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Abstract: This paper focuses on the stability analysis of the closed-loop single-input-
single-output (SISO) system subject to input delays and to PI controllers. A complete
characterization of the crossing set, which consists of all frequencies where the number
of unstable characteristic roots changes, is given in the parameter space defined by the
controller. Next, we explicitly derive the PI controllers corresponding to each frequency
in the crossing set. More precisely, we make a partition of the controller parameter space
in regions where the number of unstable characteristic roots remains constant. Finally,
we also present a methodology to compute the number of unstable roots in each region.
Several illustrative examples end the presentation.
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1. INTRODUCTION

One of the simplest controllers’ scheme largely used
in process control is the PI controller (see, for
instance, Astrom and Hagglund (1995); O’Dwyer
(2000) and the references therein). However, as pointed
out by Ender (1993), a high percentage of PI and PID
controllers seem to be tuned badly mainly since the
tuning methods are limited to some restricted condi-
tions of the plant. Among the problems we can cite, for
instance, neglected parameter uncertainty, including
the delay presence. Roughly speaking, the delay rep-
resents one of the easiest way for modeling transport

and propagation phenomena in the dynamics of any
interconnection scheme (see, for instance, Niculescu
(2001); Gu et al. (2003) for some illustrative exam-
ples).

In this paper we will address the PI control of
SISO systems including input delays. As discussed
in O’Dwyer (2000), there exists several methods for
the controllers construction, and several techniques
have been proposed in the literature for the analysis
of the stability and of the performances of the corre-
sponding closed-loop schemes. Among them, we can
mention the computation of stabilizing PI controller’s
parameters considered by Silva et al. (2002); Xu et al.



(2003) using a Pontryagin approach. Thus, for exam-
ple, Silva et al. (2002) addresses the control of first-
order system with a time-delay in both cases (stable,
and unstable delay-free systems), and Xu et al. (2003)
deals with some robustness issues in terms of delays
for the closed-loop system under the assumption that
the delay-free system can be stabilized by a propor-
tional controller.

The aim of this paper is the stability analysis of the
closed-loop SISO systems subject to PI controllers in
presence of input delays by using a geometric argu-
ment (see, for instance, Gu et al. (2005) for the basic
ideas). More precisely, we are interested in character-
izing the stability of the crossing boundaries in the
parameter-space defined by the controller’s parameter
for a known delay value. By a crossing boundary, we
understand the set of parameters for which the corre-
sponding characteristic equation has at least one root
on the imaginary axis. The results proposed in the pa-
per generalize the approach considered in Morărescu
and Niculescu (2007), where the case of proportional
controllers subject to input delays was (only) consid-
ered. At the same time, it offers some alternative anal-
ysis ways to the approach considered by Silva et al.
(2002); Xu et al. (2003). We believe that the proposed
approach is easy to follow, and it offers new insights in
the analysis of the corresponding closed-loop system.

The remaining paper is organized as follows: the
problem formulation is stated in Section 2. Next, the
characterization of the stability crossing curves in the
parameter-space defined by the PI controllers’ param-
eters is given in Section 3. Various illustrative exam-
ples are presented in Section 4, and some concluding
remarks end the paper.

2. PROBLEM FORMULATION

Consider the following class of strictly proper SISO
open-loop systems:

P (s)
Q(s)

= cT (sIn −A)−1b (1)

where (A, b, cT ) is a state-space representation of the
open-loop system, with the following control law:

u(t) = −K(s)y(t− τ), (2)

where K(s) has the form:

K(s) = k

(
1 +

T

s

)
, (3)

that is a classical PI controller law. The closed-loop
system rewrites as follows:

H(s; k, T, τ) = Q(s) + kP (s)
(

1 +
T

s

)
e−sτ = 0,

(4)
which is a quasi-polynomial (see, e.g. Gu et al.
(2003)) with an infinite number of roots Hale and
Verduyn Lunel (1993).

The problem considered in this paper can be defined
as follows:

Problem 1. Find explicit conditions on the parameter
pair (k, T ), such that the closed-loop system (4) is
asymptotically stable.

In order to simplify the presentation, we make the
following assumption:

Assumption 1. (a) P (0) 6= 0
(b) The polynomials P (s) and Q(s) do not have

common zeros

If Assumption 1.(a) is violated, then 0 is a zero of
H(s; k, T, τ) for any (k, T, τ) ∈ R × R2

+. There-
fore, the system is never asymptotically stable. If as-
sumption 1.(b) is not satisfied, P (s) and Q(s) have
a common factor c(s) 6= constant. Simplifying by
c(s) we get a system described by (4) which satisfies
assumption 1.(b).

Throughout the paper the following standard notation
will be adopted: C (C+, C−) is the set of complex
numbers (with strictly positive, and strictly negative
real parts), and j =

√−1. For z ∈ C, ∠(z) ∈ (−π π],
Re(z) and Im(z) define the argument, the real part
and the imaginary part of z. R (R+,R−) denotes the
set of real numbers (larger or equal to zero, smaller
or equal to zero). N is the set of natural numbers,
including zero and Z the set of integers.

3. STABILITY IN (K, T ) PARAMETER SPACE

In the sequel, we study the behavior of the system
for a fixed delay value τ . More precisely, for a given
τ = τ∗ we search the crossing frequencies ω and
the corresponding crossing points in the parameter
space (k, T ) defined by the PI control law such that
H(jω; k, T, τ∗) = 0.

According to the continuity of zeros with respect to
the delay parameters, the number of roots in the right-
half plane (RHP) can change only when some zeros
appear and cross the imaginary axis. Thus, it is natural
to consider the frequency crossing set Ω consisting of
all real positive ω such that there exist at least a pair
(k, T ) for which H(jω; k, T, τ∗) :=

Q(jω) + kP (jω)
(

1− j
T

ω

)
e−jωτ = 0. (5)

Remark 1. Using the conjugate of a complex number
we get

H(jω; k, T, τ) = 0 ⇔ H(−jω; k, T, τ) = 0.

Therefore, it is natural to consider only positive fre-
quencies, that is Ω ⊂ (0,∞).



Considering that the set Ω is known we can easily
derive all the crossing points in the parameter space
(k, T ).

Proposition 1. For a given τ > 0 and ω ∈ Ω the
corresponding crossing point (k, T ) is given by:

k = −Re

(
Q(jω)
P (jω)

ejωτ

)
(6)

T = ω · Im

(
Q(jω)
kP (jω)

ejωτ

)
. (7)

PROOF. Obviously, the equation (5) can be rewritten
as:

Q(jω)
kP (jω)

ejωτ + 1 = j
T

ω
.

Since T and ω are real, the previous relation states
nothing else that the real part of the left hand side is
zero and the imaginary part is T/ω. Next, straightfor-
ward computations allow deriving (6) and (7).

Remark 2. For all ω ∈ Ω we have P (jω) 6= 0. Indeed,
it is easy to see that if ω ∈ Ω, then there exists at
least one pair (k, T ) such that H(jω, k, T, τ) = 0.
Therefore, assuming that P (jω) = 0 we get also
Q(jω) = 0 which contradicts assumption 1.(b).

Remark 3. It is important to point out that the con-
troller’s gains k and T include explicitly delay in-
formation. Furthermore, throughout the paper, we as-
sume that the corresponding input delay is (perfectly)
known, and it is not subject to any uncertainty. The
way the delay parameter affects the crossing bound-
aries can be also analyzed using similar geometric
arguments, and, for the sake of brevity, it is not con-
sidered in the paper.

In the sequel, we are interested in finding the crossing
points (k, T ) such that k and T are finite. This will not
restrict the usefulness of the following results since the
controller parameters can not be set to some infinite
values in practical situation.

Proposition 2. Let us denote Ω̄ the set of all frequen-
cies ω satisfying equation (5) for at least one pair of
finite parameters (k, T ). Then, the set Ω̄ consists of a
finite number of intervals of finite length.

PROOF. Using the modulus, Eq.(5) becomes
∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣
2

= k2

(
1 +

T 2

ω2

)
. (8)

Since deg(Q) > deg(P ) (SISO system strictly
proper), when ω tends to infinity the left hand side
approaches infinity and the right hand side decreases
to k2. Let us denote ω∗ the largest solution of the
equation:

d
dω

∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣ = 0.

Obviously,

ω 7→
∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣
is an increasing function for ω > ω∗. From Remark 2
and the discussions above, we can find Ω̄ by choosing
a finite M such that

M >

∣∣∣∣
Q(jω∗)
P (jω∗)

∣∣∣∣ ,

and assuming that ∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣ ≤ M. (9)

Therefore,

Ω̄ =
n⋃

h=1

Ωh

where Ωh = [ωl
h, ωr

h]. We note that the first interval
might be Ω1 = (0, ωr

1] and if ωh 6= 0 is a left or right
end of Ωh then∣∣∣∣

Q(jωh)
P (jωh)

∣∣∣∣ = M, ∀h = 1, 2, . . . n.

Remark 4. The finite value M introduces finite bounds
in the variation of k and T . When M → ∞ we get
the proportional and / or the integral part of the con-
troller are infinite. The case of proportional controllers
can be handled by using the geometrical approach
proposed by Morărescu and Niculescu (2007) in the
(gain,delay)-parameter space (see also Niculescu et al.
(2007) for further analytical discussions with respect
to the delay parameter). The remaining case can be
also handled by similarity.

When ω varies within some interval Ω` satisfying
(9), the equations (6) and (7) define a continuous
curve. Using the notations introduced in the previous
paragraph and the technique developed in Gu et al.
(2005) and Morărescu and Niculescu (2007), we can
easily derive the crossing direction corresponding to
this curve.

More exactly, let us denote T` the curve defined above
and consider the following decompositions into real
and imaginary parts:

R0 + jI0 =
j

s

∂H(s, k, T, τ)
∂s

∣∣∣∣
s=jω

R1 + jI1 =
1
s

∂H(s, k, T, τ)
∂T

∣∣∣∣
s=jω

,

R2 + jI2 =
1
s

∂H(s, k, T, τ)
∂k

∣∣∣∣
s=jω

.

Then, since H(s; k, T, τ) is an analytic function of
s, k and T , the implicit function theorem indicates that
the tangent of T` can be expressed as




dk

dω
dT

dω


 =

1
R1I2 −R2I1

(
R1I0 −R0I1

R0I2 −R2I0

)
, (10)



provided that

R1I2 −R2I1 6= 0. (11)

It follows that T` is smooth everywhere except possi-
bly at the points where either (11) is not satisfied, or
when

dk

dω
=

dT

dω
= 0. (12)

From the above discussions, we can conclude with the
following:

Proposition 3. The curve T` is smooth everywhere
except possibly at the point corresponding to s = jω
in any one of the following cases:

1) s = jω is a multiple solution of (5), and
2) ω is a solution of Q(jω) = 0 ⇔ k = 0.

PROOF. If (12) is satisfied then s = jω is a multiple
solution of (5).

On the other hand,

R1I2 −R2I1 =
k

ω3
|P (jω)|2.

If P (jω) = 0, we get Q(jω) = 0 so, Assumption
1.(b) is not satisfied. Therefore, (11) is violated if and
only if k = 0. Obviously, k = 0 implies that Q(jω) =
0 and viceversa. So, we can conclude that (11) is
violated if and only if ω is a solution of Q(jω) = 0.

The next result characterizes the crossing direction
corresponding to each of the curves defined by (6) and
(7) (see, for instance, Morărescu (2006) or Morărescu
and Niculescu (2007) for similar results for different
problems):

Proposition 4. Assume ω ∈ Ω`, T, k satisfy (6) and
(7) respectively, and ω ∈ Ω̄ is a simple solution of (5)
and

H(jω′; k, T, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω

(i.e. (k, T ) is not an intersection point of two curves
or different sections of a single curve).

Then a pair of solutions of (5) cross the imaginary axis
to the right, through s = ±jω if R1I2 − R2I1 > 0.
The crossing is to the left if the inequality is reversed.

4. ILLUSTRATIVE EXAMPLES

Several examples taken from the control literature
are studied in this section. The stability regions are
explicitly pointed out when they exist. It is worth to
precise that throughout this section we use a gray color
to mark the stability regions on the figures.

Example 1. (Scalar system). In this paragraph, we val-
idate our results by treating an open-loop stable scalar

system already studied in the literature (see for in-
stance Silva et al. (2001); Oliveira et al. (2003)). More
precisely, we consider

Q(s) = 4s + 1, P (s) = 1, (13)

and we easily find the corresponding closed-loop char-
acteristic equation

H(s, k, T, τ) = 4s + 1 + k(1 +
T

s
)e−sτ .

Taking τ = 1 and denoting kp = k and ki = kT as
the authors of Silva et al. (2001); Oliveira et al. (2003),
plotting ki versus kp we obtain the figure 1. Since
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Fig. 1. Stability crossing curve in the (kp, ki) space for the system
given by (13)

R1I2 −R2I1 =
ki

ω
,

using Proposition 4 we derive that all the crossing
direction are towards instability.

On the other hand, the characteristic equation is stable
only if ki > 0. Therefore, in order to obtain the
boundary of the stability region in the (kp, ki) space,
we search for the first interval in ω where ki > 0.
Explicitly, we solve the equation

ωIm
(
(4jω + 1)ejω

)
> 0

and we get ω ∈ (0, 1, 715). Using (6) and (7) the
boundary of the stability region in the (kp, ki) space
is plotted in figure 2.

We note that the same boundary of the stability region
has been founded in Silva et al. (2001); Oliveira et al.
(2003) by using a different argument.

Example 2. (Double integrator subject to input delay).
Consider now the case of a double integrator subject
to input delay:

Hyu(s) =
e−sτ

s2
,

subject to the PI controller:

K(s) = k

(
1 +

T

s

)
.



Fig. 2. The boundary of the stability region in the (kp, ki) space
for the system given by (13)

Then, the closed-loop system writes as follows:

s2 + k

(
1 +

T

s

)
e−sτ = 0. (14)

Taking again kp = k and ki = kT one obtains:

kp = ω2 cos(ωτ), ki = −ω3 sin(ωτ).

Thus, ki and kp are even functions of ω. In other words
it is sufficient to plot ki versus kp for positive values
of ω. We derive again that the number of unstable
roots is getting larger when the distance to the origin
increases.

Also, it is easy to see that the crossing direction of the
roots on the imaginary axis does not depend of delay
value (τ ) since the sign of

R1I2 −R2I1 =
ki

ω

is not influenced by the variation of τ . Taking into
account that the system in absence of any control
is unstable, we conclude that the system can not be
stabilized with a PI controller. The crossing curve for
the system is plotted in figure 3.
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Fig. 3. Stability crossing curve in the (kp, ki) space for the system
given by (14)

Example 3. (Temperature control of a tank). The dy-
namics of the temperature of a liquid is given by the
transfer function (see Fliess et al. (2001)):

Hyu =
0.41e−50s

s(1 + 50s)
.

The output y represents the temperature of the liquid
inside a tank which can be controlled using u. Intro-
ducing the PI controller

K(s) = k

(
1 +

T

s

)
,

one obtains the following closed-loop system:

s(1 + 50s) + 0.41 · k
(

1 +
T

s

)
e−50s = 0. (15)

All the crossing directions are again towards instabil-
ity and the border of stability region is illustrated in
figure 4.

Fig. 4. The boundary of the stability region in the (kp, ki) space
for the system given by (15)

Example 4. (An academic example). In the sequel we
consider the unstable system whose dynamics is ex-
pressed by the following transfer function (Fliess et
al. (2001)):

Hyu =
(s− 1)e−2s

s2 − 0.5s + 0.5
.

The characteristic equation in closed-loop by using the
PI controller

K(s) = k

(
1 +

T

s

)

is given by

s2−0.5s+0.5+k(s−1)
(

1 +
T

s

)
e−2s = 0. (16)

Straightforward computations show that

R1I2 −R2I1 = k

(
ω +

1
ω

)
,

and



k =
(0.5− 0.5ω2) cos 2ω + ω3 sin 2ω

1 + ω2
,

T =
(0.5− 0.5ω2)ω sin 2ω − ω4 cos 2ω

k(1 + ω2)
.

Since T and k are even functions of ω we only need
to consider the case ω > 0. Consider kp = k and
ki = kT . Next, plotting ki versus kp, one obtains the
border of stability region as illustrated in figure 5.

The conclusion in figure 5 is obtained taking into
account the fact that, for k = kp > 0, the region to
the left has two more solution in the right-half plane
than the region to the right.

Fig. 5. The boundary of the stability region in the (kp, ki) space
for the system given by (15)

5. CONCLUDING REMARKS

This paper addresses the geometry of the PI con-
trollers for the stabilization of SISO linear systems
with input delay. The proposed analysis is given in the
parameter-space defined by the PI controller, and it is
extremely simple and easy to follow.

More precisely, the procedure can be resumed as fol-
lows: we first characterize the crossing set, that is
the set of all frequencies for which the closed-loop
system has at least one characteristic root on the imag-
inary axis. Such a characterization allows the explicit
computation of the controller’s parameters for which
the number of unstable characteristic roots in closed-
loop changes. It is important to point out that the
controller’s gains depend explicitly on the delay value.
Finally, such computations lead to a partition of the
controller’s parameter-space in several regions where
the number of unstable roots remains constant. The
procedure above was applied to several illustrative
examples taken from the control literature.
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Compiègne, September 2006).
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