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Secure interval observer for linear continuous-time
systems with discrete measurements subject to

cyber-attacks

Djahid Rabehi, Nacim Meslem and Nacim Ramdani

Abstract

This paper addresses the design of a secure interval state estimator for linear continuous-time systems in the
bounded error context with discrete-time measurements subject to external attacks. The attacker capabilities are
assumed limited in the sense that only a subset of all the sensors can be attacked although this subset is unknown.
For a given upper bound on the number of attacked sensors, we propose a new selection strategy, which is able
to achieve resiliency to attacks, using the width of estimated intervals. The interval observer is modelled as an
impulsive system, where impulsive corrections are made periodically using measurement. The nonnegativity of
the observation error between two successive measurements is preserved by applying the internal positivity of the
system. The theoretical result is supported by numerical simulations.

Index Terms

Secure estimation, Interval observers, LTI systems, sparse output measurements, cyber-physical systems.

I. INTRODUCTION

Cyber-physical systems (CPS) are integrations of computation, networking, and physical processes [1].
Due to the cyber-physical coupling and to the disrupting consequences of failures, security here is one of
the primary concerns [2]. The problem of security is not new to the control systems field, particularly in the
area of fault detection and identification (FDI) [3]. Recent works on the cyber security of control systems
have been focused, in part, on the effect of specific types of attacks on stability and/or estimation, such
that false data injection attacks [4], denial-of-service attacks [5] and integrity attacks [6], or, in general,
to any adversarial attacks [7], [8], which is the case of our work.

This paper addresses the design of an interval state observer, in a sense to be defined later, for a linear
time-invariant plant in presence of periodic discrete measurements affected by unknown-but-bounded noise
with known bounds and subject to cyber-attacks (probably unbounded).

Interval observers are guaranteed state estimators in the sense that the existence of a solution can
be verified and no solution can be lost. These observers have been introduced in [9] for continuous-
time systems and extended to several classes of systems under the bounded-error framework (see the
survey [10]). Basically, interval observers compute trajectory tubes that are proven to contain the plant
state trajectory while taking into account all uncertainties and disturbances acting on the plant and the
measurements. The design of interval observers must ensure by construction the nonnegativity of the
estimation error and its stability as well.

To be able to reconstruct a guaranteed state enclosure of the actual state for continuous-time linear
systems in presence of discrete-time measurement, we propose an interval impulsive observer. The
impulsive behavior is the result of the discrete nature of the measurements. In between two consecutive
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measurement instants, the observer behaves as a predictor based only on the evolution model. Then, at
the measurement instant, an impulsive correction adjusts the interval estimate.

The assumed scenario in this paper considers a continuous LTI system with s outputs, each measured by
a potentially attacked sensor, under the assumption that only a subset S of sa sensors are attacked such that
s > 2sa. This condition is issued from the M-observability [8] and the s-sparse observability [11]. Based
on this assumption, at correction times, we provide as many interval estimates as sensors, then we select
the attack-free estimate by a proposed attack-resilient strategy using interval analysis and the positivity of
the interval estimation error. The proposed strategy is an online algorithm while the synthesis procedure
that tunes the observation gain to ensure both positivity and stability of the estimation error is offline. The
stability analysis of the estimation error is inspired by the work [12] while the positivity of the estimation
error is ensured based on the internal positivity for dynamical systems as in [13], [14] with taking into
account the attack influence. Then, the effect of the attacks is treated by an online set-membership strategy.

The novelty of this paper is twofold: First, a new LMI-design methodology of the observer gain in
presence of discrete-time measurements is proposed, that guarantees both positivity and stability of the
interval estimation error. Second, a new sensor attack-resilient strategy that selects online at measurements
times the correct estimate among a set of estimates from the set of sensors under attacks.

The paper is organized as follows. Preliminaries are given in Section II. The investigated problem is
stated in Section III. The structure of the proposed interval impulsive observer is introduced in Section IV.
The observer design method is presented in Section V. The attack-resilient strategy is detailed in Section
VI. Numerical illustrative examples are presented in Section VII.

II. PRELIMINARIES

The set R, R≥ and N are the set of real scalars, positive real scalars and nonnegative integers including
zero, respectively. The induced matrix norm for a matrix A ∈ Rn×n will be denoted as || · ||. Any p×m
matrix whose elements are all ones or zeros are simply denoted by 1p,m or 0, respectively. Ip denotes the
identity matrix in Rp×p. Throughout this paper the inequality A≥ B must be understood element-wise, for
matrices as well as for vectors. M = max{A,B} is the matrix where each entry is mi, j = max{ai, j,bi, j}.
Let us define A+ = max{A,0}, A− = A+−A; thus, |A| = A++A− denotes the element-wise absolute
value matrix. A matrix M ∈ Rn×n is said to be Metzler if all its off-diagonal entries are nonnegative.
A matrix M is an M-matrix if all of its off-diagonal elements are nonpositive and all of its diagonal
elements are positive. A matrix P ∈Rn×n is said to be negative definite if υT Pυ < 0 ∀υ ∈Rn \{0} and it
is denoted by P≺ 0. The distance of x ∈ Rn to the closed set A ⊂ Rn is denoted as |x|A and is defined
by |x|A := infy∈A |x− y|. If I is a set, card{I } is the cardinality of S . For two vectors x1,x2 ∈ Rn

such that x1 ≤ x2, the interval int(x1,x2) is the set of admissible values bounded by the vectors x1 and x2.

A. Definitions
A function α : R≥→ R≥ belongs to class-K (α ∈K ) if it is continuous, zero at zero, and strictly

increasing. It belongs to class-K∞ (α ∈K∞) if, in addition, it is unbounded. A function β : R≥×R≥→
R≥ belongs to class-K L (β ∈K L ) if it satisfies: (i) for each t ≥ 0, β (·, t) is non-decreasing and
lims↘0 β (s, t) = 0, and (ii) for each s≥ 0, β (s, ·) is non-increasing and limt→∞ β (s, t) = 0.

In this paper we model the impulsive behaviour of the estimation error as a hybrid system. We consider
the following formalism of hybrid systems introduced in [15]

ẋ = F (x) x ∈ C , x+ = G (x) x ∈D , (1)

where x ∈Rn is the state. F , C , G and D are the flow map, the flow set, the jump map and the jump set,
respectively. F and C are supposed to be continuous, G and D are closed sets. The solutions to system
(1) are defined on so-called hybrid time domains.



Definition 1 (Cooperative dynamics). A continuous-time linear system ẋ(t) = Ax(t) (discrete-time linear
system x(t +1) = Ax(t)), with the state x ∈ Rn and A ∈ Rn×n, is said to be cooperative if A is a Metzler
(Nonnegative) matrix.

The solutions of cooperative autonomous systems, initiated at x(t0)≥ 0, stay nonnegative: x(t)≥ 0 for
all t ≥ t0.

III. PROBLEM STATEMENT

Consider the multi-output linear time invariant system of the form{
ẋ(t) = Ax(t)+Bu(t)

yσ (tk) =Cσ x(tk)+ vσ (tk)+aσ (tk),
∀t ∈ [tk, tk+1]

∀k ∈ N,σ ∈I
(2)

where I = {1, . . . ,s} such that s is the number of sensors. x∈Rn, u∈Rm and yσ ∈R is the state variables,
the input, the discrete output of the system, respectively. vσ ∈ R and aσ ∈ R represent the output sensor
noise and sensor attack, respectively. The goal is to provide a secure estimate of the system state from
noisy discrete measurements and under sensors attack. To reach this objective, we propose a two-stage
policy:

a) First: We design an interval impulsive observer for each output yσ separately with σ ∈I in the
absence of attacks. To simplify notation we drop the subscript σ in this section and the next one. So, the
system (2) without attack will be in the following form{

ẋ(t) = Ax(t)+Bu(t)
y(tk) =Cx(tk)+ v(tk),

∀t ∈ [tk, tk+1] k ∈ N, (3)

In this step, we design as many observers as outputs.
b) Second: After designing observers for every output without attack, we propose a strategy based

on interval analysis to recover the state estimate against the sensors attacks in (2) based on the following
assumption.

Assumption 1. The number of attacked sensors denoted by sa is strictly lower than the half of the total
number of sensors s without knowing which sensors are attacked (i.e., sa < s/2).

This assumption is the main condition for the M-observability for continuous-time systems [8] and
s-sparse observability for discrete-time systems [11].

IV. INTERVAL IMPULSIVE OBSERVER ANALYSIS

The observer is constructed to estimate the continuous state of the system from discrete measurements.
To this aim, it is assumed that there exists a constant period of time between two consecutive measurement
instants as follows.

Assumption 2. Let τm be a real positive scalars satisfying

tk+1− tk = τm ∀k ∈ N.

The goal of interval observers is to estimate an upper and a lower bound of the system state while
ensuring the convergence of the estimation error. To do so, let first introduce an assumption on the
boundedness of the measurement noise.

Assumption 3. Let v ∈ R be a given positive constant such that

|v(t)| ≤ v ∀t ∈ R≥.

The interval observer that we propose for system (3) works with two steps;



First step: the interval observer in-between two successive measurement instants behaves like an open-
loop estimator as follows{

ẋ(t) = AMx(t)−ANx(t)+Bu(t),

ẋ(t) = AMx(t)−ANx(t)+Bu(t)
∀t ∈ [tk, tk+1],k ∈ N (4)

where AM = dA +(A− dA)
+ and AN = AM−A with dA is a diagonal matrix contains only the diagonal

elements of A. In addition, the interval observer initial state at k = 0, i.e. at t0, satisfies the inclusion

x(t0)≤ x(t0)≤ x(t0). (5)

The estimation errors dynamics over the inter-measurement time for both bounds e(t) = x(t)− x(t) and
e(t) = x(t)− x(t) can be obtained from equations (3) and (4) by[

ė(t)
ė(t)

]
= A

[
e(t)
e(t)

]
,∀t ∈ [tk, tk+1] k ∈ N (6)

with A =

[
AM AN

AN AM

]
.

Note that, based on the construction of the matrices AM and AN as Metzler and nonnegative matrices,
respectively, the matrix A is Metzler. Then, the solution to (6) is nonnegative which means that the lower
and the upper bounds do not cross each other in the time interval [tk, tk+1] provided that their initial
conditions satisfy the inclusion x(tk)≤ x(tk)≤ x(tk).

Second step: using the output model in (3), the system state at the measurement time instants can be
presented as

x(t+k ) = x(tk)+L•[Cx(tk)+ v(tk)− y(tk)] k ∈ N (7)

with L• ∈ {L,L}, where L, L ∈ Rn×1 are observer gains to be designed for the lower and upper bound
estimate, respectively.

Equation (7) helps establishing the discrete-time dynamics of the estimation error which is used only
for synthesis phase. When the measurement is available, an impulsive correction of the estimated state
enclosures will be done using the following correction equations

k ∈ N,


x(t+k ) = (In +LC)+x(tk)− (In +LC)−x(tk)

−|L|v−Ly(tk)
x(t+k ) = (In +LC)+x(tk)− (In +LC)−x(tk)

+ |L|v−Ly(tk)

(8)

From (8) and (7), the estimation error dynamics at measurement instants can be described by the following
dynamical system [

e(t+k )
e(t+k )

]
= Γ(L,L)

[
e(tk)
e(tk)

]
+ϒ(tk) (9)

where Γ(L,L) =
[
(In +LC)+ (In +LC)−

(In +LC)− (In +LC)+

]
;ϒ(tk) =

[
|L|v+Lv(tk)
|L|v−Lv(tk)

]
. The

positivity property of the reset matrix allows to preserve the order relation x(t) ≤ x(t) ≤ x(t) after
experiencing the reset (for more details about IPR for linear systems, see [14]).



Let us now consider the augmented vector of the interval estimation error as ξ = [e>,e>]>. From
equations (6) and (9), and after adding the time variable τ , the hybrid system modeling the dynamics of
the estimation error is given by

H :


f (z) =

[
Aξ

−1

]
∀z ∈ C

g(z) =
[

Γ(L,L)ξ +ϒ(tk)
τm

]
∀z ∈D

(10)

where z = [ξ>,τ]> is the state variable of the hybrid system, τm is the reset value of the timer based on
Assumption 2.

The flow and jump sets are defined as

C =
{
(ξ ,τ) ∈ R2n×R≥ | τ ∈ [0,τm]

}
D =

{
(ξ ,τ) ∈ R2n×R≥ | τ = 0

}
.

(11)

It is worth noting that these sets do not force the system to jump until the timer violates the zero, then
after the jump, the timer τ is reset to τm.

The convergence of the variable z will make use of the notion of distance to a set. Thus, with mild
conditions, the stability analysis is straightforward under the hybrid system framework [15].

Let us define the closed set A that contains all admissible values for the timer when the ξ−system
state is at the origin

A =
{

z = (ξ ,τ) ∈ R2n×R≥ | ξ = 0,τ ∈ [0,τm]
}
. (12)

Remark 1. The hybrid system (10) can be considered for the case of perfect measurement by omitting
the term ϒ(tk).

We characterize the domain of solutions of (10) when ϒ(tk) = 0. Indeed, the variable τ , acting as a
timer, guarantees that for every initial condition φ(0,0) ∈ C ∪D , the domain of every maximal solution
φ to (10) when ϒ(tk) = 0 can be written as follows:

domφ =
⋃
j∈N

([t j, t j+1], j)

with t j+1− t j = τm, ∀ j ∈ N\{0}. Furthermore, assuming t0 = 0, the structure of the above hybrid time
domain implies that for each (t, j) ∈ domφ we have t ≤ τm( j+1). The latter relation will play a key role
in establishing global exponential stability (GES) of the set A for hybrid system (10) when ϒ(tk) = 0.

The idea of the stability proof in the following theorem is from [15, Proposition 3.29]. It allows for
the Lyapunov function to increase locally, then, this increase is compensated by instantaneous decrease
at jumps which renders the overall hybrid dynamics stable.

Theorem 1. Let Assumption 2 and 3 hold. For given gain matrices L, L∈Rn×1, if there exists a symmetric
positive definite matrix P ∈ R2n×2n such that

Γ(L,L)>eA>τmPeAτmΓ(L,L)−P≺ 0 (13)

is satisfied, then the hybrid system (10)-(11) is Input-to-State-Stable (ISS) with respect to the set A defined
in (12). Thus, the system defined by Eq. (4) and (8) is an interval observer for the system (3) with ISS
estimation error relatively to A provided that x(t0)≤ x(t0)≤ x(t0). Moreover, if v(tk) = 0 ∀k ∈ N in (3),
then the interval observer defined by Eq. (4) and (8) for the system (3) has a globally exponentially stable
(GES) estimation error relatively to A .

The proof has been omitted due to lack of space.



Remark 2. A necessary condition on the existence of observers for the system (3) is the observability of
the pair (eAτm,CeAτm). More details can be found in [16].

So far, a verification method has been given. The synthesis of the observation gains L, L cannot be
achieved using convex solvers (CS) due to the decomposition of (In +L•C). However, using the positive
realization of these matrices, the synthesis is still possible using CS. In the following section, we propose
a synthesis methodology.

V. SYNTHESIS METHOD

In this section, we propose a new design methodology as second contribution of this paper. We will
show how to design the observer gain based on positive system theory.

A. Positive realization based synthesis
Let us now re-consider the generic reset equation of the system state at measurement instant in (7). By

introducing G = [I +LC] and G = [I +LC], we can rewrite

x(t+k ) = G•x(tk)+L•[v(tk)− y(tk)]
= (G•+−G•−)x(tk)+L•[v(tk)− y(tk)] k ∈ N

(14)

where G•+ and −G•− are the positive and the negative part of the matrix G• ∈ {G, G}, respectively.
Let us note that for any positive matrices Gp, Gn, Gp, Gn ∈ Rn×n

≥ satisfying G = Gp−Gn and G =

Gp−Gn there exist ∆, ∆ ∈ Rn×n
≥ such that

G• = (G•++∆
•)− (G•−+∆

•) (15)

that is, the matrices G•p and G•n are any positive realization of the matrices G•+ and G•−, respectively.
Under the positive realization of the reset matrix G, the reset equation of the estimation error (9) can be
generalized by the following difference equation[

e(t+k )
e(t+k )

]
= Γ(G•p,G

•
n)

[
e(tk)
e(tk)

]
+ϒ(tk) (16)

where Γ(G•p,G
•
n) =

[
Gp Gn
Gn Gp

]
Therefore, the idea for the synthesis is to calculate numerically the positive matrices G•p and G•n that

satisfy the stability conditions. Then, one can compute directly the matrices G•+ and G•− from the relation
G• = G•p−G•n.

Using Γ(G•p,G
•
n) instead of Γ(L,L) in inequality (13), the gain synthesis can now be performed by

finding solution {P,Gp,Gn,Gp,Gn,L, L,} to the following feasibility problem

Φ(P,G•p,G
•
n)≺ 0 , (17a)

In +LC = Gp−Gn , (17b)

In +LC = Gp−Gn , (17c)
Gp ≥ 0, Gn ≥ 0 , (17d)

Gp ≥ 0, Gn ≥ 0 , (17e)
P� 0 (17f)

where Φ(P,G•p,G
•
n)=Γ(G•p,G

•
n)
>eA>τmPeAτmΓ(G•p,G

•
n)−P. From equation (15) and based on the definition

of the positive matrices G•+ and G•− and their positive realization G•p and G•n, respectively, the reset



equation (16) can be seen as a positive discrete time system whose state matrix is perturbed by a
nonnegative matrix as follows

Γ(G•p,G
•
n) = Γ(L,L)+

[
∆ ∆

∆ ∆

]
(18)

Remark 3. Since the matrices ∆• are nonnegative which implies that
[

∆ ∆

∆ ∆

]
is also nonnegative, it

is always possible to enhance the interval observer dynamics at jumps in (16) by reducing the matrix
Γ(G•p,G

•
n) in (18) to its optimal realization Γ(L,L).

B. Design procedure
The semi-definite programming (SDP) (17) is subjected to a Nonlinear Matrix inequality, which is

hard to solve. The constraint Φ≺ 0 can be relaxed to a Linear Matrix Inequality (LMI) in the following
Corollary. This relaxed constraints rely also on M-matrices which have inverses that are nonnegative
matrices [17, Chapter 6].

Corollary 2. Let Assumption 2 and 3 hold. If there exist nonnegative matrices U p,Un,U p,Un ∈ Rn×n,
M-matrices F1,F2 ∈ R2n×2n and two matrices X ,X ∈ Rn×1 such that the constraints[

eA>τmPeAτm−F−F> U
? −P

]
≺ 0 , (19a)

F1 +XC =U p−Un , (19b)

F2 +XC =U p−Un , (19c)

with U =

[
U p Un
Un U p

]
, F =

[
F1 0
0 F2

]
, are feasible, then the interval observer of the form (4), (5) and (8)

with gains L = F−1
1 X, L = F−1

2 X for the system (resp. noise-free system) (3) has an ISS (resp. a GES)
estimation error w.r.t. the set A .

The proof has been omitted due to lack of space.

VI. ONLINE OBSERVER SELECTION STRATEGY

So far, we have designed an interval observer for each sensor under the assumption of attack-free
sensors. Now, we return to the initial problem where an unknown subset of sensors in (2) are under
attack. This subset is defined as S ⊂ I with card(S) = sa. The complement set of S relatively to I is
Sc = I \S such that aσ (tk) = 0 if σ ∈ Sc. Based on this assumption, there exist at least s− sa attack-free
sensors that can provide the correct estimate. The idea of the proposed selection strategy is from s sensors
select a combination of s− sa sensors and check their intersection using interval analysis. Thus, the number

of combinations of sensors sets in which only one set contains attack-free sensors is Nb =
( s

s− sa

)
.

Definition 2. A sensor attack aσ is called distinguishable if the attacked estimates (x+σ (aσ ),x+σ (aσ )) and
the free-attack estimates (x+σ (aσ ,0),x+σ (aσ ,0)) satisfy

int(x+σ (aσ ),x+σ (aσ ))∩ int(x+σ (aσ ,0),x+σ (aσ ,0)) = /0

where aσ 6= 0 and aσ ,0 = 0.

Remark 4. By nonnegativity argument of the interval estimation errors, the estimate enclosures from attack-
free sensors always intersect. Based on Assumption 1, if there exist sa attacked sensors with distinguishable
attacks s.t. s

2−1≤ sa <
s
2 , then there exists only one set of s− sa free sensors whose all interval estimates



intersect. This makes the main idea of the proposed attack-resilient strategy in Algorithm 1. In the general
case where the sa sensors are not fully attacked, there exist at least one set of s− sa free sensors whose
all interval estimates intersect.

Discussion of Algorithm 1: In this algorithm, we assume that all attacks are distinguishable. The
algorithm receives corrections from s sensors. The combination of estimated intervals to be tested is
calculated offline based on the knowledge of the number of attacked sensors sa. We define Σ as the family
of sets Sc ⊂I such that card(Sc) = s− sa.

For instance, If we have a system with s= 5 sensors in which sa = 2 attacked sensors, then we have I =
{1,2,3,4,5} and Nb = 10 combination of sets as Sc ∈Σ= {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},
{2,3,4},{2,4,5},{2,3,5},{3,4,5}}. Thus, there exists at least one set with attack-free sensors.
• In line 1 - line 6, we compute the intersection of interval estimates (x+σ ,x

+
σ ) ∀σ ∈ Sc. This procedure

is repeated for each combination set Sc ⊂I with card(Sc) = s− sa for a total of Nb combinations.
• In line 7, we select only sets whose estimates intersect by checking the zero−norm of the vector

WSc . If any vector WSc has a zero element, then its zero−norm is less than n. Thus, its corresponding
set Sc is excluded from Σ∩.

• In line 8, we select the set Sc which has the minimum of intersection of estimates. This step is
only executed in the case when the actual number of attacked sensors is less than sa which is
only an upper bound on the number of attacked sensors. By recalling the above example, if the
number of actual attacked sensors is exactly sa = 2, to illustrate let suppose that the set of attacked
sensors is S = {1,2}, then the sets with attack-free sensor are only Sc = {3,4,5}. Hence, we have
Σ∗∩ = Σ∩ = Sc. Contrariwise, if the set of attacked sensors is S = {1}, then the sets with attack-free
sensor are Sc ∈ {{2,3,4},{2,4,5}, {2,3,5},{3,4,5}}. In this case we need to find the best set by
selecting the one with the minimum intersection.

• In line 9, we select the tightest estimate.

Algorithm 1: Selection Strategy for attack-free estimate
Input : Correction using s sensors (x+σ ,x

+
σ ) = Jump(xσ ,xσ ) σ ∈I

Number of sensor combination Nb
Output: Selection of the attack-resilient correction (x+

σ∗ ,x
+
σ∗)

1 for i = 1 to Nb do
2 Sc ∈ Σ ;
3 πSc := {x+σ |σ ∈ Sc};
4 πSc := {x+σ |σ ∈ Sc};
5 WSc := max

[
0,min(πSc)−max(πSc)

]
;

6 end
7 Define the sets of intersected estimates Σ∩ := {Sc ∈ Σ : ||WSc ||0 = n } ;
8 Select the set with minimum width of intersection Σ∗∩;
9 The best estimate σ∗ := argmax

σ∈Sc,Sc∈Σ∗∩

||WSc− (x+σ − x+σ )||2 ;

VII. ILLUSTRATIVE EXAMPLES

In order to illustrate the performance of the proposed observer, we consider the following examples.
Example 1: Unmanned Ground Vehicle (UGV) system borrowed from [18] and [11]:[

ẋ1
ẋ2

]
=

[
0 1
0 − b

m

][
x1
x2

]
+

[
0
1
m

]
F
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Figure 1. Simulation results for the UGV system: the attack-resilient estimate bounds for the position (top), and velocity (bottom).

where x1(t) and x2(t) are the UGV position and the linear velocity, respectively. m and b are the mechanical
mass and the translational friction coefficient, respectively. The input to the UGV is the force F . The UGV
is equipped with 3 GPS sensors, which measure its position in discrete times. The considered outputs are
∀σ ∈ I = {1,2,3}, yσ (tk) = Cσ x(tk)+ vσ (tk)+ aσ (tk), with C1 = C2 = C3 = [1 0], where aσ (tk) are
attack signals. vσ (tk) are measurement noises. In our experiments, the parameters are specified as m = 0.8
and b = 1, the measurement period tk+1−tk = τm = 0.5. We have the number of sensors s = card{I }= 3,
thus the maximum attacked sensors is sa = 1 < s

2 .
The observability of the pairs (eAτm ,CeAτm) ∀σ ∈ I are satisfied. To synthesize our set of interval

observers, we solve the design problem in Corollary 2 only once due to the fact that C =C1 =C2 =C3.
The constraints (19) are solved using the YALMIP toolbox [19] based on the SDPT3 solver. The obtained
observer gains are as follows L1 = L2 = L3 = [−1 0.0006]> and L1 = L2 = L3 = [−1 0.0002]>.

The number of combinations is Nb = 3 with the sets of possible attacked sensors are S∈ {{1},{2},{3}}
their complement are Sc ∈ {{1,2},{2,3},{1,3}}. In sets Sc there exists only one set with attack-free
sensors. Our proposed selection strategy in Algorithm 1 selects the set Sc whose sensors provide the
intersected interval estimates, then in the selected set, the best estimate is selected based on the criterion
of line 9 in Algorithm 1.

For simulation, the output noise is vσ (tk) = cos(2tk) ≤ vσ = 1 ∀σ , and F = 10(sin(10t)+ cos(40t)).
The attack is simulated as [a1(tk) a2(tk) a3(tk)]> = [0 0 0]>∀tk < 1.5s and [a1(tk) a2(tk) a3(tk)]> =
[0 0 −20]>∀tk ≥ 1.5s

The simulation results are given in Figure 1 and 2. In Figure 1, the attack-free estimate bounds are
selected by Algorithm 1, which guarantees the nonnegativity of the estimation errors. It is noticeable that
the jump part of the interval impulsive observer contracts significantly the estimation errors comparing to
the open-loop estimation. In Figure 2, it is shown how the attacked position estimate behaves comparing
to the attack-resilient one.

The UGV systems in Example 1 is a cooperative system. In order to show the efficiency of the proposed
method, we apply it on a non-cooperative system in the following.

Example 2: Academic system (Non-cooperative system) Let us consider the following system[
ẋ1
ẋ2

]
=

[
0 1
−1 −1

][
x1
x2

]
+

[
1
1

]
u
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Figure 2. Position estimate bounds (·)∗ selected by Algorithm 1 and the attacked position.
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Figure 3. Simulation result for the academic system: the estimate bounds for the states x1 (top) and x2 (bottom), both attack-resilient estimate
(dashed line) and attacked one (dotted line).

the outputs have the same form of (2) with C1 = [2 0], C2 = [1 0] and C3 = [3 0] which satisfy
the observability condition in Remark 2. We solve the design problem in Corollary 2 for each output
matrix (∀σ ∈ I ) separately by picking C = Cσ . The designed observation gains are obtained as L1 =[
−0.5 0.0004

]>
, L2 =

[
−1 0.0007

]>
, L3 =

[
−0.3333 0.0001

]>
, L1 =

[
−0.5 0.0002

]>
, L2 =[

−1 0.0001
]>

, L3 =
[
−0.3333 0.0002

]>
. For brevity of presentation, we use the same condition of

simulation of Example 1 with u = F . The simulation results are given in Figure 3. In Figure 3, it is clear
that the observer whose sensor is under attack provides erroneous estimate bounds. On the other side, our
proposed algorithm is able to provide correct estimate bounds from the set of sensors under cyber-attack.

VIII. CONCLUSIONS

In the paper, a new approach to design interval impulsive observers for linear continuous-time systems
with discrete measurement has been introduced. Exploring the positivity of the interval estimation errors,
a new strategy for sensor attack-resilient state estimation has been proposed. The synthesis of the obser-
vation gains is performed using LMIs. The proposed approach has relaxed the continuity assumption of



measurement in [8] while ensuring a continuous estimate. Simulation examples show the efficiency of the
proposed secure estimation approach for a class of linear systems.
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