 and where the homeomorphism is the monodromy of the fibration Y1

u → Cu

along γ (see definition 4.5 and section 6). There is a natural mapping Mγ → Y1

which induces a morphism

ργ : π1(Mγ)→ π1(Y1).

Since π1(Y1) is isomorphic to a lattice in Isom(H2
C
), the morphism ργ yields a

representation into that lattice and in particular in Isom(H2
C
).

It is remarkable that every mapping class in Mod0,4 can be realized as the

monodromy along a curve in (P1)u, of the fibration P̂2
u
→ (P1)u. Since the generic

fiber of P̂2 → P
1 is a sphere with 4 marked points, all the possible surface bundles

with the sphere as fiber and with monodromy preserving each of the 4 marked
points are hence obtained in this way.

The same construction of surface bundles for the fibration P̂2
u
→ (P1)u, instead of

Y1
u → Cu as above, produces representations of the fundamental groups of all those

surface bundles. More precisely, the complex hyperbolic structure on Y1 descends to

a branched complex hyperbolic structure on P̂2 by the branched covering Y1 → P̂2.
And the fibers of the latter surface bundles are seen as orbifolds with isotropy of
order 5 at each of the four marked points. For γ in π1(Cu), the surface bundle Mγ

is nothing but a branched covering of the orbifold surface bundle whose monodromy
is the image of γ by π1(Cu)→ π1((P1)u).

Proposition 1.1. For each element f of Mod0,4, consider the surface bundle Mf

with monodromy f and with fiber the orbifold with the sphere as underlying space and
with isotropy of order 5 at each of the four marked points. There is a representation
of the orbifold fundamental group of Mf into a lattice in Isom(H2

C
).

Section 6 describes the manifold Mγ to a small extent, the group π1(Mγ) and
properties of the representation ργ with respect to the element γ in π1(Cu).

Proposition 1.2. For any γ in π1(Cu), the limit set of the image of the represen-
tation ργ : π1(Mγ)→ π1(Y1) is all of ∂∞H2

C
.

Proposition 1.3. For any element γ in π1(Cu), if its image in π1(C) is not trivial,
then

1. the kernel of ργ is equal to the kernel of π1(F0)→ π1(Y1),

2. the monodromy of the fibration Y1
u → Cu along γ is pseudo-Anosov,

3. the kernel is not of finite type.

Observe that, if the monodromy is pseudo-Anosov, then the surface bundle Mγ is
a hyperbolic manifold, according to Thurston’s hyperbolization theorem for surface
bundles over the circle. In that case, the representation ργ : π1(Mγ) → π1(Y1)
hence provides a representation of the fundamental group π1(Mγ) of the hyperbolic
manifold Mγ , into a complex hyperbolic lattice.
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Finally, the family of representations constructed in this way is the source of
infinitely many conjugacy classes of representations of hyperbolic manifolds of three
dimensions into a complex hyperbolic lattice.

Theorem 1.4. For any two γ1 and γ2 in π1(Cu), if the image in π1(C) of γ1 is not
conjugate to that of γ2 or its inverse, then either the groups π1(Mγ1 ) and π1(Mγ2)
are not isomorphic or, if such an isomorphism Φ : π1(Mγ1 )→ π1(Mγ2) exists, then
the representations ργ1 and ργ2 ◦ Φ are not conjugate.

Unfortunately, even though the present construction yields infinitely many non-
conjugate representations of fundamental groups of hyperbolic 3-manifolds into
PU(2, 1), absolutely none of them is uniformizable. The reason comes from the
nature of the construction which relies on a Lefschetz fibration of a complex hyper-
bolic surface. In order to hope for exhibiting such uniformizable representations,
one should probably relax some parts of this construction, either by searching for
other maps from three manifolds into the complex surface, or by taking as a starting
point, instead of a Lefschetz fibration of a complex hyperbolic surface, a Lefschetz
fibration of a complex surface which still admits a representation of its fundamental
group into PU(2, 1) (see below).

Furthermore, the method seems reproducible with other complex hyperbolic lat-
tices. Indeed, let Qn be the quotient, in the sense of geometric invariant theory, of
(P1)n by the diagonal action of Aut(P1). In other words, Qn is the set of config-
urations of n marked points in the projective line. Let also Q∗

n denote the usual
quotient, by the diagonal action of Aut(P1), of the subset of (P1)n formed by all

the n-tuples of pairwise distinct points. The fibrations P̂2 → P
1 and P̂2

u
→ (P1)u

may actually be interpreted as the forgetful mappings Q5 → Q4 and Q∗
5 → Q∗

4,
respectively, which forget the last point of the configuration (see proposition 3.5).
In passing, this observation explains morally the particular role of the fibration

P̂2 → P1.
It is remarkable that these spaces Qn appear at the heart of the construction by

Deligne–Mostow of complex hyperbolic lattices, as described below. The forgetful
mappings Qn → Qp for p < n (which forget, say, the last n− p points of a configu-
ration) provide natural fibrations for the Deligne–Mostow lattice quotients as well.
Therefore, one might expect that the Deligne-Mostow lattices have the tendency to
contain surface bundles.

There exist several constructions of complex hyperbolic lattices. The story has
started with Picard at the end of the 19th century and is still being written nowa-
days. Old and modern examples and construction methods cohabit. A glance at
the survey of Parker [16] is sufficient to realize how rich this field is and the num-
ber of mathematicians it has attracted. Yet the relations between the variety of
approaches are not clearly established. Some relatively recent points of view are
worth one’s attention [18] and [12].

Originally, the Deligne–Mostow lattices were discovered by considering hyper-
geometric functions. Let µ = (µ1, . . . , µn) be an n-tuple of real numbers in the
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interval (0, 1) satisfying
n∑

k=1

µk = 2

and, for any distinct integers a and b of {1, . . . , n}, define

Fab(z1, . . . , zn) =

∫ zb

za

n∏

k=1

(z − zk)−µkdz

where z1, . . . , zn are elements in Ĉ and the path of integration lies in Ĉ−{z1, . . . , zn},
apart from its end points. The functions Fab are multi-valued functions, well de-
fined if no two of the variables zk coincide. Moreover, they span a vector space of
dimension n− 2 and there exists a function h in the variables zk such that

Fab(α(z1), . . . , α(zn)) = h(z1, . . . , zn)Fab(z1, . . . , zn)

for any α ∈ Aut(P1) and for any distinct indices a and b. Therefore, one obtains a
multi-valued mapping

F :

{
Q∗
n −→ Pn−3

Z = (z1, . . . , zn) 7−→ [Fa1b1 (Z) : · · · : Fan−2bn−2 (Z)]

where Fa1b1 , . . . , Fan−2bn−2 are linearily independent. Hence, F induces a mon-
odromy representation from a fundamental group of Q∗

n onto a subgroup Γµ of
Aut(Pn−3) = PGLn−2(C). Furthermore, one may show that the monodromy pre-
serves a Hermitian form of signature (n− 3, 1), so that Γµ is a subgroup of PU(n−
3, 1) ≃ Isom(Hn−3

C
). Finally, if the n-tuple µ satisfies a integral condition, called

ΣINT, then Deligne and Mostow show that the monodromy takes its values in a
lattice [16, Theorem 3.2].

Note that the monodromy representation into PU(n − 3, 1) exists, whether or
not its image is a lattice. And the forgetful mappings provide fibrations. These
monodromy representations may be a starting point to exhibit uniformizable repre-
sentations. Therefore, even though the present construction focuses on the particu-
lar complex hyperbolic surface Y1 and on the corresponding lattice in Isom(H2

C
), the

method should generalize to a much larger class of surfaces bundles, so as to obtain
representations of their fundamental groups into Isom(H2

C
) and possibly spherical

CR structures.
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2 A complex hyperbolic surface

This section presents a particular construction of smooth complex algebraic surfaces,
studied by Hirzebruch [11] (see also [14, section 1.4, example 6] and [18]). These
algebraic varieties are obtained by resolving the singularities of some branched cov-
ering spaces of the complex projective plane. Under some conditions (see theorem
2.11), the surfaces happen to be quotients of the complex hyperbolic plane H2

C
by

a lattice.

2.1 Arrangement of hyperplanes and Hirzebruch’s construc-

tion

Consider an arrangement of a number k (greater than 2) of lines D1, . . . , Dk in
P

2 whose equations are respectively ℓ1 = 0, . . . , ℓk = 0 where ℓ1, . . . , ℓk are linear
forms in the homogeneous coordinates z1, z2, z3. Assume that not all lines of the
arrangement pass through one point. And let n be an integer greater than 1.

Example 2.1. The complete quadrilateral arrangement in P2 is formed by the lines
connecting each pair among four points in general position, that is to say, no three
of them are colinear. There are three double intersection points and four triple ones

Figure 1: The complete quadrilateral arrangement.

which are the initial four points.
Any such four points are equivalent up to a projective transformation. Indeed,

any three of the lines, not having a common triple point, give an affine coordinate
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system and, in suitable homogeneous coordinates [z1 : z2 : z3], the arrangement is
given by the equation

z1z2z3(z2 − z1)(z3 − z2)(z1 − z3) = 0

and the four triple points by [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]. If one
sets z4 = 0, then the arrangement consists of the lines Dab defined by the equation
za − zb = 0 where {a, b} is any (unordered) subset of {1, 2, 3, 4}.

Remark 2.2. In [19], the authors set z0 = 0 instead of z4 = 0. This difference in
the choice of indices, apparently insignificant, will prove helpful later.

Proposition 2.3 (see [11]). The extension C(P2)
((
ℓ2

ℓ1

)1/n
, . . . ,

(
ℓk
ℓ1

)1/n)
of the func-

tion field C(P2) determines a normal algebraic surface X and an abelian branched
covering map χ : X → P2 of degree nk−1, ramified over the arrangement of lines
with index n.

The smooth complex surface Y obtained by resolving the singularities of X is

an abelian branched covering space of some blow-up P̂2 of the projective plane P2.
Local charts of Y are given in Remark 2.7. Lemma 2.9 describes the ramifications

of the branched covering map Y → P̂2.
The normal variety X is described as a fiber product with respect to the diagram

X

χ
����

// Pk−1

cn
����

P2

ℓ
// Pk−1

where ℓ : P2 → Pk−1 maps [z] = [z1 : z2 : z3] to [ℓ1(z) : · · · : ℓk(z)]. Here, the map
cn is defined in homogeneous coordinates as

cn([u1 : · · · : uk]) = [u1
n : · · · : uk

n].

As a set, the fiber product may be defined as

X = {(p, r) ∈ P
2 × P

k−1 | ℓ(p) = cn(r)}

and the morphisms X → P2 and X → Pk−1 as the restrictions to X of the projec-
tions pr1 : P2 × Pk−1 → P2 and pr2 : P2 × Pk−1 → Pk−1, respectively, on the first
and on the second component. In particular, the fiber χ−1(p) of a point p, lying on
exactly m lines of the arrangement, consists of nk−1−m distinct points.

Remark 2.4. The morphisms αs : Pk−1 → Pk−1 defined by

αs([u1 : · · · : uk])→ [u1 : · · · : us−1 : use
2πi
n : us+1 : · · · : uk],

where 1 ≤ s ≤ k, generate Aut(cn). The automorphism group acts on P2 × Pk−1,
trivially on the first component. This action restricts to an action on X by automor-
phisms of Aut(χ). Since the fibers under χ and cn are the same and that Aut(cn)
acts transitively on the fibers, Aut(cn) and Aut(χ) are naturally isomorphic.
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Remark 2.5. The group Aut(χ) is generated by the k automorphisms denoted by
αD, indexed by the lines D of the arrangement, satisfying for any lines D′ and D′′

of the arrangement

(
ℓD′

ℓD′′

)1/n

◦ αD = e
2πi
n

(δD,D′ −δD,D′′ )

(
ℓD′

ℓD′′

)1/n

where δ is the Kronecker delta. The product
∏

D

αD is the identity. For every line

D of the arrangement, the automorphism αD corresponds to a small loop turning
around D counterclockwise.

Remark 2.6. A point q in X is singular if and only if its image χ(q) in P2 lies on
more than two lines of the arrangement.

The singularities of X may be resolved by adequate blow-ups, so as to obtain a

smooth algebraic surface Y and a morphism ρ : Y → X . Moreover, let τ : P̂2 → P2

denote the blow-up of the projective plane at each of its points where more than

two lines of the arrangement meet. There exists a morphism σ : Y → P̂2 such that
the following diagram is commutative.

Y
ρ

//

σ
����

X

χ
����

P̂2
τ

// P2

σ is a branched covering map of degree nk−1 and ramifies over the proper transforms

in P̂2 of the lines of the arrangement and over the exceptional curves P(TpP
2). The

ramification indices are equal to n.

Remark 2.7. Coordinates. Adapted coordinates are introduced as follows. On
the coordinate chart uk 6= 0 of Pk−1, choose affine coordinates

(v1, . . . , vk−1) =

(
u1

uk
, . . . ,

uk−1

uk

)
,

so that the defining equations of X in the neighborhood of q are

vs
n =

us
n

ukn
=
ℓs
ℓk

for s from 1 to k − 1.
Around a point p = D1 ∩ D2 · · ·Dm ⊂ P2, with lk(p) 6= 0, choose an affine

coordinate chart (w1, w2) where

w1 =
ℓ1

ℓk
and w2 =

ℓ2

ℓk
.
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We then have, for s between 3 and k − 1,

ℓs
ℓk

= αsw1 + βsw2 + γs

with constants αs, βs and γs = 0 if and only if s is not greater than some integer m
(equal to the number of lines containing p).

The local equations around (p, r) ∈ X ⊂ P2×Pk−1 are then given in coordinates
(w1, w2, v1, · · · , vk−1) of P2 × P

k−1 by

v1
n = w1 , v2

n = w2

and, for 3 ≤ s ≤ k − 1,
vs
n = αsw1 + βsw2 + γs.

In order to describe coordinates for Y , we first blow up the (w1, w2)-space by consid-
ering the coordinate charts (see the Appendix) (w1, w2|1) and (w1|2, w2) defined by
w2|1 = w2/w1 and w1|2 = w1/w2. We have that τ(w1, w2|1) = (w1, w2|1w1). Next,

in the affine coordinate system (v1, . . . , vk−1) of Pk−1 we partially blow-up a point
by considering the first m-coordinates (v1, . . . , vm) and introducing m coordinate
charts, indexed by an integer r between 1 and m,

(v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vm|r, vm+1, . . . , vk−1)

defined by vs|r = vs/vr for s between 1 and m, different from r. Up to a permutation
of the indices 1, . . . ,m, one may assume for simplicity that r = 1. In the coordinates

(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1),

the equations defining Y are

v1
n = w1

vs|1
n = αs + βsw2|1 for 2 ≤ s ≤ m

vs
n = αsw1 + βsw1w2|1 + γs for m < s < k.

In coordinates, we obtain

χ(w1, w2, v1, . . . , vk−1) = (w1, w2)

and

ρ(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk)

= (w1, w2|1w1, v1, v2|1v1, . . . , vm|1v1, vm+1, . . . , vk).

The morphism σ : Y → P̂2 (satisfying χ◦ρ = τ ◦σ) is described in local coordinates
by

σ(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk) = (w1, w2|1).
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Lemma 2.8 ([11] pg. 122). If a point p in P2 belongs to a number m, greater than
2, of lines of the arrangement, say D1, . . . , Dm, then each singular point q of X
over p is resolved into a smooth curve C and the restriction σ|C : C → P(TpP

2) is
a branched covering map.

C � � //

σ|C

����

Y
ρ

//

σ
����

X

χ
����

P(TpP
2) �

�
// P̂2

τ
// P

2

More precisely, σ|C is of degree nm−1, ramified over the m points in P(TpP
2) corre-

sponding to the directions in TpP
2 tangent to the lines of the arrangement passing

through p. The Euler characteristic of C is e(C) = nm−1(2 −m) +m · nm−2.

In the following lemma we use the definition of the automorphisms αD of χ
given in remark 2.5 .

Lemma 2.9. Every automorphism α of χ extends as an automorphism of σ which
coincides with α outside of the exceptional divisor of ρ : Y → X.

For each singular point q in X, lying over a point p in P2, StabAut(χ)(q) is
generated by the automorphisms αD, where D is a line of the arrangement passing
through p.

The automorphism of χ corresponding to a small loop turning around P(TpP
2)

counterclockwise is ∏

D∋p

αD.

Finally, the Galois group Aut(σ|C) of σ|C : C → P(TpP
2) is isomorphic to the

quotient of StabAut(χ)(q) by the cyclic subgroup generated by

∏

D∋p

αD.

Notation 2.10. By a slight abuse of notation, αD or the letter α will indifferently
denote automophisms of Pk−1, of X , of Y or even of C.

Proof. In order to show that the automorphisms of χ extend as automorphisms of
σ, it suffices to prove it for the generators αD. Furthermore it suffices to prove it
locally using coordinates (see 2.7).

Let p be a point in P2 which belongs to a number m, greater than 2, of lines
of the arrangement, say D1, . . . , Dm, and let q be a singular point in X over p.
Consider, without loss of generality, the (w1, w2, v1, . . . , vk−1) coordinate system
of X and the (w1, w2|1, v1, v2|1 . . . , vm|1, vm+1, . . . , vk−1) coordinate system of Y .
The point p has coordinates (w1, w2) = (0, 0) and q has coordinates of the form
(0, . . . , 0, vm+1, . . . , vk−1) where vs is not zero for m < s < k.

In the coordinate system of X ,
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• if D is not the line at infinity Dk,

αD(w1, w2, v1, . . . , vk−1) = (w1, w2, v1, . . . , vs−1, e
2πi
n vs, vs+1, . . . , vk−1)

for some s,

• if D is Dk,

αD(w1, w2, v1, . . . , vk−1) = (w1, w2, e
− 2πi

n v1, . . . , e
− 2πi

n vk−1).

Therefore, in the corresponding coordinate system of Y ,

1. if D is the line D1 defined by the equation w1 = 0,

αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, e
2πi
n v1, e

− 2πi
n v2|1, . . . , e

− 2πi
n vm|1, vm+1, . . . , vk−1),

2. if D passes through p in P2 but is not D1,

αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, v1, v2|1, . . . , vs−1|1, e
2πi
n vs|1, vs+1|1, . . . , vm|1, vm+1, . . . , vk−1)

for some s,

3. if D is Dk,

αD(w1, w2|1, v1, v2|1 . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, e
− 2πi

n v1, v2|1, . . . , vm|1, e
− 2πi

n vm+1, . . . , e
− 2πi

n vk−1),

4. if D does not pass through p in P
2 and is not Dk,

αD(w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1)

= (w1, w2|1, v1, v2|1, . . . , vm|1, vm+1, . . . , vs−1, e
2πi
n vs, vs+1, . . . , vk−1)

for some s.

In each case, αD extends to the exceptional divisor of ρ : Y → X .
Since q has coordinates of the form (0, . . . , 0, vm+1, . . . , vk−1) where vs is not

zero for m < s < k, it appears that StabAut(χ)(q) is the subgroup generated by the
automorphisms αD1 , . . . , αDm .

Consider a loop in P̂2

γ :

{
[0, 2π] −→ P̂2

t 7−→ (w1(t), w2|1(t)) = (εeit, w2|1(0))

turning around P(TpP
2) and not meeting the proper transforms of the linesD1, . . . , Dm

(ε is arbitrarily small and w2|1 is constant). Finding a lift γ̃ : [0, 2π] → Y of γ
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amounts to finding continuous functions v1, v2|1, . . . , vm|1, vm+1, . . . , vk−1 satify-
ing the equations

v1(t)
n

= w1(t)
vs|1(t)

n
= αs + βsw2|1(t) for 2 ≤ s ≤ m

vs(t)
n

= αsw1(t) + βsw1(t)w2|1(t) + γs for m < s < k

that is to say

v1(t)
n

= εeit

vs|1(t)n = vs|1(0)n for 2 ≤ s ≤ m
vs(t)

n
= vs(0)

n
+ ε(αs + βsw2|1(0))(eit − 1) for m < s < k.

Thus

γ̃(2π) = (w1(0), w2|1(0), e
2πi
n v1(0), v2|1(0), . . . , vm|1(0), vm+1(0), . . . , vk−1(0))

= α1 ◦ α2 ◦ · · · ◦ αm(γ̃(0))

Since σ|C is the restriction of the Galois branched covering map σ, the morphism
StabAut(χ)(q)→ Aut(σ|C) is surjective. The automorphism

∏

D∋p

αD

fixes C so it is in the kernel of StabAut(χ)(q)→ Aut(σ|C). Finally, since StabAut(χ)(q)
has nm elements and that Aut(σ|C) has as many elements as the degree of σ|C , that
is nm−1, the morphism

StabAut(χ)(q)

<
∏
D∋p αD >

→ Aut(σ|C)

is bijective, for cardinality reasons.

Theorem 2.11 (Miyaoka-Yau [13]). If the Chern classes of a compact complex
surface Y of general type satisfy

c1(Y )2 = 3c2(Y )

then Y is the quotient of the complex hyperbolic plane H2
C

by a lattice.

In [11], Hirzebruch finds three cases where, given an arrangement of lines and a
exponent n, the corresponding surface Y is of general type and satisfies c1(Y )2 =
3c2(Y ). Therefore those surfaces admit a complex hyperbolic structure. Hirzebruch
denotes them by Y1, Y2 and Y3.

Example 2.12. The surface Y1 corresponds to the complete quadrilateral arrange-

ment and to the exponent n = 5. Hence σ : Y1 → P̂2 is a branched covering
map of degree 55 which ramifies over the six lines of the arrangement and the four
exceptional curves, all with index 5.

This paper focuses on the surface Y1.
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2.2 Complex hyperbolic lattice

T. Yamazaki and M. Yoshida [19] have determined a lattice, that they denote by
G1, in the group of automorphisms of the complex hyperbolic plane H2

C
such that

P̂2 appears as the quotient of H2
C

by G1 and that Hirzebruch’s surface Y1 is the
quotient by the commutator subgroup [G1, G1].

More precisely, P̂2 has the structure of a complex hyperbolic orbifold and Y1

that of a complex hyperbolic manifold. Despite the orbifold structure, P̂2 is simpler
than Y1 and reflects also the complex hyperbolic structure.

Choose a base point a in the complement D of the branch locus of P̂2 and a
loop ρ(ij) based at a, for i, j ∈ {0, 1, 2, 3} with i < j, turning around Dij . A group
presentation of the fundamental group π1(D, a) is given by the generators ρ(ij) and
the relations

[ρ(ij)ρ(ik)ρ(jk), ρ(ij)] = 1,

[ρ(ij)ρ(ik)ρ(jk), ρ(ik)] = 1,

[ρ(ij)ρ(ik)ρ(jk), ρ(jk)] = 1

for i < j < k and
ρ(01)ρ(02)ρ(12)ρ(03)ρ(13)ρ(23) = 1.

Let µ be exp(2πi 3
5 ). The groupG1 is the image of the representation R : π1(D, a)→

PGL3(C) defined by R(ρ(ij)) = R(ij) where

R(12) = I3 +



−µ(1− µ) µ(1− µ) 0

1− µ −(1− µ) 0
0 0 0




R(23) = I3 +




0 0 0
0 −µ(1− µ) µ(1− µ)
0 1− µ −(1− µ)




R(13) = I3 +



−µ(1− µ) 0 µ(1− µ)

(1− µ)(1 − µ) 0 −(1− µ)(1− µ)
1− µ 0 −(1− µ)




R(01) = I3 +




µ2 − 1 0 0
µ(1− µ) 0 0
µ(1− µ) 0 0




R(02) = I3 +




0 −(1− µ) 0
0 µ2 − 1 0
0 −µ(1− µ) 0




R(03) = µI3 + µ




0 0 −(1− µ)
0 0 −(1− µ)
0 0 µ2 − 1




In fact, G1 is contained in the projective unitary group whose Hermitian form of
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signature (+,+,−) is given by the Hermitian matrix

A1 =




−1
µ+µ µ 1

µ −1
µ+µ µ

1 µ −1
µ+µ


 .

3 The pencil of conics, an example of Lefschetz

fibration

A Lefschetz fibration P̂2 → P1 is defined in this section and will allow to derive a
similar one Y1 → C in section 5.

A conic in the complex projective plane P
2 is the zero-locus of a quadratic form

in the variables z1, z2, z3. The vector space Sym2(C3∗
) of all quadratic forms on C3

is of dimension 6. Since the one and only way for two quadratic forms to define the
same conic is to be proportional, the set of conics may be naturally identified with
the projective space P(Sym2(C3∗

)).

Figure 2: The pencil of conics. A generic fiber in red and one of the 3 singular
fibers in blue.

The set of conics passing through four points given in P2, none three of which lie
on the same line, say p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1],
corresponds to a line in P(Sym2(C3∗

)). For any fifth point (distinct from the first
four), there is exactly one conic passing through the five points. And even when the
fifth point happens to collide with any point p among the first four, prescribing in

15



addition any line in the tangent plane TpP
2, there is again exactly one conic passing

through p1, . . . , p4 and tangent to that line. Following the previous considerations,

there is a natural mapping f : P̂2 → P1, where P̂2 denotes the projective plane

blown up at the four points. Each exceptional curve in P̂2, obtained by blowing
up a point p among the four, is naturally identified with P(TpP

2). The map f is a

fibration whose fibers are the proper transforms in P̂2 of the conics passing through
the four points. Moreover, for each point p among the four, f admits a section
P1 → P(TpP

2) which maps a conic to its tangent line at p.

P(TpP
2) �

�
// P̂2

f
����

P1
##

cc●●●●●●●●●

Among those conics, represented by points in P1, exactly three are singular.
Each of them is the union of two lines, one passing through two among the four
points and the second passing through the two others. Those six lines together form
the complete quadrilateral arrangement. The points in P(TpP

2) corresponding to
the singular conics are the lines of the arrangement passing through p.

In coordinates, the pencil of conics may be defined as

[z1 : z2 : z3] 7→ [(z1 − z3)z2 : z1(z2 − z3)].

This is a rational mapping defined everywhere except at the points p1 = [1 : 0 : 0],
p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1] where the polynomials (z1− z3)z2 and
z1(z2 − z3) vanish simultaneously. Nevertheless, blowing up the projective plane at
one of the four points, say p3, one ends up with local coordinate charts (w1, w2|1)
and (w1|2, w2) defined as ws = zs/z3 and wr|s = wr/ws, for r, s ∈ {1, 2}, where the
rational mapping extends in the neighborhood of the exceptional curve P(Tp3P

2) as

(w1, w2|1) 7→ [(w1 − 1)w2|1 : w1w2|1 − 1]

and
(w1|2, w2) 7→ [w2w1|2 − 1 : w1|2(w2 − 1)].

Note that the fiber over [1 : 0] is the singular conic defined by z1(z2 − z3) = 0,
the one over [0 : 1] is defined by (z1 − z3)z2 = 0 and also the one over [1 : 1] is
defined by (z1 − z2)z3 = 0. Those three are the only singular fibers.

The pencil of conics described above is a simple example of Lefschetz pencil or
fibration.

Definition 3.1. A Lefschetz pencil or Lefschetz fibration f is respectively a rational
mapping or morphism from a complex surface S to a complex curve C such that,
for every point s in S (where f is defined),

1. either f is a submersion at s
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2. or the differential dsf of f at s is zero but the second symmetric differential
d2
sf is a nondegenerate quadratic form.

Remarks 3.2.

1. If f happens to be a submersion everywhere (and also proper, which is guar-
anted when S is compact), then Ehresmann’s fibration theorem yields that
f is a differentiable fiber bundle. In general, except over a finite number of
points in C, f is a fiber bundle whose fiber is called the generic fiber of the
Lefschetz fibration.

2. Besides, the shape of the singular fibers are prescribed by the condition 2 in
the previous definition. Indeed, at a point s of S where f is not submersive, the
holomorphic analogue of Morse lemma holds that there exists local charts of S
and C, centered at s and f(s) respectively, where f is as simple as (x, y) 7→ xy.
Hence, in the neighborhood of s and up to a holomorphic transformation, the
fiber passing through s is the union of two lines intersecting normally.

Examples 3.3.

1. In the local coordinate chart

(x, y) =

(
z1 − z3

z1
,

z2

z2 − z3

)

centered at the point [1 : 0 : 1], the rational mapping defining the pencil of
conics is expressed as f(x, y) = [xy : 1], so f may be easily expressed in the
normal form without resorting to the Morse lemma.

2. More examples of Lefschetz pencils arise in the way the pencil of conics is
defined above with coordinates. Indeed, choose two homogeneous polynomials
P andQ of a same nonzero degree d, in the variables z1, z2, z3, with no common
factor and consider the rational mapping

[z1 : z2 : z3] 7−→ [P : Q]

undetermined at the points where P and Q vanish simultaneously. The fiber
over a point [λ : µ] is the curve defined by the equation µP −λQ = 0 of degree
d. In particular, the fiber over [0 : 1] is P = 0, the fiber over [1 : 0] is Q = 0
and those two intersect at isolated points. All of the fibers pass through the
intersection points of P = 0 and Q = 0. For this reason, the rational map
is called the pencil generated by P and Q and the set of points defined by
P = Q = 0 is called the base of the pencil. Moreover, Bézout’s theorem holds
that the total number of intersection points of P = 0 and Q = 0, counted
with their multiplicities, is equal to the product of the degrees of P and Q.

Theorem 3.4 (Picard-Lefschetz formula). Let f : S → C be a Lefschetz fibration
where S and C are compact. In local charts of S and C, centered respectively at a
singular point s of a singular fiber and at p = f(s), the monodromy of the generic
fiber, corresponding to a loop in C \ {p} turning counterclockwise around p, is a
right-handed Dehn twist.
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D∗0

Figure 3: A right-handed Dehn twist and the monodromy along a loop turning

about 0, of the fibration f : f−1(D) ∩ D
2
→ D.

The previous result allows to understand the behavior of the fibration in the
neighborhood of each singular fiber, but not globally. In order to understand the

global picture, there is actually another interpretation of the fibration f : P̂2 → P1.

Proposition 3.5. For any integer greater than 3, let Qn denote the quotient of
(P1)n by the diagonal action of Aut(P1), in the sense of geometric invariant theory.

Then Q4 is isomorphic to P
1, Q5 to P̂2 and the diagram below is commutative:

(v1, v2, v3, v4, v5)
❴

��

✤ //

[
det(v1,v4)
det(v1,v5) : det(v2,v4)

det(v2,v5) : det(v3,v4)
det(v3,v5)

]

Q5
//

��

P̂2

f

��

Q4
// P

1

(v1, v2, v3, v4)
✤ //

[
det(v1,v3)
det(v1,v4) : det(v2,v3)

det(v2,v4)

]

where (v1, . . . , v5 denote nonzero vectors in C2 representing points in P1).

Remarks 3.6.

1. The group Aut(P1) of the automorphisms of P1 is simply the group PGL2(C)
which is also PSL2(C). The group acts transitively on triples of distinct points
in P1. Hence the space Qn becomes interesting only for n greater than 3.

2. The mapping (v1, v2, v3, v4) 7−→

[
det(v1, v3)

det(v1, v4)
:

det(v2, v3)

det(v2, v4)

]
is nothing but the

cross ratio of four points in P1, which is invariant by the diagonal action of
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Aut(P1). Note that the cross ratio is defined provided that none three of the
four points are equal.

3. An element (v1, . . . , vn) in (P1)n is stable (respectively semi-stable) under the
action of Aut(P1), in the sense of geometric invariant theory, if and only if the
largest number of points among v1, . . . , vn that coincide is less (respectively
not greater) than n/2.

Let Q∗
n denote the quotient (in the usual sense), by the diagonal action of

Aut(P1), of the subset of (P1)n formed by all the n-tuples of distinct points.

For n = 4, Q∗
4 is the subset ofQ4 of all stable points and the remainder consists

of the classes of 4-tuples (z1, z2, z3, z4) two of whose components coincide [6,
Example 11.4].

For n = 5, the difference between Q∗
5 and Q5 is the set of classes of 5-tuples

(z1, z2, z3, z4, z5) such that za = zb for some distinct indices a and b. This set
is hence the union of 10 lines of equation za = zb [6, Example 11.5].

4. The ten lines of the form za = zb in Q5 play symmetric roles, whereas the ten

lines in P̂2 consists of the six lines of the arrangement and the four exceptional
curves, apparently arising in a different way. This difference is related to
the fact that the forgetful map Q5 → Q4 does not treat equally the five
components of 5-tuples.

Proof. The maps do not depend on the choice of the representatives v1, . . . , v5 and
are well defined. Let ([z1 : 1], [z2 : 1], [z3 : 1], [0 : 1], [1 : 0]) be a representative of a
point (v1, v2, v3, v4, v5) in Q∗

5 (the proof is similar if the 5-tuple is not of that form).
Then [

det(v1, v4)

det(v1, v5)
:

det(v2, v4)

det(v2, v5)
:

det(v3, v4)

det(v3, v5)

]
= [z1 : z2 : z3]

and [
det(v1, v3)

det(v1, v4)
:

det(v2, v3)

det(v2, v4)

]
=

[
z1 − z3

z1
:

z2

z2 − z3

]
= f([z1 : z2 : z3])

so that the diagram is commutative.

Corollary 3.7. The monodromy representation of the fibration f : Q∗
5 → Q∗

4 is a
morphism π1(Q∗

4) → Mod0,4 such that the image of each generator of π1(Q∗
4) is a

right-handed Dehn twist, as drawn in figure 4.

Here we use the definition of the mapping class group Mod0,4 given in the next
section.

Remark 3.8. The monodromy representation is a particular case of the point
pushing map appearing in the Birman exact sequence (see [9, Theorem 4.6]). Indeed,
viewing Q∗

4 as a sphere with 3 punctures, the monodromy along (the homotopy
class) of a loop γ in Q∗

4 is, according to corollary 3.7 and figure 4, the mapping class
obtained by pushing the base point of Q∗

4 along γ.
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Figure 4: The monodromy of the forgetful mapping Q∗
5 → Q∗

4 along the grey loop
is a right-handed Dehn twist along the dashed loop.

4 Mapping class group

This section is devoted to the mapping-class group Mod0,4, in order to better un-
derstand the monodromy of the pencil of conics.

Notation 4.1. The mapping class group of a closed orientable surface of genus g
and with n marked points is denoted by Modg,n.

A natural approach to understand and describe the mapping class group Mod0,4

of the sphere with four marked points is to consider the torus with four marked
points. Indeed, the torus is a double branched covering space of the sphere, with
ramification over 4 points. The automorphism group is generated by the hyperel-
liptic involution: identifying the torus with the quotient R2/Z2, the hyperelliptic
involution is induced by the linear transformation (x, y) 7→ (−x,−y) corresponding
to the matrix −I2 (see figure 5). The hyperelliptic involution stabilizes four points
of the torus.

The group Mod1,1 is naturally isomorphic to SL2(Z), via the linear action which
descends to R2/Z2. By using the hyperelliptic involution this yields the following
classical isomorphism.

20



(a)

(0, 0)

(1, 0)

(1, 1)

(0, 1)

(b)

(c)

Figure 5: The hyperelliptic involution in three representations of the torus: (a) as
the fundamental domain [0, 1]2 of the action of Z2 on R2 by translations, (b) as a
fundamental domain of the action of Z×{0} on the cylinder R2/{0}×Z, (c) as the
usual embedding of the torus in the space.

Fact 4.2. Mod0,4 is isomorphic to the principal congruence subgroup of level 2 in
PSL2(Z).

Notation 4.3. Let Γ(2) denote the principal congruence subgroup of level 2 in
PSL2(Z), that is to say, the kernel of the morphism PSL2(Z) → PSL2(Z/2Z) in-
duced by the reduction modulo 2, not to be confused with its counterpart in SL2(Z).

Nielsen-Thurston classification. Any element of Modg,n admits a representa-
tive h which is either

1. periodic, that is to say, some power of h is the identity,
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2. reducible, that is to say, h preserves some finite union of disjoint simple closed
curves on the surface,

3. pseudo-Anosov, that is to say, there exists a pair of transverse measured foli-
ations (Fs, µs) and (Fu, µu) on the surface and a number λ > 1 such that

h∗(Fs, µs) = (Fs, λ−1µs) and h∗(Fu, µu) = (Fu, λµu)

(see [3] and [9, Section 11.2 and Theorem 13.2]).

Examples 4.4. When S is a sphere or a torus, the Nielsen-Thurston classification
is quite elementary as it boils down to the study of 2-by-2 matrices. The group
Mod1,1 is indeed isomorphic to SL2(Z) (see ??). Let A be a matrix in SL2(Z) which
is not the identity. Such a matrix is conjugate in SL2(R) either to

1. a diagonal matrix whose entries are conjugate complex numbers of modulus
1, in which case | tr(A)| < 2 and A acts on the plane as a finite-order rotation,

2. an upper triangular matrix whose diagonal entries are equal to 1, in which
case | tr(A)| = 2 and A acts on the plane as a transvection, hence preserving
a line pointwise,

3. a diagonal matrix whose entries are real numbers, inverse of each other, in
which case | tr(A)| > 2 and the action of A on the plane has two privileged
directions (or foliations), one that is contracted and one that is dilated.

The matrix A is respectively called elliptic, parabolic or hyperbolic. Consequently,
the periodic, reducible or pseudo-Anosov nature of a mapping class is simply deter-
mined by the trace of the representative matrix.

Quite the same goes for Mod0,4 (see corollary 4.2). Let A be a matrix repre-
senting an element of Γ(2). The action of A on the torus induces an action on
the sphere, through the branched covering map mentionned above. Similarly, the
periodic, reducible or pseudo-Anosov nature of a mapping class is determined by
the absolute value of the trace of A. For example, since the absolute value of the
trace of any matrix representing a non-trivial element of Γ(2) is at least 2, Mod0,4

contains no periodic element.

Definition 4.5. A surface bundle over the circle or a mapping torus is a quotient
space of the form (S × R)/Z where S is a closed surface and Z acts on S × R by
n · (x, t) = (hn(x), t + n) where h : S → S is a homeomorphism. This space is
denoted by Mh and the projection pr2 : S ×R→ R induces a fibration Mh → R/Z
over the circle, with fiber S.

Remarks 4.6. The previous construction depends, up to homeomorphism, only
on the isotopy class of h, that is to say, on the class of h in Mod(S). Moreover, it
only depends on the conjugacy class of the class of h in Mod(S). Furthermore, Mh

and Mh−1 are also homeomorphic. If A is a subset of S and h stabilizes each point
in A, then Mh depends only on the conjugacy class of the class of h in Mod(S,A)
and Mh contains the subset A× S1.
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Thurston has shown that if S is a closed surface of some genus g ≥ 2 and if h is
a homeomorphism of S, then the surface bundle Mh admits a hyperbolic structure
if and only if h is pseudo-Anosov [17, 15, 10].

The group Γ(2) has multiple interests in the present context, which are not
purely coincidental as shown in the following: it appears as a lattice in the group
Isom+(H2

R
) and it is isomorphic to the mapping class group Mod0,4.

Recall that the group PSL2(Z) is a lattice in PSL2(R) generated by the elements

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)

and a fundamental domain is drawn in figure 6. Alternatively, PSL2(Z) is generated
by S and TS. Those two are very particular elements of PSL2(Z), since S is a
hyperbolic rotation of angle π and TS is a hyperbolic rotation of angle − 2π

3 , whose
centers are corners of the fundamental domain drawn in figure 6, respectively i and
eiπ/3 in the half-plane model.

With figure 6, the following statement becomes quite straightforward.

Proposition 4.7. The 3-punctured sphere (P1)u is homeomorphic to the quotient
Γ(2)\H2

R
, which is a hyperbolic surface with 3 cusps. A presentation of Γ(2) is

〈T∞, T0, T1 | T∞T0T1 = 1〉 where

T∞ = (TS)0T 2(TS)−0 =

(
1 2
0 1

)

T1 = (TS)1T 2(TS)−1 =

(
−1 2
−2 3

)

T0 = (TS)2T 2(TS)−2 =

(
1 0
−2 1

)
.

0 1

∞
∞

0 1

Figure 6: A fundamental domain of PSL2(Z) in the half-plane and disk models of
hyperbolic plane. The skeleton of an ideal triangle drawn with dashes.
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This diagram sums up the facts presented above.

Γ(2)
AA

isomorphism (4.2)

��✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄ ^^

uniformization (4.7)

��
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂

Mod0,4 π1((P1)u)
monodromy

oo

π1(Q∗
4)

Birman (3.8)

]]❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀

cross ratio (3.5)

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁

Finally, the monodromy morphism π1((P1)u)→ Mod0,4 is an isomorphism and
it is quite elementary to determine whether the monodromy of a loop is pseudo-
Anosov by calculating the trace of the corresponding element of Γ(2). Such an
element may be given

1. either in the form of a matrix, with the advantage of being able to compute
its trace easily,

2. or as a product of the generators T∞, T0, T1, which allows to read that element
of Γ(2) as a loop in the sphere with three punctures.

However, if an element of Γ(2) is given in the latter form, rather than as a matrix,
there is no direct method for calcutating either its entries or its trace other than
computing the product.

5 A Lefschetz fibration of the Hirzebruch’s surface

Composing σ : Y1 → P̂2 and f : P̂2 → P1 yields a fibration f ◦ σ : Y1 → P1.
Let p be one of the four triple intersection points of the arrangement of lines

in P2, and q be one of the 52 points of X over p. Let C be the connected curve
in Y1 obtained by resolving the singular point q in X . By Lemma 2.8, the Euler
characteristic of C is (since n = 5 and m = 3 in the Lemma)

e(C) = 53−1(2− 3) + 3 · 53−2 = −10

so that C is a smooth curve of genus 6. The restriction σ|C : C → P(TpP
2) is

a branched covering map of degree 52 which ramifies over the points in P(TpP
2)

corresponding to the lines of the arrangement passing through p. The exact same
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goes for f ◦ σ|C : C → P1, since f|P(TpP2) : P(TpP
2)→ P1 is an isomorphism.

C � � //

σ|C

����

Y1

σ
����

f◦σ

����

P(TpP
2) �

�
// P̂2

f
����

P
1

##

cc●●●●●●●●●

As well as the fibration f : P̂2 → P1 admits natural sections

P
1 → P(TpP

2) ⊂ P̂2,

one may want to show that the inclusion C → Y1 is a section of a fibration Y1 → C.
Indeed, the following proposition states that there exists a fibration Y1 → C with
connected fibers. In other words, its composition with the branched covering map
f ◦ σ|C : C → P1 is the Stein factorization of f ◦ σ : Y1 → P1.

Proposition 5.1. There exists a fibration Y1 → C with connected fibers, such that
the inclusion C → Y1 is a section and that the following diagram is commutative.

Y1

f◦σ

����

~~~~⑦⑦
⑦⑦
⑦⑦
⑦

C
/
�

>>⑦⑦⑦⑦⑦⑦⑦

f◦σ|C     
❅❅

❅❅
❅❅

❅❅

P1

The curve C is of genus 6 and the generic fiber under Y1 → C is a smooth curve
of genus 76. The singular fibers under Y1 → C lie over the points of C over which
the branched covering map f ◦σ|C : C → P1 is ramified, so that there are 3×5 such
fibers.

The following proof resorts implicitly and repeatedly to proposition 7.3.

Proof. For any point b in P1, f−1(b) is the proper transform in P̂2 of a conic in P2.
f−1(b) and P(TpP

2) meet at a single point, denoted by bp.
If b is not one of the three points for which f−1(b) is singular, then f−1(b) does

not intersect (the proper transforms of) the lines of the arrangement but intersects
the four exceptional curves P(Tp′P2). Since they intersect normally, (f ◦ σ)−1(b) is
smooth and the restriction σ|(f◦σ)−1(b) : (f ◦ σ)−1(b)→ f−1(b) is a Galois branched
covering map which ramifies exactly over the intersection of f−1(b) with the four
exceptional curves.
Let Z be a connected component of (f ◦ σ)−1(b). Consider the branched covering
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map σ|Z : Z → f−1(b) and the corresponding unbranched one σ|Z
u : Zu → f−1(b)u.

Zu (obtained from Z by removing the branch points) is still connected. Hence, given
any base point z ∈ Zu, the Galois group Aut(σ|Z) is naturally isomorphic to the
image subgroup of αz : π1(f−1(b)u, σ(z)) → Aut(σ). Since f−1(b)u is homeomor-
phic to a sphere with four punctures, the fundamental group π1(f−1(b)u, σ(z)) is
generated by the homotopy classes of four loops around the punctures (three are
actually enough). The subgroup Imαz is hence generated (see 2.9) by (any three
among) the four elements ∏

D∋p′

αD.

Besides, StabAut(χ)(q) is generated (see 2.9) by the automorphisms αD, for the lines
D passing through p. It appears, on the one hand, that StabAut(χ)(q) ∩ Aut(σ|Z)
is the cyclic subgroup generated by

∏
D∋p αD which acts trivially on C and, on the

other hand, that StabAut(χ)(q) Aut(σ|Z) = Aut(σ).
As bp belongs to f−1(b), Z ∩ σ−1(bp) is not empty. Let z be a point in the latter
set and let α be an automorphism of σ such that α(z) ∈ C. Since Aut(σ) =
StabAut(χ)(q) + Aut(σ|Z), α may actually be chosen in Aut(σ|Z), so that α(z) ∈
Z ∩ C. And since StabAut(χ)(q) ∩ Aut(σ|Z) acts trivially on C, Z ∩ C contains
exactly one point.

If b is one of the three points for which f−1(b) is singular, f−1(b) is more precisely
the union of (the proper tranforms of) two lines of the arrangement, say D12 and
D34, the former passing through triple intersection points denoted by p1 and p2 and
the latter through p3 and p4. By a slight abuse of notations, the proper transforms,
denoted by D12 and D34, intersect at a point p5 and each of them also intersects two
of the exceptional curves, the former at p1 and p2, the latter at p3 and p4. Since the
intersections are normal, σ−1(D12) is smooth and the restriction σ : σ−1(D12) →
D12 is a Galois branched covering map of degree 54 ramified over p1, p2, p5, with
index 5. The exact same goes for σ−1(D34) over p3, p4, p5.
Furthermore, if Z12 is a connected component of σ−1(D12), then Aut(σ|Z12

) is
naturally isomorphic to the subgroup of Aut(σ) generated by

αD34

∏

D∋p1

αD
∏

D∋p2

αD

and if Z34 is a connected component of σ−1(D34), then Aut(σ|Z34
) is naturally

isomorphic to the subgroup of Aut(σ) generated by

αD12

∏

D∋p3

αD
∏

D∋p4

αD.

Therefore, the subgroup of Aut(σ), denoted by H , preserving the connected com-
ponents of σ−1(D12 ∪D34) is generated by αD12 , αD34 and the four elements

∏

D∋p′

αD

with p′ ∈ {p1, p2, p3, p4}.
Let Z be a connected component of σ−1(D12 ∪D34) and let z be a point in Z such
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that σ(z) = bp. Assuming that p = p1, bp is then the point in P(TpP
2) corresponding

to the direction tangent to D12. In particular, αD12(z) = z since σ(z) = bp. Let α
be an automorphism of σ such that α(z) ∈ C. Since Aut(σ) = StabAut(χ)(q) + H ,
α may actually be chosen in H , so that α(z) ∈ Z ∩C. And since StabAut(χ)(q)∩H
acts trivially on z, Z ∩ C contains exactly one point.

In conclusion, each connected component of (f ◦σ)−1(b) meets C at exactly one
point and one can define a fibration Y1 → C by mapping any connected component
of (f ◦σ)−1(b) to the only point in its intersection with C. This fibration is nothing
but the Stein factorization of f ◦ σ, since the fibers of Y1 → C are exactly the
connected components of those of f ◦ σ : Y1 → P1.

As f ◦ σ|C : C → P1 is a branched covering map of degree 52, a generic fiber
(f ◦ σ)−1(b) has then 52 connected components and total Euler characteristic

55(2 − 4) + 54 × 4 = −6× 54

so that each connected component has Euler characteristic −6× 52 and genus 1 +
3× 52 = 76.

Remark 5.2. The fibration Y1 → C seems combinatorially complex since the base
curve is of genus 6 with 15 ramification points and the generic fiber is of genus 76
with 4× 52 marked points lying over the 4 marked points of the generic fiber of the
pencil of conics. For instance, writing group presentations of fundamental groups
of these spaces or of their corresponding mapping class groups is a laborious task.

However, recall that the much simpler manifold P̂2 bears an orbifold structure
that is the quotient of the complex hyperbolic manifold Y1. The fibration Y1 → C

itself arises from a fibration of P̂2. The base curve is a sphere with 3 punctures and
the generic fiber is a conic with 4 marked points. The mapping class group of the
generic fiber is much simpler than the mapping class group of a surface of higher
genus, which makes the monodromy potentially simpler.

In the remainder of the present section, the base curve and the generic and
singular fibers are studied in more detail.

Notation 5.3. In the following, fundamental groups of the spaces at play will be
considered quite often. In order to avoid choosing base points each time, one should
choose them once and for all. Let y0 be a base point in Y1

u which will also serve
as a base point of Y1. Let c0 denote the projection of y0 to C so that c0 will be the
base point of both C and Cu. Besides, the fiber over c0 of Y1 → C will be denoted
by F0 and will be called the base fiber. The point y0 belongs to F0 and will be its

base point. One may obtain base points similarly for P̂2, P̂2
u
, P(TpP

2), P(TpP
2)u,

P1 and (P1)u.

Corollary 5.4. The 15 singular fibers under Y1 → C are isomorphic to

(S12 × I34) ∪ (I12 × S34)

where S12 and S34 are connected components of σ−1(D12) and σ−1(D34) respectively
and I12 and I34 are the subsets of S12 and S34 respectively whose points lie over the
intersection point of D12 and D34.
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Figure 7: The two irreducible components of a singular conic.

S12 is a compact curve of genus 6 and a Galois branched covering space of D12,
of degree 52, ramified over three points and I12 consists of 5 points. The exact same
goes for S34 and I34.

Proof. Let D12 and D34 denote the two irreducible components of a singular fiber

of P̂2 → P1. Then σ−1(D12) is a Galois branched covering space of D12 of degree
55−1 = 54 and ramified over 3 points with ramification index 5 (one is the point
where D12 and D34 intersect and the other two are points where D12 intersects two
of the four exceptional curves). Hence the Euler characteristic of σ−1(D12) is

54(2− 3) + 3× 53 = −2× 53.

Let S12 be a connected component of σ−1(D12). The Galois group Aut(σ|S12
)

is isomorphic to the quotient of the subgroup of Aut(σ) generated by the three
elements (two are actually enough)

α34, α12α13α23, α12α14α24

by 〈α12〉. The fiber has then 52 connected components, so that each of them has
Euler characteristic −2× 5 and genus 1 + 5 = 6. The same goes for the connected
components of σ−1(D34). Let S34 be one of them and assume that it meets S12 at a
point q. The Galois group Aut(σ|S34

) is isomorphic to the quotient of the subgroup
of Aut(σ) generated by the elements

α12, α34α13α14, α34α23α24
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Figure 8: Two representations of the shape of the 15 singulars fibers: one on the
left where the irreducible components are symbolically represented as line segments,
one on the right where the irreducible components are more realistic whereas their
intersection points are marked as thick dots.

by 〈α34〉. Since the intersection of the subgroups

〈α34, α12α13α23, α12α14α24〉 and 〈α12, α34α13α14, α34α23α24〉

is 〈α12, α34〉 which acts trivially on the point q, S12 and S34 meet at exactly one
point.

The connected component of σ−1(D12 ∪ D34) containing q is the union of the
orbit of S12 under the action of 〈α34, α12α13α23, α12α14α24〉 and the orbit of S34

under the action of 〈α12, α34α13α14, α34α23α24〉. These orbits consists of five copies
of S12 and S34 respectively (see figure 8).

Remarks 5.5. The curves S12 and S34 are biholomorphic since they are covering
spaces of lines of the arrangement which play symmetric roles.

The resolution of the 52 singularities of the singular fibers yields curves of genus
6× (5 + 5) + (5− 1)2 = 76 (see figure 8), which is indeed equal to the genus of the
generic fiber.

The following lemma aims at describing the kernel of a morphism from a free
group to a finite abelian group. Consider the topological interpretation of a free
group as a fundamental group of a wedge sum of circles. More precisely, the image in
the torus Rm/Zm of the coordinate axes of Rm is a wedge sum of m circles, denoted
by Bm, with a base point b. The fundamental group π1(Bm, b) is indeed a free group
with m generators c1, . . . , cm. The group morphism π1(Bm, b) → Zm induced by
the inclusion Bm → Rm/Zm is nothing but the abelianization morphism, mapping
the generator c1 to the element (1, 0, . . . , 0) and so on.
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Lemma 5.6. If R is a subgroup of Zm of index d then the torus Rm/R is naturally
a covering space of Rm/Zm, of degree d. Let B̂m denote the covering space of Bm,
obtained by pulling back Bm as follows.

(B̂m, b̂)
� � //

����

(Rm/R, 0)

����

(Bm, b)
� � // (Rm/Zm, 0)

Then the kernel of the morphism π1(Bm, b) → Zm/R is isomorphic to the funda-

mental group π1(B̂m, b̂). Moreover, B̂m has the homotopy type of a wedge sum of
d(m− 1) + 1 circles.

If R = kZm, then d = km and the kernel of π1(Bm, b)→ (Z/kZ)m is generated
by the elements c1

k, . . . , cm
k and the commutators [ci

p, cj
q] for 1 ≤ i, j ≤ m and

1 ≤ p, q ≤ k.

Proof. All the assertions are quite straightforward. The Euler characteristic of Bm
is e(Bm) = 1 −m. Thus that of B̂m is e(B̂m) = d e(Bm) = d(1 −m). Since B̂m
has the homotopy type of a wedge of circles, the number of those circles must be
d(m− 1) + 1.

Proposition 5.7. As a covering space of (P1)u, Cu admits a hyperbolic structure.
More precisely, Cu is homeomorphic to the quotient of H2

R
by the normal subgroup

of Γ(2) of index 52 formed by all the possible products of T∞, T0 and T1 (and their
inverses) where the numbers of occurrences of T∞, T0 and T1 respectively (counted
with their multiplicity, say, p for T∞

p) differ by multiples of 5. Besides, that group
is generated by T∞

5, T0
5, T1

5 and the commutators of powers of T∞, T0, T1.

Remark 5.8. Since the generators T∞, T0, T1 satisfy the relation

T∞T0T1 = 1,

the previous properties may be written only in terms of two of the generators. As a
fundamental group of a sphere with three punctures, π1(Cu) is indeed isomorphic
to the free group with two generators, say T∞ and T0.

Any element of π1(Cu), written as a product of T∞, T0 and T1, may be inter-
preted as (the homotopy class of) the lift to Cu of a loop in (P1)u obtained by
turning around the puncture corresponding to the factor T∞, T0 or T1, each time
one of them appears in the product. Representing a loop in (P1)u rather than in
Cu is indeed easier since Cu is a Riemann surface of genus 6 with 15 punctures.

Proof. The unbranched covering map σ : Cu → (P1)u induces a short exact sequence

1 // π1(Cu, y)
(σ|Cu )∗

// π1((P1)u, σ(y))
αy

// Aut(σ|Cu) // 1

where y denotes the base point of Cu. Identify π1((P1)u, σ(y)) with

Γ(2) = 〈T∞, T0, T1 | T∞T0T1 = 1〉
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(see 4.7). With 2.9, the image of T∞ by αy is the automorphism αD of σ where D
is the line of the arrangement corresponding, in the identification of Γ(2)\H2

R
with

(P1)u and P(TpP
2), to the image of ∞. And similarly for 0 and 1.

Identify Aut(σ|C) with (Z/5Z)2 so that the morphism αy : Γ(2) → (Z/5Z)2

maps T∞ to (1, 0), T0 to (0, 1) and T1 to (−1,−1). Since π1(Cu, y) is isomorphic
to the kernel of αy, it is also isomorphic to the subgroup of Γ(2) formed by the
products of T∞, T0 and T1 (and their inverses) where the number of occurrences of
T∞, T0 and T1 respectively (counted with their multiplicity, say, p for T∞

p) differ
by multiples of 5.

According to lemma 5.6, π1(Cu, y) is isomorphic to the subgroup of Γ(2) gener-
ated by T∞

5, T0
5, T1

5 and the commutators of powers of T∞, T0, T1.

The Riemann surface C may also be uniformized. Instead of cusps and parabolic
isometries as on (P1)u and Cu, consider the hyperbolic orbifold structure on P1

where the three points in P
1 \ (P1)u have conic angle 2π/5. Such a structure may

be constructed by considering a (regular) hyperbolic triangle with angle π/5 at
each vertex. Thus the quotient of H2

R
by the triangle group T (5, 5, 5) is an orbifold

Figure 9: A hyperbolic triangle with angle π/5 at each vertex.

homeomorphic to P1: the triangle group T (5, 5, 5) is the subgroup of index 2, formed
by the orientation-preserving isometries, of the group generated by the reflections
with respect to the sides of the hyperbolic triangle with angle π/5 at each vertex.
It is generated by the rotations of angle 2π/5 around the vertices of the triangle
and any two adjacent translates of the triangle form a fundamental domain. Let
R1, R2, R3 denote the rotations of angle 2π/5 around the vertices of such a triangle,
indexed such that they satisfy the relation R3R2R1 = 1.

Proposition 5.9. The Riemann surface C is homeomorphic to the quotient of H2
R

by the normal subgroup of T (5, 5, 5) of index 52 formed by all the possible products
of R1, R2 and R3 (and their inverses) where the numbers of occurrences of R1,
R2 and R3 respectively (counted with their multiplicity, say, p for R1

p) differ by
multiples of 5. Besides, that group is generated by the commutators of powers of
R1, R2, R3.

Proof. Similar to the proof of proposition 5.7.
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Proposition 5.10. The surjective morphism π1(Cu) → π1(C) induced by the in-
clusion Cu → C is the restriction (to the corresponding subgroups) of the morphism
Γ(2) → T (5, 5, 5) mapping T∞, T0, T1 to R3, R2, R1 respectively. In particular, the
kernel is the smallest normal subgroup of Γ(2) generated by T∞

5, T1
5, T0

5. The
kernel contains all the parabolic elements of π1(Cu).

Proof. Following propositions 5.7 and 5.9, π1(Cu) and π1(C) are identified to sub-
groups of Γ(2) and T (5, 5, 5) respectively, in such a way that the diagram

π1(Cu)

����

� � // Γ(2) ≃ (P1)u

����

π1(C) �
�

// T (5, 5, 5)

is commutative, where T (5, 5, 5) is seen as the fundamental group of quotient orb-
ifold and that the morphism Γ(2) → T (5, 5, 5) maps the generators T∞, T0, T1 to
R3, R2, R1 respectively. Observe that the kernel of the latter morphism is the small-
est normal subgroup of Γ(2) generated by the three elements T∞

5, T1
5, T0

5. As these
elements belong to π1(Cu), the kernel of the morphism π1(Cu)→ π1(C) is also the
smallest normal subgroup of π1(Cu) generated by T∞

5, T1
5, T0

5.
Any parabolic element of π1(Cu) is conjugate in Γ(2) to a power of T∞, T0 or

T1, hence to a power of T∞
5, T0

5 or T1
5 according to 5.7. Therefore, any parabolic

element is contained in the kernel.

In section 2.2, a set of matrices generating the lattice G1 is given. Recalling
that the morphism π1(C) → π1(Y1) is injective and identifying π1(Y1) with the
commutator subgroup [G1, G1], the following proposition shows that the image of
the morphism π1(C)→ G1 is a subgroup stabilizing a complex line in H2

C
.

Proposition 5.11. The fundamental group of C is isomorphic to the commutator
subgroup of the subgroup of PGL3(C) generated by R(ij), R(jk), R(ik) for some
distinct indices i, j and k (two of them are actually sufficient).

Choosing for example, R(01), R(02) and R(12), it appears that the group in
question preserves the line in C3 directed by (0, 0, 1), which is positive. Therefore it
preserves a complex plane in C3 with signature (1, 1) and hence a complex line in
H2

C
.

Proof. According to proposition 5.9, the fundamental group of C is isomorphic to
the subgroup of the triangle group T (5, 5, 5) generated by the commutators of the
elements R1, R2, R3. These elements correspond to loops around the three lines of
the arrangement passing through a given triple point and hence to a triple of the
form R(ij), R(jk), R(ik) for some distinct indices i, j and k.

The remainder is straightforward computations.

6 Representations of 3-manifold groups

Recall the notations 5.3 about base points of fundamental groups. For any element
γ in π1(Cu), let Mγ → R/Z be the surface bundle over the circle with fiber F0 and
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where the homeomorphism is the monodromy of the fibration Y1
u → Cu along γ.

If a loop R/Z → Cu represents γ, then there is a natural mapping Mγ → Y1 such
that the diagram

Mγ
//

����

Y1

����

R/Z // C

is commutative. For instance, if the loop R/Z→ Cu happens to be an embedding
or an immersion, then the same goes for Mγ → Y1.

The mapping Mγ → Y1 induces a morphism ργ : π1(Mγ) → π1(Y1) and hence
a representation into a complex hyperbolic lattice. The manifold Mγ , the fibration
Mγ → R/Z and of course the conjugacy class of the representation ργ depends
only on the conjugacy class of γ in π1(Cu). Observe that it does depend on the
orientation of γ.

Since π1((P1)u)→ Mod0,4 is an isomorphism, every mapping class in Mod0,4 can

be realized as the monodromy along a curve in (P1)u, of the fibration P̂2
u
→ (P1)u.

The generic fiber of P̂2 → P1 is a sphere with 4 marked points. Therefore, all the
possible surface bundles with the sphere as fiber and with monodromy preserving
each of the 4 marked points are obtained in this way.

The same construction of surface bundles for the fibration P̂2
u
→ (P1)u, instead

of Y1
u → Cu as above, hence produces representations of the fundamental groups

of all those surface bundles. More precisely, the complex hyperbolic structure on

Y1 descends to a branched complex hyperbolic structure on P̂2 by the branched

covering Y1 → P̂2. And the fibers of the latter surface bundles are seen as orbifolds
with isotropy of order 5 at each of the four marked points. For γ in π1(Cu), the
surface bundle Mγ is nothing but a branched covering of the orbifold surface bundle
whose monodromy is the image of γ by π1(Cu)→ π1((P1)u).

Proposition 6.1. For each element f of Mod0,4, consider the surface bundle Mf

with monodromy f and with fiber the orbifold with the sphere as underlying space and
with isotropy of order 5 at each of the four marked points. There is a representation
of the orbifold fundamental group of Mf into a lattice in Isom(H2

C
).

The group π1(Mγ) is isomorphic to the semi-direct product 〈γ〉⋉ π1(F0).

1 // π1(F0)
� � // π1(Mγ) // //

ργ

��

〈γ〉? _oo //

��

1

π1(Y1) // // π1(C)? _oo

Proposition 6.2. For any γ in π1(Cu), the limit set of the image of the represen-
tation ργ : π1(Mγ)→ π1(Y1) is all of ∂∞H2

C
.
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The proposition shows that the representation ργ is quite chaotic. If the limit
set were not all ∂∞H2

C
, then a natural question would have been to understand the

quotient by the image of ργ , of its domain of discontinuity, which might have given
rise to a spherical Cauchy-Riemann structure. However, the domain of discontinuity
will always be empty with this kind of construction which relies on a (singular)
fibration of the complex hyperbolic manifold.

Proof. Since π1(Y1) is (isomorphic to) a uniform lattice, its limit set Λ(π1(Y1)) is all
of ∂∞H2

C
and π1(Y1) does not preserve any point on the boundary. Besides, since

the fundamental group of the fiber of Y1
u → Cu is a normal subgroup of π1(Y1

u),
its image by the surjective morphism π1(Y1

u)→ π1(Y1) is a normal subgroup N of
π1(Y1).

If the limit set Λ(N) of N were empty, then N would have been contained in
a compact subgroup of Isom(H2

C
). As N is discrete, N would have been finite and

π1(C) would have been of finite index in π1(Y1) which is impossible.
Therefore, since N is a normal subgroup of π1(Y1), that Λ(N) is not empty

and that π1(Y1) does not preserve any point on the boundary, Λ(N) is equal to
Λ(π1(Y1)). Finally, since π1(Mγ) contains π1(F0), the limit set of the image of
π1(Mγ)→ π1(Y1) is all ∂∞H2

C
.

Furthermore, if the monodromy of the fibration along the loop γ is pseudo-
Anosov, then the 3-manifold Mγ admits a real hyperbolic structure, according to
Thurston’s hyperbolization theorem of surface bundles over the circle. In that case,
π1(Mγ) is isomorphic to a uniform lattice in Isom(H3

R
) whose limit set is all of

∂∞H3
R
. However, determining that lattice or the manifold Mγ is a difficult problem

and will not be addressed.

Proposition 6.3. For any element γ in π1(Cu), if its image in π1(C) is not trivial,
then

1. the kernel of ργ is equal to the kernel of π1(F0)→ π1(Y1),

2. the monodromy of the fibration Y1
u → Cu along γ is pseudo-Anosov,

3. the kernel is not of finite type.

Example 6.4. Consider the element

T1T0T∞ = T1T0T1
−1T0

−1 = [T1, T0] =

(
5 8
8 13

)

in Γ(2) which corresponds to a element of π1(Cu), according to proposition 5.7. The
trace of the matrix is 18 so that the monodromy along the corresponding loop is
pseudo-Anosov. The corresponding element of Mod0,4 is the commutator of Dehn
twists along intersecting loops.

Proof. As the morphism π1(C) → π1(Y1) induced by the inclusion of C in Y1 is
injective, the image in π1(Y1) of an element in π1(Cu) is trivial if and only if its
image in π1(C) is trivial.
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Any element of π1(Mγ) may be written as a product of the form γmω with m
in Z and ω in π1(F0). The image of such an element by the composition π1(Mγ)→
π1(Y1) → π1(C) is the image of γm. Now, γm is in kerργ if and only if m = 0,
hence ker ργ is contained in π1(F0).

Since γ is not in the kernel of the morphism π1(Cu)→ π1(C), it is a hyperbolic
element of π1(Cu), according to 5.10, so that the monodromy of the fibration along
γ is pseudo-Anosov.

The kernel of π1(F0) → π1(Y1) is a subgroup invariant by the pseudo-Anosov
monodromy of γ. According to [15, Lemma 6.2.5], if such a subgroup is of finite
type, then it is of finite index. However, since the limit set of the image of π1(F0) in
π1(Y1) is all of ∂∞H2

C
, the image of π1(F0)→ π1(Y1) cannot be finite and its kernel

cannot be of finite index. Therefore, the kernel is not of finite type.

Theorem 6.5. For any two γ1 and γ2 in π1(Cu), if the image in π1(C) of γ1 is not
conjugate to that of γ2 or its inverse, then either the groups π1(Mγ1 ) and π1(Mγ2)
are not isomorphic or, if such an isomorphism Φ : π1(Mγ1 )→ π1(Mγ2) exists, then
the representations ργ1 and ργ2 ◦ Φ are not conjugate.

Proof. Let γ1 and γ2 be two elements in π1(Cu). Assume that there exists an
isomorphism Φ : π1(Mγ1)→ π1(Mγ2) and that the representations ργ2 ◦ Φ and ργ1

are conjugate. In other terms, there exists an element ϕ0ψ0 in π1(Y1
u), with ϕ0 in

the fundamental group of the fiber and ψ0 in π1(Cu), such that the diagram

π1(Mγ1)
Φ //

ργ1

��

π1(Mγ2)

ργ2

��

π1(Y1)
Intρ(ϕ0ψ0)

// π1(Y1)

is commutative, where Intρ(ϕ0ψ0) is the inner automorphisms of π1(Y1) associated

to ρ(ϕ0ψ0). By replacing γ1 by ψ0γ1ψ0
−1, one may assume that ψ0 = 1. Therefore

the diagram

π1(Mγ1)
Φ //

ργ1

��

π1(Mγ2)

ργ2

��

π1(Y1)

%%❏
❏❏

❏❏
❏❏

❏❏

Intρ(ϕ0)
// π1(Y1)

yytt
tt
tt
tt
t

π1(C)

is commutative. In particular, the images of π1(Mγ1) and π1(Mγ2) in π1(C) are
equal. The image is generated indifferently by the image of γ1 or γ2 and is either
trivial or an infinite cyclic subgroup. Hence the image γ1 is equal to that of γ2 or
its inverse.
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7 Appendix

7.1 Blow-up

Let Pk−1 denote the standard complex projective space of dimension k− 1, defined
as the quotient of Ck \ {0} by the action of C∗ by homotheties and equipped with
the homogeneous coordinates [v1 : · · · : vk]. The field of meromorphic functions on
P
k−1 is the field C(v2

v1
, . . . , vkv1

) of rational fractions, denoted by C(Pk−1).
More generally, for any complex vector space V of finite dimension, let P(V )

denote the projectivization of V .
The tautological line bundle over Pk−1 is defined as

OPk−1(−1) = {(v, ℓ) ∈ C
k × P

k−1 | v ∈ ℓ}

where each element ℓ in Pk−1 is considered as a line in Ck passing through the
origin.

OPk−1(−1)
pr2

vv❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧ pr1

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗

Pk−1

The restriction to OPk−1(−1)
of the second projection
pr2 : Ck × Pk−1 → Pk−1

is the tautological line bundle.

Indeed, the fiber of a point ℓ ∈ Pk−1

is the line ℓ ⊂ Ck.

Ck

The restriction to OPk−1(−1)
of the first projection
pr1 : Ck × Pk−1 → Ck

is the blow-up of Ck at the origin.
Indeed, it is bijective everywhere

except over the origin of Ck

whose fiber is Pk−1.

Local charts and coordinates ofOPk−1(−1) may be given as follows. If Ur denotes
the domain of the affine chart in Pk−1 defined by vr 6= 0 and with coordinates

vs|r =
vs
vr

for s between 1 and k different form r

then its inverse image in OPk−1(−1) under pr2 : OPk−1 (−1)→ P
k−1 is the domain of

the local chart with coordinates (v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vk|r) corresponding
to the point (v, ℓ) in OPk−1(−1) with

v = (vrv1|r, . . . , vrvr−1|r, vr, vrvr+1|r, . . . , vrvk|r)

and
ℓ = [v1|r : · · · : vr−1|r : 1 : vr+1|r : · · · : vk|r ].

Finally, the blow-up of a complex manifold M at a point p may be realized
by replacing a neighborhood of p, isomorphic to a neighborhood of the origin in
Ck, by the corresponding neighborhood in OPk−1(−1). The exceptional divisor of
such a blow-up is the preimage in the blow-up of the points which were blown-up.
Moreover, if (v1, . . . , vk) are local coordinates for M , centered at p, local coordinates
(v1|r, . . . , vr−1|r, vr, vr+1|r, . . . , vk|r) for the blow-up of M at p may be defined for
every r ∈ {1, . . . , k}, similarly to OPk−1(−1), as vs|r = vs/vr for s different from r.
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7.2 Branched covering maps

A branched covering map of finite degree is a finite surjective morphism χ : Y → X
of varieties. Y is called a covering space of X . The isomorphisms α : Y → Y such
that χ ◦ α = χ are called the automorphisms of χ and form a group denoted by
Aut(χ). If Aut(χ) acts transitively on all fibers of χ : Y → X , then the covering
map is called Galois or regular and Aut(χ) is also referred to as the Galois group
of the covering map. When, in addition, the Galois group is abelian, the covering
map is called abelian.

Example 7.1. The morphism cn : Pk−1 → Pk−1 defined by

cn([u1 : · · · : uk])→ [u1
n : · · · : uk

n]

is a branched covering map. The fiber cn
−1(p) over any point p = [v1 : · · · :

vk] consists of nk−1−m distinct points, where m is the number of homogeneous
coordinates vs of p that are equal to zero. m is the number of hyperplanes, of the
following arrangement of hyperplanes, which contain p.

The arrangement in question is formed by the k hyperplanes Ds defined by
the equations vs = 0, which meet together in a rather simple way: for any distinct
indices s1, . . . , sm, the intersection Ds1 ∩· · ·∩Dsm is merely the projective subspace
of codimension m, defined by the equations vs1 = · · · = vsm = 0.

In particular, the fiber over any point in the complement of the arrangement of
hyperplanes (this complement is an open and dense subset) consists of nk−1 points.
In other words, cn is a branched covering of degree nk−1 and which ramifies exactly
over the previous arrangement of hyperplanes.

The morphisms αs : Pk−1 → Pk−1 defined for each index s by

αs([u1 : · · · : uk])→ [u1 : · · · : us−1 : use
2πi
n : us+1 : · · · : uk]

are automorphisms of cn. The subgroup of Aut(cn) generated by the morphisms αs
acts transitively over every fiber. Therefore, cn is an abelian covering map whose
Galois group is generated by the automorphisms α1, . . . , αk satisfying αs

k = id and
α1 ◦ · · · ◦ αk = id. The Galois group is obviously isomorphic to (Z/nZ)k−1 but not
canonically.

Notation 7.2. The Galois group Aut(cn) may be identified with the additive group

{(e1, . . . , ek) ∈ (Z/nZ)k |
k∑

s=1

es ≡ 0[n]}.

A branched covering map χ : Y → X is said to be ramified along a hypersurface
f = 0 in X , with ramification index p, if there exists local coordinates (y1, . . . , yn)
of Y and (x1, . . . , xn) of X such that xn = f and that the image by χ of the point
with coordinates (y1, . . . , yn) is the point with coordinates

(x1, . . . , xn) = (y1, . . . , yn
p).
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The branch locus is the preimage in Y of the union of the hypersurfaces of X where
χ is ramified. The ramification locus is the image in X of the branching locus.
The unbranched covering associated to χ is the mapping χu : Y u → Xu where Y u

denotes the complement in Y of the branch locus and Xu the complement in X of
the ramification locus. The mapping χu is a topological covering map.

Any branched covering map χ : Y → X induces a finite field extension

χ∗ :

{
C(X) −→ C(Y )
f 7−→ f ◦ χ

between the field C(X) of meromorphic functions of X and that of Y . Conversely,
given a normal variety X and a finite field extension i : C(X) → L, there is a
branched covering map χ : Y → X (unique up to isomorphism) such that χ∗ = i.
The variety Y is the normalization of X in L.

The following proposition describes the relation between (unbranched) topolog-
ical covering maps and fundamental groups.

Proposition 7.3. Let X be a locally path-connected topological space. χ : Y → X
be a topological covering map and let x be a point in X.

1. There is a natural action (on the right) of π1(X,x) over χ−1(x).

2. If X is path-connected, then the mapping χ−1(x) → π0(Y ), which maps any
point y to the path-connected component of Y containing y, induces a bijection
χ−1(x)/π1(X,x)→ π0(Y ).

In other words, the orbit of a point y in χ−1(x) under the action of π1(X,x)
is exactly the intersection of χ−1(x) with the path-connected components of Y
containing y.

3. If χ is a Galois covering map, then, for any y in χ−1(x), there exists a mor-
phism αy : π1(X,x)→ Aut(χ) such that yg = αy(g)y for any g in π1(X,x).

4. If χ is a Galois covering map and X is path-connected, then the restriction
χ|Z : Z → X to a path-connected component Z of Y containing a point z is a
Galois covering map whose Galois group Aut(χ|Z) is naturally isomorphic to
the subgroup Imαz of Aut(χ).

5. If χ is a Galois covering map and Y is path-connected, then for any y in
χ−1(x),

1 // π1(Y, y)
χ∗

// π1(X,x)
αy

// Aut(χ) // 1

is a short exact sequence.

Example 7.4. Consider the branched covering map cn : Pk−1 → Pk−1 defined in
example 7.1. Let X denote the open subset of Pk−1 where none of the homogeneous
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coordinates u1, . . . , uk vanish and let x be the point [1 : · · · : 1]. X is path-connected
and the restriction cn : X → X is a Galois unbranched covering map. The group
π1(X,x) is generated by the homotopy classes gs of the loops

γs :

{
[0, 2π] −→ X
t 7−→ [1 : · · · : 1 : eit : 1 : · · · : 1]

for 1 ≤ s ≤ k. Note that the loop γs consists in a turn around a hyperplane of the
arrangement. The lift γ̃s of γs satisfying γ̃s(0) = x is

γ̃s :

{
[0, 2π] −→ X

t 7−→ [1 : · · · : 1 : ei
t
n : 1 : · · · : 1]

so that the morphism αx : π1(X,x)→ Aut(cn) satisfies αx(gs) = αs for 1 ≤ s ≤ k.
Note that αx(gs) depends only on the hyperplane Ds around which the loop turns
and the numer of turns, but not the choice of the loop.

References

[1] D. Jr Burns and S. Shnider. Spherical hypersurfaces in complex manifolds.
Inv. Math., 33:223–246, 1976.

[2] E. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de deux vari-
ables complexes. I. Ann. Math. Pura. Appl., 11:17–90, 1932.

[3] Andrew J. Casson and Steven A. Bleiler. Automorphisms of surfaces after
Nielsen and Thurston., volume 9. Cambridge (UK) etc.: Cambridge University
Press, 1988.

[4] Ruben Dashyan. Representations of fundamental groups in hyperbolic geometry.
Theses, Université Pierre et Marie Curie - Paris VI, November 2017.

[5] Martin Deraux and Elisha Falbel. Complex hyperbolic geometry of the figure-
eight knot. Geom. Topol., 19(1):237–293, 2015.

[6] Igor Dolgachev. Lectures on invariant theory. Cambridge: Cambridge Univer-
sity Press, 2003.

[7] Elisha Falbel. A spherical CR structure on the complement of the figure eight
knot with discrete holonomy. J. Differ. Geom., 79(1):69–110, 2008.

[8] Elisha Falbel and Jieyan Wang. Branched spherical CR structures on the
complement of the figure-eight knot. Mich. Math. J., 63(3):635–667, 2014.

[9] Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton,
NJ: Princeton University Press, 2011.

[10] Albert Fathi, François Laudenbach, and Valentin Poénaru. Travaux de
Thurston sur les surfaces. Séminaire Orsay. 2nd ed. Centre National de la
Recherche Scientifique. Astérisque, 66-67. Paris: Société Mathématique de
France. 286 p. $ 41.00; FF 230.00 (1991), 1991.

39



[11] Friedrich Hirzebruch. Arrangements of lines and algebraic surfaces. Arithmetic
and geometry, Pap. dedic. I. R. Shafarevich, Vol. II: Geometry, Prog. Math.
36, 113-140 (1983), 1983.

[12] Curtis T. McMullen. Braid groups and Hodge theory. Math. Ann., 355(3):893–
946, 2013.

[13] Yoichi Miyaoka. Algebraic surfaces with positive indices. Classification of
algebraic and analytic manifolds, Proc. Symp. Katata/Jap. 1982, Prog. Math.
39, 281-301 (1983), 1983.

[14] Makoto Namba. Branched coverings and algebraic functions. Harlow: Longman
Scientific & Technical; New York: John Wiley & Sons Ltd, 1987.

[15] Jean-Pierre Otal. Le théorème d’hyperbolisation pour les variétés fibrées de
dimension 3. Paris: Société Mathématique de France, 1996.

[16] John R. Parker. Complex hyperbolic lattices. In Discrete groups and geometric
structures. Proceedings of the 5th workshop on discrete groups and geometric
structures, with applications III, Kortrijk, Belgium, May 26–30, 2008, pages
1–42. Providence, RI: American Mathematical Society (AMS), 2009.

[17] William P. Thurston. On the geometry and dynamics of diffeomorphisms of
surfaces. Bull. Am. Math. Soc., New Ser., 19(2):417–431, 1988.

[18] Paula Tretkoff. Complex ball quotients and line arrangements in the projective
plane. With an appendix by Hans-Christoph Im Hof. Princeton, NJ: Princeton
University Press, 2016.

[19] Tadashi Yamazaki and Masaaki Yoshida. On Hirzebruch’s examples of surfaces
with c2

1 = 3c2. Math. Ann., 266:421–431, 1984.

40


