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Abstract: Comparing experimental results on the shear capacity of steel fiber-reinforced concrete (SFRC) beams 

without mild steel stirrups, to the ones predicted by current design equations and other available formulations, 

still shows significant differences. In this paper we propose the use of artificial intelligence to estimate the shear 

capacity of these members. A database of 430 test results reported in the literature is used to develop an artificial 

neural network-based formula that predicts the shear capacity of SFRC beams without shear reinforcement. The 

proposed model yields maximum and mean relative errors of 0.0% for the 430 data points, which represents a 

better prediction (mean Vtest / VANN = 1.00 with a coefficient of variation of 1× 10-15) than the existing expressions, 

where the best model yields a mean value of Vtest / Vpred = 1.01 and a coefficient of variation of 27%. 
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Important Note: The first author has been proposing several ANN-based models, in each case designed and tested for a fairly limited amount 

of data (especially when empirical). Regardless the high quality of the predictions yielded by each model, for the aforementioned data, the 

reader should not blindly accept that model as accurate for any other instances falling inside the input domain of the design dataset. Any 

analytical approximation model must undergo extensive validation before it can be taken as reliable (the more inputs, the larger the validation 

process). Models proposed until that stage are part of a learning process that feeds each scientist’s mind towards excellence. 

 

 

1. Introduction 

Since concrete is strong in compression but weak in tension, adding steel fibers to the 

material can be a solution to the limited strength in tension – they keep crack widths small 

(Amin et al. 2016). In structural applications, steel fiber-reinforced concrete is combined with 

regular steel reinforcement. 
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A failure mode where crack shape and width are key factors is shear failure. When steel 

fibers are added to a concrete mix, all shear-carrying mechanisms are affected (Lantsoght 

2019a). Those mechanics are still not fully understood, which makes it quite meaningful to 

research the behavior of steel fiber-reinforced concrete (SFRC) with longitudinal 

reinforcement and no stirrups. Such an approach can study the contribution of steel fibers to 

the shear capacity of structural concrete (e.g., Torres and Lantsoght 2019), and optimal 

combinations of steel fiber reinforcement and regular stirrups can be searched. Such 

combinations are particularly useful for (i) joints where rebar congestion makes concreting 

difficult (Singh and Jain 2014), and (ii) bridge girders where the addition of steel fibers can 

lead to a more durable structure, since cracks will be less wide and more distributed.  

Even though the mechanics of the shear resistance of SFRC is not fully understood, several 

formulas are proposed in the literature and current design codes, as described in Lantsoght 2019b. 

In these expressions, the properties of the fibers are usually measured by the fiber factor F= Vf lf ρf 

/ df (Narayanan and Kareem-Palanjian 1984), where Vf is the fiber volume fraction with respect to 

the concrete volume, lf the length of the fiber, df the diameter of the fiber, and ρf the fiber bond 

factor (depends on the fiber type). Lantsoght (2019b) assessed the performance of the 

aforementioned formulas against experimental results reported in the literature, and it was 

concluded that work still needs to be done to effectively predict the shear capacity of SFRC beams 

without stirrups. Note that some of those analytical approaches have been developed by means of 

artificial intelligence (AI) (e.g., Sarveghadi et al. 2015, Greenough and Nehdi 2008, Hossain et al. 

2016, Kara 2013). The differences for the model proposed in this work, also derived from an AI 

technique (called artificial neural network), are the following: (i) the dataset used herein, 

comprising 430 lab tests, is significantly larger than the ones used in the previous studies; (ii) a 

larger number of ANNs were simulated for this work; and (iii) the model proposed in this paper 

yields smaller mean and maximum errors for the aforementioned 430 experimental instances.        

http://doi.org/10.31224/osf.io/aydv8
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2. Data Gathering 

A database comprising 430 test results (outcomes of repeated tests were averaged) reported 

in the literature (see Lantsoght 2019b) was used to feed all ANN models. Tab. 1 shows the 

input and output variables/ranges considered in this study. Geometrical variables include the 

beam width (b) and effective depth (d), and the clear shear span to effective depth ratio (av/d), 

as depicted in Fig. 1. The reinforcement ratio ρ = As / (bd), where As is the rebar area, and the 

steel yield strength (fy), characterize the longitudinal reinforcement. Concrete mix is 

characterized by the maximum aggregate size (da) and the average concrete compressive 

strength (fc,cyl, taken from cylinders). Lastly, the fiber factor (F) described before and the tensile 

strength of the steel fibers (ftenf) were also used as inputs. The output is the sectional shear 

capacity (Vutot) as shown in Fig. (b), which includes the beam self-weight. In total, nine input 

variables and one output variable were adopted. The dataset considered is available in 

Developer (2019a). 

 

Tab.1. Input and output variables considered in the dataset, including ranges of values. 

VARIABLES ANN INPUT Min Max 

Geometry 

b (mm) beam width 1 50 610 

d (mm) beam effective depth 2 85.3 1118 

av/d (-) clear shear span to effective depth ratio 3 0.20 5.95 

Rebar properties 
ρ (-) reinforcement ratio 4 0.0037 0.0572 

fy
 (MPa) yield strength of steel 5 257.9 900 

Concrete properties 
da (mm) maximum aggregate size 6 0.4 22 

fc,cyl (MPa) average concrete compressive strength 7 9.8 215 

Fiber properties 
F (-) fiber factor 8 0.08 2.86 

ftenf
 (MPa) tensile strength of fiber 9 260 4913 

Output Vutot (kN) sectional shear capacity 1 12.89 1480.85 

 

 

The majority of SFRC shear experiments were carried out on heavily longitudinally reinforced 

beams, and small geometries. These large reinforcement ratios are not commonly used in 

practice. Concrete mix features show that both mortars and low to ultra-high strength concretes 

were used. Many fiber types were employed, namely (i) hooked, (ii) crimped, (iii) straight 

http://doi.org/10.31224/osf.io/aydv8
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smooth, (iv) mixed (hooked + straight), (v) with a flat end, (vi) flat, (vii) round , (viii) mill-cut, 

(ix) made of straight mild steel, (x) made of brass-coated high-strength steel, (xi) chopped with 

butt ends, (xii) recycled, and (xiii) corrugated. Most experiments (63%) used hooked-end fibers, 

and in most cases a fiber factor within 0.5-1 was adopted (higher values result in concrete mixes 

with low workability) – for further details on fibers, please check Lantsoght 2019a.   

 

 

Fig. 1. Problem illustration: (a) beam side view, (b) sectional shear diagram, showing maximum value Vutot 

(self-weight included), and (c) beam cross-section. 

 

http://doi.org/10.31224/osf.io/aydv8
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3. Artificial Neural Networks 

3.1 Introduction 

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the 

task of having machines acting humanly could not be accomplished, allows us to ‘teach’ 

computers how to perform tasks by providing examples of how they should be done 

(Hertzmann and Fleet 2012). The decision about which modelling technique to use in an 

arbitrary problem depends primarily on the availability of both the theory explaining the 

underlying phenomena and the data. When there is abundant data (also called examples or 

patterns) explaining a certain phenomenon, but its theory richness is poor, machine learning 

(e.g., Artificial Neural Networks) can be a perfect tool. An illustration of the several possible 

scenarios is presented in Basheer and Hajmeer (2000), as shown in Fig 2 (shadowed areas 

represent regions where any of the contiguous tools might me used).  

 

 

Fig. 2. Suitable modelling techniques as function of theory and data richness (Basheer & Hajmeer 2000). 

 

The world is quietly being reshaped by machine learning, being the Artificial Neural 

Network (also referred in this manuscript as ANN or neural net) its (i) oldest (McCulloch and 

Pitts 1943) and (ii) most powerful (Hern 2016) technique. ANNs also lead the number of 

http://doi.org/10.31224/osf.io/aydv8
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practical applications, virtually covering any field of knowledge (Wilamowski and Irwin 2011, 

Prieto et. al 2016). In its most general form, an ANN is a mathematical model designed to 

perform a particular task, based in the way the human brain processes information, i.e. with the 

help of its processing units (the neurons). ANNs have been employed to perform several types 

of real-world basic tasks. Concerning functional approximation, ANN-based solutions are 

frequently more accurate than those provided by traditional approaches, such as multi-variate 

nonlinear regression, besides not requiring a good knowledge of the function shape being 

modelled (Flood 2008). 

The general ANN structure consists of several nodes disposed in L vertical layers (input 

layer, hidden layers, and output layer) and connected between them, as depicted in Fig. 3. 

Associated to each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer 

(also called activation) function, which receives the so-called net input and transmits an output 

. All ANNs implemented in this work are called feedforward, since data presented in the input 

layer flows in the forward direction only, i.e. every node only connects to nodes belonging to 

layers located at the right-hand-side of its layer, as shown in Fig. 3. ANN’s computing power 

makes them suitable to efficiently solve small to large-scale complex problems.  

 

 

Fig. 3. Example of a feedforward neural network (Haykin 2009). 

http://doi.org/10.31224/osf.io/aydv8
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3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), which, 

together with each neuron’s bias (also a real value), are the most common types of neural net 

unknown parameters that will be determined through learning. Learning is nothing else than 

determining network unknown parameters through some algorithm in order to minimize 

network’s performance measure, typically a function of the difference between predicted and 

target (desired) outputs. When ANN learning has an iterative nature, it consists of three phases: 

(i) training, (ii) validation, and (iii) testing. From previous knowledge, examples or data points 

are selected to train the neural net, grouped in the so-called training dataset. Those examples are 

said to be ‘labelled’ or ‘unlabeled’, whether they consist of inputs paired with their targets, or 

just of the inputs themselves – learning is called supervised (e.g., functional approximation, 

classification) or unsupervised (e.g., clustering), whether data used is labelled or unlabeled, 

respectively. During an iterative learning, while the training dataset is used to tune network 

unknowns, a process of cross-validation takes place by using a set of data completely distinct 

from the training counterpart (the validation dataset), so that the generalization performance of 

the network can be attested. Once ‘optimum’ network parameters are determined, typically 

associated to a minimum of the validation performance curve (called early stop – see Fig. 3 in 

Abambres et al. 2018), many authors still perform a final assessment of model’s accuracy, by 

presenting to it a third fully distinct dataset called ‘testing’. Heuristics suggests that early stopping 

avoids overfitting, i.e. the loss of ANN’s generalization ability. One of the causes of overfitting 

might be learning too many input-target examples suffering from data noise, since the network 

might learn some of its features, which do not belong to the underlying function being modelled 

(Haykin 2009). 

 

3.2.1 The Universal Approximation Theorem 

For a nonlinear input-output mapping, this theorem states (Haykin 2009) that a single hidden 

layer multi-layer perceptron network (MLPN), with (i) any bounded, monotone-increasing and 

continuous activation function for the hidden neurons, and (ii) an identity transfer function for 

http://doi.org/10.31224/osf.io/aydv8
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the output neurons, is sufficient to compute an arbitrarily good approximation of any continuous 

function in a general n-dimensional space – the absolute difference between any estimated and 

target outputs can be less than any ε > 0, for all input space values. However, the theorem does 

not say that the aforementioned network features are optimal in the sense of learning time or 

generalization. 

 

3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’, having been implemented 15 ANN 

features in this work (including data pre/post processing ones). For those features, it is important 

to bear in mind that no ANN guarantees good approximations via extrapolation (either in functional 

approximation or classification problems), i.e. the implemented ANNs should not be applied 

outside the input variable ranges used for network training. Since there are no objective rules 

dictating which method per feature guarantees the best network performance for a specific 

problem, an extensive parametric analysis (composed of nine parametric sub-analyses) was carried 

out to find ‘the optimum’ net design.  A description of all methods/formulations implemented 

for each ANN feature (see Tabs. 2-4) – they are a selection from state of art literature on ANNs, 

including both traditional and promising modern techniques, can be found in previous 

published works (e.g., Abambres and Lantsoght 2018) – the reader might need to go through 

it to fully understand the meaning of all variables and acronyms reported in this manuscript. 

The whole work was coded in MATLAB (The Mathworks, Inc. 2017), making use of its neural 

network toolbox when dealing with popular learning algorithms (1-3 in Tab. 4). Each parametric 

sub-analysis (SA) consists of running all feasible combinations (also called ‘combos’) of pre-

selected methods for each ANN feature, in order to get performance results for each designed net, 

thus allowing the selection of the best ANN according to a certain criterion. The best network in 

each parametric SA is the one exhibiting the smallest average relative error (called performance) 

for all learning data.  

 

http://doi.org/10.31224/osf.io/aydv8
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Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 

Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 

 

Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP - Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 

 

http://doi.org/10.31224/osf.io/aydv8
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With respect to the ANN formulation used in Abambres and Lantsoght (2018), a few 

changes were carried out for this work. They were (i) the elimination of performance 

improvements (feature 14), although that feature is still integrated in the code for eventual 

future use, and (ii) the algorithm used in feature 4. The latter is described next. 

  

3.3.1 Training, Validation and Testing Datasets (feature 4) 

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-10, 70-

15-15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, validation and 

testing examples as % of all learning data (P), respectively. Aiming to divide learning data into 

training, validation and testing subsets according to a predefined distribution pt-pv-ptt, the 

following algorithm was implemented (all variables are involved in these steps, including 

qualitative ones after converted to numeric): 

1) Reduce pt-pv-ptt values by 10 units each. 

2) For each variable q (row) in the complete input dataset, compute its minimum and 

maximum values. 

3) Select all patterns (if some) from the learning dataset where each variable takes either 

its minimum or maximum value. Those patterns must be included in the training dataset, 

regardless what pt is. However, if the number of patterns is lower than the rounding of 

pt * P/100, more patterns should be added to the training set in the following way: 

a. Compute the number of patterns (Lpt) that need to be added to the initially 

selected training patterns to equal round(pt * P/100). 

b. Randomly select 10.000 combinations of Lpt patterns from all those not included 

in the training set defined prior a).  

c. For each combination/scenario in b), add those Lpt patterns to the set of training 

patterns defined prior a), and label all remaining learning patterns as “validation 

+ testing”. 

d. For each scenario in c), and for each pattern labeled as “validation + testing”, 

check if that pattern has at least one input variable that takes a value not taken 

http://doi.org/10.31224/osf.io/aydv8
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by any pattern in the training set. If it hasn´t, then that pattern should be moved 

to the training set. 

e. Among all 10.000 scenarios of training and “validation + testing” subsets 

addressed in b) till d), the “winner” should be the one guaranteeing the amount 

of training data (Pt*) closest to round(pt * P/100). 

f. If the winning training set selected in e) guarantees | Pt* / P - pt | ≤ 0.2, then that 

becomes the training data to be taken for simulation. Otherwise, the training data 

should be selected according to step 2 in subsection 3.3.4 of Abambres et al. 

(2018). 

4) Increase pt-pv-ptt values by 10 units each (to re-obtain the original input values – recall 

step 1). 

5) In order to select the validation patterns, randomly select pv / (pv + ptt) of those patterns 

not belonging to the previously defined training dataset. The remainder defines the 

testing dataset. 

It might happen that the actual distribution pt-pv-ptt to be used in the simulation is not equal 

to the one imposed a priori (before step 1). 

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum 

error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All 

abovementioned errors are relative errors (expressed in %) based on the following definition, 

concerning a single output variable and data pattern, 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (1) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) 

is presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, 

http://doi.org/10.31224/osf.io/aydv8
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denominator in eq. (1) is replaced by 1 whenever |dqp| < 0.05 – dqp in the nominator keeps its 

real value.  This exception to eq. (1) aims to reduce the apparent negative effect of large relative 

errors associated to target values close to zero. Even so, this trick may still lead to (relatively) 

large solution errors while groundbreaking results are depicted as regression plots (target vs. 

predicted outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (1), among all output 

variables and learning patterns. 

 

3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (1), among all 

output variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average 

relative error, as defined in eq. (1), among all output variables and data patterns being evaluated 

(e.g., training, all data).  

 

3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, involving 

low- to high-dimensional problems and small to large volumes of data. Due to paper length limit, 

validation results are not presented herein but they were made public by Researcher (2018). 

Moreover, several papers involving the successful application of this software have already been 

published and can be downloaded here. 

 

http://doi.org/10.31224/osf.io/aydv8
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3.6 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – note that 

all features combined lead to hundreds of millions of combos, the whole parametric simulation was 

divided into nine parametric SAs, where in each one feature 7 only takes a single value. This 

measure aims to make the performance ranking of all combos within each ‘small’ analysis more 

‘reliable’, since results used for comparison are based on target and output datasets as used in ANN 

training and yielded by the designed network, respectively (they are free of any postprocessing that 

eliminates output normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs 

aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a 

single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10: 

1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning algorithms 1-3 

and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs combined all possible methods 

from features 3, 4, 6 and 7, and concerning all other features, adopted the methods integrating the 

best combination from the aforementioned SAs 1-2, (iii) the 8th SA combined all possible methods 

from features 11, 12 and 14, and concerning all other features, adopted the methods integrating the 

best combination (results compared after postprocessing) among the previous five sub-analyses, 

and lastly (iv) the 9th SA combined all possible methods from features 9, 10 and 15, and concerning 

all other features, adopted the methods integrating the best combination from the previous analysis. 

Summing up the ANN feature combinations for all parametric SAs, a total of 475 combos were 

run for this work.   

ANN feature methods used in the best combo from each of the abovementioned nine parametric 

sub-analyses, are specified in Tab. 5 (the numbers represent the method number as in Tabs 2-4). 

Tab. 6 shows the corresponding relevant results for those combos, namely (i) maximum error, (ii) 

% errors > 3%, (iii) performance (all described in section 3, and evaluated for all learning data), 

(iv) total number of hidden nodes in the model, and (v) average computing time per example 

(including data pre- and post-processing). All results shown in Tab. 6 are based on target and output 

datasets computed in their original format, i.e. free of any transformations due to output 

normalization and/or dimensional analysis.  The microprocessor used in this work has the 
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following features: OS: Win10Home 64bits, RAM: 48 GB, Local Disk Memory: 1 TB, CPU: 

Intel® Core™ i7 8700K @ 3.70-4.70 GHz. 

 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 5 7 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 3 7 1 1 1 1 3 2 5 1 3 

3 1 2 1 1 5 3 1 1 1 1 3 2 3 1 3 

4 1 2 6 2 5 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 3 5 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 3 5 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 4 5 7 5 1 1 1 3 2 3 1 3 

8 1 2 6 4 5 7 5 1 1 1 1 5 3 1 3 

9 1 2 6 4 5 7 5 1 3 3 1 5 3 1 3 

 

Tab. 6. Performance results for the best design from each parametric sub-analysis. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 24.2 0.7 5.6 36 1.88E-04 

2 1375.2 21.6 83.7 120 9.96E-05 

3 15.4 0.5 4.0 36 1.31E-04 

4 11.7 0.5 4.0 36 1.14E-04 

5 15.9 0.7 7.0 36 1.06E-04 

6 12.7 0.5 3.0 36 9.58E-05 

7 67.0 5.3 40.0 36 1.07E-04 

8 90.0 4.0 24.0 36 1.10E-04 

9 0.0 0.0 0.0 36 9.72E-05 

 

3.7 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9). That model is characterized by the ANN feature methods {1, 2, 6, 

4, 5, 7, 5, 1, 3, 3, 1, 5, 3, 1, 3} in Tabs. 2-4. Aiming to allow implementation of this model by any 

user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data 
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postprocessing, are presented in 3.7.1-3.7.3, respectively. The proposed model is a single MLPN 

with 5 layers and a distribution of nodes/layer of 9-12-12-12-1. Concerning connectivity, the 

network is fully-connected, and the hidden and output transfer functions are all Logistic and 

Identity, respectively. The network was trained using the Levenberg-Marquardt (LM) algorithm 

(859 epochs). After design, the average network computing time concerning the presentation of a 

single example (including data pre/postprocessing) is 9.72 x 10-5 s – Fig. 4 depicts a simplified 

scheme of some of network key features. Lastly, all relevant performance results concerning the 

proposed ANN are illustrated in 3.7.4. The obtained ANN solution for every data point can be 

found in Developer (2019a), making it possible to compute the exact (with all decimal figures) 

approximation errors. 

 

 

Fig. 4. Proposed 9-12-12-12-1 fully-connected MLPN – simplified scheme. 

 

 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means 

the former is to be added to all columns of the latter (valid in MATLAB). 

 

3.7.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (9 x Psim matrix), concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied to 

the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 

5 (respectively 2, 6 and 5 – see Tab. 2), which should be applied after all (eventual) qualitative 

9 12 12 12 1 
inputs output 

MLPN 

(computing time = 9.72 x 10-5 s/example) 

 

http://doi.org/10.31224/osf.io/aydv8


  
DOI: 10.31224/osf.io/aydv8   

© 2019 by Abambres M, Lantsoght E (CC BY 4.0) 

 

 

 

 

 

 

 
16 

Abambres M, Lantsoght E (2019). ANN-based Shear Capacity of Steel Fiber-Reinforced  

Concrete Beams Without Stirrups. engrXiv (September), doi: 10.31224/osf.io/aydv8 

variables in the input dataset are converted to numerical (using feature 1’s method). Next, the 

necessary preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.  

 
Dimensional Analysis and Dimensionality Reduction 

Since neither dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were not 

carried out, one has 

   1, 1, 1,. . . .
    

after after

sim sim simd r d a
Y Y Y= =  

.   (2) 

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

 

   ( )1, 1, .

149.674651162791 66.7396705241561

262.705930232558 153.595523149765

2.53778427906977 0.958947876821730

0.0244412479069768 0.0104087109797821

480.7890072

INP INP

IN

 =  - (:,1)  ./ (:,2)

P

after after

sim simn d r
Y Y

= 09302 90.8692510105096

11.0945581395349 4.95663746228321

49.7411932558140 26.2694346953084

0.555063267441860 0.364880290571624

1261.49069767442 476.799170124293

     

 
 
 
 
 
 
 
 
 
 
 
 

 

,  (3) 

where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2).  

 

3.7.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (9 x Psim matrix), the next step is 

to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n
after (1 x Psim 
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vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis – the only transformation visible 

will be the (eventual) qualitative variables written in their numeric representation), some 

postprocessing is needed, as described in detail in 3.7.3. Next, the mathematical representation 

of the proposed ANN is given, so that any user can implement it to determine {Y5,sim}n
after

 , thus 

eliminating all rumors that ANNs are ‘black boxes’. 

 

 ( )
 ( )
 ( )

   ( )

1 2

3 1 3

1,

1,

1,

5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,

2 2 2

3 3

4 4

5 5

afterT

n

afterT T

n

after

sim

sim

sim

s

T T T

n

after afterT T T T

ni nm sim

Y W b

Y W W Y b

Y W W Y W Y b

W

Y

W Y W Y

Y

W

Y

Y Y Y b









−

− −

− − −

− − − −

= +

= + +

= + + +

= + + + +

 

, (4) 

where 

2 3 4

5

1
( ) ( ) ( )

1

( )

s
s s s

e

s s

  



−
= = =

+

=

 

.  (5) 

Arrays Wj-s and bs are stored online in Developer (2019b), aiming to avoid an overlong article 

and ease model’s implementation by any interested reader. 

 

3.7.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after (1 x 

Psim vector),  to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or 

output normalization (possibly) taken in target dataset preprocessing prior training, the 

postprocessing addressed next must be performed. 
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Non-normalized (just after dimensional analysis) and Original formats 

Once obtained {Y5,sim}n
after, the following relations hold for its transformation to its non-

normalized and original formats, respectively {𝑌5,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

 and 𝑌5,𝑠𝑖𝑚: 

   5, 5, 5,. .
 =  = 

after

sim sim simd

after

na
Y Y Y  

,   (6) 

since neither output normalization nor dimensional analysis were carried out.  

 

 

 
Fig. 5. Regression plot for the proposed ANN (see output variable in Fig. 1). 

 

3.7.4 Performance Results 

Finally, results yielded by the proposed ANN, in terms of performance variables defined in 

sub-section 3.4, are presented in this section in the form of several graphs: (i) a regression plot 
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(Fig. 5), where network target and output data are plotted for each data point, as x- and y- 

coordinates respectively – a measure of linear correlation is given by the Pearson Correlation 

Coefficient (R); (ii) a performance plot (Fig. 6), where performance (average error) values are 

displayed for several learning datasets; and (iii) an error plot (Fig. 7), where values concern all 

data (iii1) maximum error and (iii2) % of errors greater than 3%. It´s worth highlighting that all 

graphical results just mentioned are based on effective target and output values, i.e. computed 

in their original format (free of any transformations due to output normalization and/or 

dimensional analysis).   

 

 

Fig. 6. Performance plot (mean errors) for the proposed ANN. 
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Fig. 7. Error plot for the proposed ANN. 

 

4. ANN-based vs. Existing Models 

In this section, the performance of the ANN-based model (results available in Developer 

2019a) is compared against existing analytical schemes from the literature (described in 

Lantsoght 2019b), for all 430 examples adopted in this study. The comparison is illustrated 

through two figures, one for models proposed in the scientific literature by other authors (Fig. 

), and another for results from existing design code provisions. Tab. 7 gives the statistical 

results of Vutot/Vpred for all methods, where it´s possible to conclude that the ANN-based model 

significantly improves predictions for the 430 data points. 
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Fig. 8. Comparison (for all 430 data points) between the ANN-based model and existing formulas from the 

literature. 

 

 

 

 

Fig. 9. Comparison (for all 430 data points) between the ANN-based model and currently available code 

provisions. 
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Tab. 7. Statistical properties of Vutot/Vpred for all data points (AVG = average, STD = standard deviation, COV = 

coefficient of variation). 

Model AVG STD COV Min Max 

Sarveghadi et al 1.03 0.29 28% 0.23 2.49 

Kwak et al 1.01 0.28 27% 0.27 2.39 

Greenough and Nehdi 1.34 0.48 36% 0.31 3.11 

Khuntia et al  1.81 0.85 47% 0.18 6.53 

Imam et al 0.97 0.36 37% 0.06 2.51 

Sharma 1.24 0.49 39% 0.18 3.59 

Mansur et al  1.30 0.60 46% 0.15 3.85 

Ashour et al 1 1.08 0.38 35% 0.24 3.14 

Ashour et al 2 1.29 0.37 29% 0.31 3.22 

Arslan et al 1.17 0.37 31% 0.43 3.24 

Yakoub et al 1 1.90 0.76 40% 0.28 7.50 

Yakoub et al 2 2.97 1.37 46% 0.51 17.48 

French code 1.85 0.88 48% 0.22 5.95 

German code 1.12 0.31 27% 0.21 2.13 

fib 1.24 0.36 29% 0.30 2.33 

Rilem 1.16 0.33 29% 0.23 2.28 

ANN (proposed model) 1.00 1.08E-15 1.08E-15 1.00 1.00 

 

5. Conclusions 

This paper shows how artificial neural networks (ANN) can be used to predict the shear 

capacity of steel fiber-reinforced concrete (SFRC) beams without stirrups. For this purpose, a 

database of 430 test results gathered from the literature was adopted. Nine input variables were 

taken to describe the problem, whereas the maximum sectional shear force at collapse 

(including beam self-weight) was the selected target variable. After an extensive ANN-based 

parametric analysis, the resulting ‘optimal’ model yielded maximum and mean relative errors 

of 0.0% for all the 430 data points, which outperforms (for those 430 instances) the currently 

available formulas and code provisions. 

One limitation of this study is that the proposed model can only be used within the variable 

ranges of the dataset. While it covers the practical ranges of all material properties, it does not 
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cover large-sized beams. As such, we recommend the performance of further tests covering the 

missing realistic scenarios, so that more robust and versatile data-driven analytical models 

(based on larger and richer datasets) can be developed. This study has not yet allowed a full 

description of the mechanics underlying the shear behavior of SFRC members without stirrups, 

but parametric studies by means of accurate and robust ANN-based models will facilitate the 

evaluation and improvement of existing and future mechanistic models.    
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