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Abstract: We propose a new simplified crop irrigation model and study the optimal control
which consists in maximizing the biomass production at harvesting time, under a constraint on
the total amount of water used. Under water scarcity, we show that a strategy with a singular
arc can be better than a simple bang-bang control as commonly used. The gain is illustrated
on numerical simulations. This result is a promising first step towards the application of control
theory to the problem of optimal irrigation scheduling.

Keywords: Crop irrigation, water management, optimal control, state constraint.

1. INTRODUCTION

Irrigation scheduling is the process of defining, at any time
of a crop growing season, the amount of water delivered
using an irrigation system. It is a major crop management
issue in the context of increasing water scarcity. Dynamic
crop growth models can help defining optimal strategies
depending on various criteria (Allen et al., 1998). Several
methodological approaches have been used so far to tackle
the question of model-based irrigation scheduling:

(1) Numerical comparison of a set of predefined irrigation
scenarios (which represent relatively small discrete
sets of possible solutions) using complex simulation
models, see (Saseendran et al., 2008; Vico and Porpo-
rato, 2013; Cheviron et al., 2016) among many others.

(2) Numerical optimization of a parameterized schedul-
ing problem (e.g. optimal 2-events scheduling with
water budget) using complex simulation models (Wen
et al., 2017; Li et al., 2018)

(3) Numerical optimization based on optimal control
theory applied to simplified models (Li et al., 2011;
Ramanathan et al., 2013).

Most existing approaches lack analytical insight on the
theoretical properties of optimal solutions. This is prob-
ably due to the complexity of the global optimization
problem when dealing with detailed simulation models.
However as showed in the work of (Shani et al., 2004), a
deeper analysis on optimal solutions might lead to better
practical guidelines providing that the model accurately
represents crop response to water stress. In this work, in
the spirit (Shani et al., 2004), we introduce a theoretical
model based on the simplification of some existing crop
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models in order to study optimal irrigation scheduling.
We derive a first promising analytical result on this model
and illustrate numerically its implication on the shape of
optimal solutions.

2. THE MODEL

We consider a simplified dynamical model of crop irriga-
tion, inspired from Pelak et al. (2017), where S(t) and B(t)
stand respectively for the relative soil humidity (a number
between 0 and 1) and the crop biomass at time ¢ belonging
to an interval [0, T'] representing the crop growth season:

§=ki(~p()Ks(S) = (1= 9(t) Kr(S) + kau(t)) (1)
B =ksp(t)Ks(5S) (2)
with the initial condition (at the sowing date 0)

S(0) =1 Q

B(0)=0 (4)
and T being the harvesting date. The control variable
u(t) = F(t)/Fmaz € [0,1] is the ratio of the input water
flow rate F'(t) at time ¢ over the maximal flow F,q, that
the irrigation device allows.

On an agronomic point of view, (1) represents the variation
of a vertically averaged soil moisture as influenced by
three fluxes: crop transpiration, crop evaporation, and crop
irrigation. Unlike Pelak et al. (2017) and Shani et al.
(2004), we use here the simplified hypothesis made in
(Bertrand et al., 2018): transpiration and evaporation can
be partitioned using a variable o(t) representing the crop
radiation use efficiency and independent of water stress.
Both transpiration and evaporation fluxes are regulated by
soil moisture as in (Pelak et al., 2017) using two functions
Kg and K (see Assumption 1 and Fig. 1 below). Equation



(2) determines the amount of biomass produced per time
unit. It is simply related to the transpiration flux using the
water use efficiency principle (Steduto et al., 2009; Pelak
et al., 2017). Note also that the proposed model does not
consider rainfall inputs and might be better associated to
greenhouse grown crops.

Assumption 1. Kg(-) and Kg(-) are continuous piece-wise
linear functions from [0, 1] to [0, 1]:

0 S € [0,Sy]
S-S5, N
1" Selst 1
0 S e [O,Sh}
Kg(S) = { 5— 5
1-5, S e [Sh,].}

where the parameters S,,, S* and S}, are such that
0<Sp<S,<S <1

Fig. 1. Graphs of the functions Kg and Kg

Assumption 2. ¢(+) is a L* increasing function from [0, 7]
to [0,1] with ¢(0) =0 and ¢(T) = 1.

Assumption 3. ki, ko, k3 are positive parameters with
ko >1

One can easily check that under these assumptions, any
solution S(-) of (1) with initial condition (3) verifies S(t) >
Sy, for any t > 0. The condition ko > 1 is a controllability
assumption, in the sense that it allows the variable S
to stay equal to 1 with the constant control u = 1/ks.
However, the controlled system is naturally subject to the
constraint

St <1, tel0,T] (5)
The set of admissible controls u(-) are measurable func-
tions taking value in [0, 1], and such that the solution of
(1),(3) verifies the constraint (5). To each such control
function, we associate the total water delivered on the
time interval [0,7], and the biomass production at the
harvesting date T, given respectively by

T
Qu()] = Fm/o w(t)dt, Brlu()] = B(T)

3. THE CONTROL PROBLEM

Our objective in the present work is to study admis-
sible strategies u(-) maximizing the biomass production
Br[u(-)] under a constraint on the total water quantity

Q) <Q (6)

For convenience, we shall denote, for any to € [0,7] and
So € [0,1], Siy.80,0(+); resp. Sy,,s0,1(+), for the solution
of the differential equation (1) with S(tg) = Sp and
the constant control © = 0, resp. u = 1. The following
definition will be useful in the following.

Definition 4. Let S(-) := So,1,0(-) and

t:=sup{t € [0,7] s.t. S(t) > S*}
Define also the number

T
By = ky / o(t) dt
0

Straightforwardly, on has the first result.
Lemma 5.
(i) The inequality Brlu(-)] < Bj is fulfilled for any
admissible control u(-).

(ii) If ¢ = T, then any admissible control u(-) gives
Br[(-)] = Bt

For non trivial cases for which ¢ < T, let us consider the
following singular control.

Definition 6. Let

Tige (t) — Sﬁ(t) + (1 — Sp(t))KR(S*)7

ko
and define

telt, 7] (1)

T
Q* = Fmaz/ ug~* (t) dt
t

Notice that under Assumption 3, this control is admissible
as one has

ag«(t) <1, teltT] (8)
One can easily check that the following statement is
satisfied.

Lemma 7. Assume t < T.
(i) For any @ > Q*, the control

N 0 tel|0,t
aft) = {as* (t) : c &, T)] (9)
is admissible with Q[a(-)] = Q*, and gives Brlu(-)] =

B
(ii) For any Q < Q* and admissible control u(-) satisfying
the constraint (6), one has Br[u(-)] < Bj.

Consequently, when t = T or Q > Q*, a simple optimal
admissible control is known, giving the maximal biomass
production B%. In the remaining of the paper, we shall
consider the complementary cases, that is the following
hypothesis.

Hypothesis 8. t <T and Q < Q*.

This hypothesis corresponds to situations of water scarcity,
for which there is not any enough water available for
the time horizon [0,7] to maintain the soil humidity
constantly above or equal to the level S* which provides
the maximal production B7. at the harvesting time.

4. A COMPARISON RESULT

The main result given in this section is playing an im-
portant role in the satisfaction of the state constraint



(5) while maximizing Bp under the integral constraint
(6). We introduce below the MRAP (for Most Rapid Ap-
proach Path) to S = S* controls. Such kind of controls
have already been considered in several optimal control
problems in the plane, characterizing their optimality (e.g.
Miele (1962); Hermes and Lasalle (1969); Hartl and G. Fe-
ichtinger (1987) or related to the so-called “turnpike”

property (see e.g. Rapaport and Cartigny (2004); Trélat
and Zuazua (2015); Faulwasser et al. (2017)). Here, we
use it in a different way. We do not pretend that these
controls are necessarily optimal (and indeed they are not),
but they respect the state constraint (5) and can locally
improve the cost, providing then a comparison result given
in Proposition 11 below.

We begin by some definitions.
Definition 9. For (t9, So) € [0,T) x (S*,

T ifSs (t) > 5*, t € [to, T
+ _ to,S0,0 ’ 05
t7(to, So) = { inf{t > t(()); OStO,so,o(f) = S*} otherwise

For any (9, So) € (0,T] x (S*,

_ o 0 if Sy \S 71(t) > S*, t e [O,to]
£ (to, S) = { sup{t < %0 ;Stg,So,l(t) = 5*} otherwise

1], we define

1], we define

Definition 10. For any (t1,51) € [0,7) x [S*,1] and
(t2,52) € (t1,T] x [S*,1] such that Sy is attainable from
(t1,51) at time to with an admissible control, we associate
the MRAP control @(-) on the time interval [tq, to]:

) If t_(t2, Sa) >1tJr (t1,S1):

if t € [ty,tT(t1,51))

’LLS* t (S t+(t1,51) (tQaSQ)] (10)
1ft € (t_(t2,52),t2]
) It~ (tg,52) < t1751

(t) == 0 if ¢t € [t1,t(t1, S1,t2,52))
1 if ¢ € (t(t1, S1,t2, Sa), to]

where #(t1, 51,2, 52) is the unique ¢ € [t,%s] such that
St1.80.0(t) = Sty.8,,1(t) > S* (one can easily verify that
the function I(t) := Sy, s,,0(t) — St,y.5,,1(t) is decreasing
on [t1,te] with I(t;) > 0 and I(t2) < 0, which gives the
existence and uniqueness of £(¢1,51, t2,52)).

Proposition 11. Let S(-) be a solution of (1) on [ty %]
(with 0 <t; <ty <T) for an admissible control u(-) such
that S(t) > S* for any t € [t1,t2]. Denote S; = S(¢1) and
Sy = S(t3). Then, the solution S(-) of (1) on [t;,to] with

S(t;) = S; and the MRAP control 4(-) (see Definition 10)
satisfies the following properties:
S(t2) = S» (11)
S0 < S(), et ) (12)
to to
/ () dt < / u(t) dt (13)
t1 t1

Moreover, the last inequality is strict when S(-) and S(:)
are not identical.

This proposition leads to our main result.

Proposition 12. Assume that Hypothesis 8 is satisfied.
One has the following properties.

(i) u(t) =0 for t € [0,¢] is optimal.
(ii) Any optimal solution verifies S(t) < S* for any
telt,T]. -
(iii) An optimal solution verifies Q[u(-)] = Q.

The proofs of Propositions 11 and 12 are given in ap-
pendix.

5. OPTIMALITY OF ONE SHOT CONTROLS

One Shot (OS) controls represent a class of widely used
irrigation strategies, typically when drip irrigation is not
available. They consists in delivering water at maximum
flow rate during a single irrigation period. The OS control
u? 9(-) is therefore defined as a bang-bang control, param-

eterized by the triggering time tg € [0, T].

Definition 183.

og(t) _JOoift<ts ort>min(_tS+Q/Fmam,T))
ts T Llifte ftg, min(ts + Q/Fnaz,T))

A triggering time tg is said to be admissible when the
control u9°(-) is admissible i.e. such that the constraint
(5) is satisfied.

However, Proposition 12 shows that a time t5 below ¢ or
above T' — Q/Fpnae (the later being the very last time
to allow all the water quantity @ to be delivered by the
date T) cannot be optimal. Moreover, some values of
ts € [t,T — Q/Fmaz) could conduct the humidity rate
S above the value S*, which cannot be optimal neither.
Therefore, we introduce instead the Saturated One Shot
(SOS) feedback control

(t, S, V) = yP9%(t, 8, V)

which is a bang-singular-bang or bang-bang strategy, also
parameterized by a triggering time tg € [t,T — Q/Fmax],
defined as follows.

Definition 14.

0 ift<tgorV=Q ~
g+ (t) if t > tg, S=5"and V < Q
1 ift>ts, S< S and V <Q

where g+ (+) is given in (7) and V() denotes the volume
of water consumed up to time ¢, that is

V(t) = Fouu /O u(r) dr

YIOS(1,8,V) =

Note that this control is necessarily admissible.

In the next section, we have performed numerical com-
parisons between the OS ans SOS strategies for their
respective best tg (i.e. maximizing Br).

6. NUMERICAL SIMULATIONS AND DISCUSSION
We present in Fig. 2 the simulations performed with

irrigation strategies OS and SOS and with inputs data
given in Table 1. For illustrative purposes only, we have
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Fig. 2. Comparison of OS and SOS controls strategies on one typical example. Model parameters used are given in

Table 1.

Table 1. Normalized parameters used for the simulations

Fmaa: Q «
12 01 4

T ki ko ks
1 21 5 1

S* Sy  Sh
0.7 04 0.2

considered dimensionless parameters (by normalizing the
units) and function ¢ in the family of ¢ — (¢/T)* (o > 0).

The optimal OS strategy was obtained for tg = 0.697 and
produced a biomass B(T) = 0.152. The corresponding
humidity dynamics is plotted in Fig. 2¢. It can be seen
that some value of S are above S*. It can be therefore
concluded from the application of of Proposition 12 that an
OS strategy cannot be optimal. This is further illustrated
by applying the SOS strategies for the same inputs data.
We find that the best SOS strategy gives a final biomass
B(T) = 0.176 which is 15% higher than what gives the best
OS strategy. The associated control is a bang-singular-
bang (see Fig. 2b).

Under water scarcity, the OS strategy is empirically used
by practitioners, even though there is no model to help
deciding the best triggering time. To our knowledge, the
SOS strategy and more particularly its potentially late
triggering time parameter tg, is new and has not been
yet tested on the field. Notice that the SOS strategy
requires more knowledge or online measurements than the
OS control for its real application (as the expression of
the singular control (7) needs the function ¢(-) and the
values S*, ko and Kr(S*)). Moreover it change gradually
the input flow rate during the singular arc phase. This is
why it can be considered as a more sophisticated strategy.

7. CONCLUSION

We have introduced a simple crop irrigation model in order
to study optimal irrigation scheduling using a mathemati-
cal analysis. We have shown, using a comparison tool, that

the state constraint of this model is never activated for
the optimal control problem solutions. Moreover we have
shown that, under water scarcity, an optimal trajectory
has to reach as fast as possible the domain for which the
relative humidity is below or equal to the threshold of
maximal crop transpiration, and then do not leave this
domain until the harvesting time. However, due to water
scarcity, it has to be below the threshold at some stage. We
have then compared two control strategies: the one-shot
(OS), commonly used in practice and a more sophisticated
one, the saturated one-shot (SOS), that could exhibit a
singular arc. We have shown numerically the superiority
of this last strategy. We have not been yet able to prove
that no more than one ”saturated shot” is optimal. We
conjecture that the SOS strategy is indeed an optimal
control for this model. This would be a promising result
since SOS irrigation schemes are not so intuitive controls
and because they can be also tested on more detailed simu-
lation models. Moreover, other criteria such as minimizing
the water consumption for a desired biomass production,
or maximizing the productivity could be also of interest.
This shall be the matter of a future work.
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Appendix A. PROOF OF PROPOSITION 11

By construction, the solution S(-) verifies S(t;) = S(t1)
and S(t2) = S(t2). Thus, property (11) is verified.

From standard comparison results of scalar differential
equation with right hand sides that are Lipschitz contin-
uous w.r.t. the state variable (see e.g. Walter (1998)), one
has for any solution S(-) of (1) with S(tg) = Sp and any
admissible control function u(-), the following frame.
St075070(t) < S(t) < St0750,1<t)7 te [tOvT] (Al)

Therefore, property (12) is verified.

Consider then the function d(t) :=
expression (1), one can write

45 = —k, (F(t S@t)) — F(t,S(t ))) dt
+hiks (u(t) —a(t)) dt
where we posit
F(t,5) = ¢(t) Ks(S) + (1 = ¢(t)) Kr(S)
Integrating (A.2) between ¢t = t; and t = 5, one obtains

5ts) — 8(tr) = —ky /tZ (F(t.5() ~ (¢, 5())) at

ko < /t t ult) dt — /t t alt) dt>

As F is non-decreasing w.r.t. S and S(t) > S(t) for
t € [t1,t2], one obtains

/t2U(t)dt/tza(t)dt2w0

which proves property (13).
Appendix B. PROOF OF PROPOSITION 12

Let @(-) be the MRAP control for (¢1,51) = (0,
(t2,52) = (T, 5*) (see Definition 10).

1) and

Consider any S(-) solution of (1),(3) for an admissible
control u(-) satisfying the constraint (6). Notice first that
the set

E:={te[0,T]st. S(t)<S*}

is non-empty, otherwise one would have B(T') = B}, which
is excluded by Lemma 7.i. Let t* := inf £ < T. By
continuity of S(-), one has necessarily S(¢t*) = S* and by
Proposition 11 one has
t* t*
/ a(t) dt < / u(t) dt (B.1)
0 0

Notice that one has @(t) = ug«(t) for ¢ € [t*,T]. From
Hypothesis 8, the inequality

T T
QUu() = Fonar / u(t)dt < Q" = Fgy / a(t) dt
’ " (B2



is fulfilled. Consequently, (B.1) and (B.2) give the inequal-

/t*

where ag«(t) < 1 for t € [t*,T] (cf property (8)).
Therefore, the set

Ey:={te[tT]st. u(t) <1}
is necessarily of non-null measure. Moreover, the set ENE}
is also of non-null measure (otherwise one would have
u(t) = 1 for a.e. t € E that would imply that S(-) is
increasing on E, which contradicts S(t*) = S*).

u(t) dt < /T g+ (t) dt

*

If t* > t, inequality (B.1) is strict (by Proposition 11), and
one can consider a control v(-) such that

o(t) = a(t),  telo,t],
o(t) = u(t), telt,T]\(ENE),
o(t) € [u(t), 1], t € ENE,

with

0< /EﬁE1 (v(t) —u(t))dt < /O (u(t) — a(t)) dt
Then, one has

Q)] < Qu()] < Q
)

which guarantees that v(-) satisfies the constraint (6). Its
associated solution S, (-), B,(+) satisfies then S, (t) > S(t)
for any t € [0,T] with

/ Sy (t) dt > / S(t) dt
ENE, ENE,

As S(t) < S* for t € ENE}, one obtains under Assumption
1 the inequality

/EﬁEl (1)K (Su(1)) dt > /

ENE;
which yields

p(t)Ks(S(t))dt (B.3)

T
Bo(T) = ks / P(1)K (S, (1)) dt
(B.4)

T
>k [ pOKs(S() = BT)
0
We conclude that an optimal solution has to verify t* = ¢,
that is such that
S(t)=S(t), telo,t
or equivalently that u(t) =0 for t € 0,¢] is optimal.

Consider now a solution S(-), B(-) with an admissible
control u(-) that is null on [0, ¢] and satisfies the constraint
(6), with the set

F:={telt,T] st Sk) >S5}

non empty. From Proposition 11, one has

/Fﬁ(t) dt</Fu(t) dt

Let us consider an admissible control v(-) such that

o(t) = a(t), ter
o(t) =u(t), tel0,T]\ (FU(ENE)),
o(t) € [u(t), 1], t € ENEy

with

0< /EmEl (v(t) — u(t))dt < /F (u(t) —a(t)) dt

Its solution S, (), By(-) satisfies S, (t) = S* for t € F' and

Sy(t) > S* for t € [0,T] \ F with
/ Sy () dt >/ S(t) dt
ENE4 ENEy

As before, we obtain inequalities (B.3), (B.4), and conclude
that an optimal solution has to verify F' = (), that is such
that S(t) < S* for ¢t € [t,T).

Finally, consider an admissible control w(-) that is null
n [0,¢] with S(t) < S* for ¢ € [t,T] and Q[u(-)] < Q.
As previously, one can consider another admissible control

v(-) such that:
v(t) = u(t),

v(t) € [u(?),

te [0, T]\ (ENE),
].], te ENE;

with

@ \

— Qfu(")]
S(t) for t € [0, T

0 < Fax /EmE (v(t) — u(t)) dt <

Its solution S, (-), B, () satisfies S, (t) >

with
/ S, (t)dt > / S(t) dt
ENE4 ENE;

One obtains again inequality (B.4), which shows that the
control u(-) cannot be optimal. Therefore, an optimal
control u(+) has to satisfy Qlu(-)] = Q.



