Mixed Integer Nonlinear Optimization Models for the Euclidean Steiner Tree Problem in R - Archive ouverte HAL
Article Dans Une Revue Journal of Global Optimization Année : 2021

Mixed Integer Nonlinear Optimization Models for the Euclidean Steiner Tree Problem in R

Hacène Ouzia
  • Fonction : Auteur
  • PersonId : 967999

Résumé

New mixed integer nonlinear optimization models for the Euclidean Steiner tree problem in d-space (with d ≥ 3) will be presented in this work. Each model features a non smooth objective function but a convex set of feasible solutions. All these models are theoretically equivalent. From these models, six mixed integer linear and nonlinear relaxations will be considered. Each relaxation has the same set of feasible solutions as the model from which it is derived. Finally, preliminary computational results highlighting the main features of the presented relaxations will be discussed.
Fichier principal
Vignette du fichier
euclid-steiner-ouzia-maculan.pdf (754.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02293105 , version 1 (20-09-2019)
hal-02293105 , version 2 (23-09-2019)

Identifiants

Citer

Hacène Ouzia, Nelson Maculan. Mixed Integer Nonlinear Optimization Models for the Euclidean Steiner Tree Problem in R. Journal of Global Optimization, 2021, ⟨10.1007/s10898-021-01001-6⟩. ⟨hal-02293105v2⟩
209 Consultations
254 Téléchargements

Altmetric

Partager

More