The chemical connection between damped Lyman- α systems and Local Group dwarf galaxies
Résumé
Abundances of the volatile elements S and Zn have now been measured in around 80 individual stars in the Sculptor dwarf spheroidal galaxy, covering the metallicity range - 2.4 ≤ [Fe/H] ≤-0.9. These two elements are of particular interest as they are not depleted onto dust in gas, and their ratio, [S/Zn], has thus commonly been used as a proxy for [α/Fe] in Damped Lyman-α systems (DLAs). The S abundances in Sculptor are similar to other α-elements in this galaxy, consistent with S being mainly created in core-collapse supernovae, but also having some contribution from type Ia supernovae. However, our results show that Zn and Fe do not trace all the same nucleosynthetic production channels. In particular, (contrary to Fe) Zn is not significantly produced by type Ia supernovae. Thus, [S/Zn] cannot be reliably used as a proxy for [α/Fe]. We propose [O/S] as a function of [S/H] as a possible alternative. At higher metallicities, the values of [S/Zn] measured in DLAs are inconsistent with those in local dwarf galaxies, and are more compatible with the Milky Way disk. Low-metallicity DLAs are, however, consistent with the most metal-poor stars in Local Group dwarf spheroidal galaxies. Assuming that the dust depletions of S and Zn are negligible, our comparison indicates that the star formation histories of DLAs are on average different from both the Milky Way and the Sculptor dwarf spheroidal galaxy.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|