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Abstract: In this paper, we focus on the stability of some low-order distributed delay
models describing cell-to-cell spread mechanisms in some well-mixed configuration.
The stability analysis will be performed in the delay-parameter space defined by the
mean delay and by the corresponding gap. We will explicitly compute the crossing
frequency set, and the stability crossing curves by using a frequency-domain approach.
An illustrative example encountered in HIV-1 infection will complete the presentation.
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1. INTRODUCTION

Various biology model representations include a par-
ticular common element used to describe a reaction
chain (distributed character, see, e.g.

In the sequel, we will focus on some particular class
of dynamical models describing cell-to-cell spread
mechanisms. Such systems are generally encountered
in HIV-1 modeling as mentioned by

The remaining paper is organized as follows: the prob-
lem formulation and some comments on the system
modeling can be found in Section 2. Section 3 in-
cludes the characterization of the stability regions in
the delay-parameter set defined by the mean delay
value and by the corresponding gap. An illustrative
example corresponding to a HIV-1 model is presented
in Section 4. Some concluding remarks end the paper.
The notations are standard and explained when used
for the first time.

2. PROBLEM FORMULATION, AND SYSTEM
MODEL

In the sequel, we study a two-dimensional model of
cell-to-cell spread mechanism, assuming that infection
is spread directly from infected cells to healthy cells
and neglecting the effects of free virus. The intra-
cellular incubation period is given by a probability
distribution and the model is given by two differential
equations with distributed delay. More precisely, we
consider the system





dC

dt
= rCC(t)

(
1− C(t) + I(t)

Cm

)
− kIC(t)I(t),

dI

dt
= k′I

∫ t

−∞
C(θ)I(θ)g(t− θ)dθ − dII(t),

(1)

where C (I) represents the concentration of healthy
(infected) cells, rC is the reproductive rate of healthy
cells, Cm is the effective carrying capacity of the sys-
tem, kI represents the infection of healthy cells by
the infected cells in a well-mixed system, k′I/kI is



the fraction of cells surviving the incubation period,
dI is the death rate of infected cells, g is a proba-
bility distribution that defines the infectious process
history. Explicitly, we assume that the cells which are
productively infectious at time t were infected θ time
ago, where θ is distributed according to the probability
density g. Such a model is also encountered in the
HIV-1 infection mechanisms as pointed out by

The initial conditions of the system (1) are defined as
follows

C(t) = φ(t) ≥ 0, I(t) = ψ(t) ≥ 0, t ∈ (−∞, 0],

where φ and ψ are continuous function on (−∞, 0].

The probability density g that appears in system (1) is
often replaced by some Dirac densities g(θ) = δ(θ),
g(θ) = δ(θ − τ) where τ is a constant or by a gamma
distributed kernel

g(θ) :=
αn+1θn

n!
e−αθ

where α > 0 and n is a positive integer (see, for
instance,

When g(θ) = δ(θ) one obtains the following ordinary
differential equations (ODE):





dC

dt
= rCC(t)

(
1− C(t) + I(t)

Cm

)
− kIC(t)I(t),

dI

dt
= k′IC(t)I(t)− dII(t).

(2)

The initial conditions are

C(0) = C0 ≥ 0, I(0) = I0 ≥ 0,

where C0 and I0 are constant.

When g(θ) = δ(θ − τ) where τ is a constant, the
system (1) becomes the following delay differential
equations (DDE) with a discrete delay:





dC

dt
= rCC(t)

(
1− C(t) + I(t)

Cm

)
− kIC(t)I(t),

dI

dt
= k′IC(t− τ)I(t− τ)− dII(t).

(3)

The initial conditions are

C(t) = φ(t) ≥ 0, I(t) = ψ(t) ≥ 0, t ∈ [−τ, 0],

where φ and ψ are continuous function on [−τ, 0].

Finally, when

g(θ) :=
αn+1θn

n!
e−αθ,

we get a DDE with distributed delay. According to

In general, there is a short intracellular ”eclipse phase”
(often referred as ”latency”, see also the infection with
HIV-1). During this period the cell is infected but has
not yet begun producing virus.

The system (1) has three equilibrium points: the trivial
equilibrium (0, 0), the healthy equilibrium (Cm, 0)
and the infected equilibrium (C, I), where

C =
dI

k′I
, I =

rC(k′ICm − dI)
k′I(rC + kICm)

if k′I > dI/Cm. Note that the equilibrium points of the
model do not depend on the choice of the probability
density g. The interesting problem concerns the sta-
bility of the infected equilibrium point (C, I). Setting
C = C + x, I = I + y where x and y are small, and
linearizing, one obtains the characteristic equation:

∆(λ) = λ2 + pλ + r + (sλ + q)G(λ), (4)

where the coefficients above are given by:

p =
dI(k′ICm + rC)

k′ICm
, q =

rCdI(k′ICm − 2dI)
k′ICm

,

r =
rCd2

I

k′ICm
, s = −dI ,

and G(λ) is the Laplace transform of g(t). Next,
replacing g with the gamma distribution with a gap
defined by (??) we get the following particular char-
acteristic function:

∆(λ; T, τ) := (λ2+pλ+r)(1+λT )n+(sλ+q)e−λτ .
(5)

3. STABILITY CHARACTERIZATION IN THE
DELAY PARAMETER SET

In the sequel, we derive the stability regions of (5)
in the delay parameter space (T, τ). In this sense,
we will start by discussing a more general parameter-
dependent characteristic equation described by the
following quasipolynomial:

∆(λ; T, τ) = P (λ)(1+λT )n +Q(λ)e−λτ = 0. (6)

where P and Q are polynomials with real coefficients
such that deg(Q) < deg(P ) (see, e.g.

Assumption I. P (0) + Q(0) 6= 0;
Assumption II. P (λ) and Q(λ) do not have common

zeros;
Assumption III. If P (λ) = α, Q(λ) = β, where α, β

are real constants, then |α| 6= |β|;
Assumption IV. P (0) 6= 0, |P (0)| 6= |Q(0)|;
Assumption V. P ′(jω) 6= 0 whenever P (jω) = 0.

It is easy to see that in our case study, i.e. characteristic
function ∆(λ; T, τ) given by (5), the Assumptions
I and V are automatically satisfied, and the other
reduces to some simple comparison of P (0) = p
with Q(0) = q. Indeed, Assumption I is equivalent
to k′ICm 6= dI which is automatically satisfied since,
by hypothesis, we focus on the stability around a
particular equilibrium, for which k′I > dI/Cm.

Using the methodology proposed by

3.1 Frequency crossing set computation

Another useful concept is the frequency crossing set
Ω, which is defined as the collection of all ω > 0



such that there exists a delay-parameter pair (T, τ)
such that ∆(jω; T, τ) = 0. In other words, as the
parameters T and τ vary, the characteristic roots may
cross the imaginary axis at jω if and only if ω ∈ Ω.
Without any loss of generality, we can consider that
Ω ⊂ R+.

In the context of equation (6), the characterization of
the frequency crossing set is given by the following:

Proposition 1. Given any ω > 0, ω ∈ Ω if and only if
it satisfies

0 < |P (jω)| ≤ |Q(jω)|. (7)

Consider now in more detail the inequality (7). First
at all, it is easy to see that Ω is bounded, that is there
exists a real positive number M > 0, such that for all
ω ∈ Ω, ω < M . Indeed, since deg(P ) > deg(Q),
then limω→∞ | Q(jω) | / | P (jω) |= 0, and thus
there exists some high-frequency ωh > 0 such that
|P (jω)| > |Q(jω)|, for all ω ≥ ωh, and thus for all
ω > ωh, (7) cannot be satisfied.

Next, Ω consists of a finite set of intervals of finite
length. Indeed, it is easy to see that there are only a
finite number of solutions of each of the following two
equations

P (jω) = 0, (8)

and
|P (jω)| = |Q(jω)|, (9)

because P and Q are both co-prime polynomials with
P (0) + Q(0) 6= 0. Therefore, Ω, which is the collec-
tion of ω satisfying (7), consists of a finite number of
intervals. Denote these intervals as Ω1, Ω2, ..., ΩN .
Then Ω =

⋃N
k=1 Ωk.

Without any loss of generality, we may order these
intervals from left to right, i.e., for any ω1 ∈ Ωk1 ,
ω2 ∈ Ωk2 , k1 < k2, we have ω1 < ω2.

3.2 Stability crossing curves characterization

Using the results and the notations above, we arrive to
the following characterization of the stability crossing
curves:

Proposition 2. The set T consists of all the pairs
(T, τ) given by

T =
1
ω

(∣∣∣∣
Q(jω)
P (jω)

∣∣∣∣
2/n

− 1

)1/2

, (10)

τ = τm =
1
ω

(∠Q(jω)− ∠P (jω)− n arctan(ωT )

+π + 2mπ) , (11)

m = 0,±1,±2, ....,

where ω ∈ Ω represents a crossing frequency.

We will not restrict ∠Q(jω) and ∠P (jω) to a 2π
range. Rather, we allow them to vary continuously
within each interval Ωk. Thus, for each fixed m, (10)
and (11) represent a continuous curve. We denote such
a curve as T k

m. Therefore, corresponding to a given
interval Ωk, we have an infinite number of continuous
stability crossing curves T k

m, m = 0,±1,±2, .... It
should be noted that, for some m, part or the entire
curve may be outside of the range R2

+, and therefore,
may not be physically meaningful. The collection
of all the points in T corresponding to Ωk may be
expressed as

T k =
+∞⋃

m=−∞

(
T k

m

⋂
R2

+

)
.

Obviously, T =
⋃N

k=1 T k.

3.3 Classification of stability crossing curves

Let the left and right end points of interval Ωk be de-
noted as ω`

k and ωr
k, respectively. Due to Assumptions

IV and V, it is not difficult to see that each end point
ω`

k or ωr
k must belong to one, and only one, of the

following three types:

Type 1. It satisfies the equation (9).
Type 2. It satisfies the equation (8).
Type 3. It equals 0.

Denote an end point as ω0, which may be either
a left end or a right end of an interval Ωk. Then
the corresponding points in T k

m may be described as
follows.

If ω0 is of type 1, then T = 0. In other words, T k
m

intersects the τ -axis at ω = ω0.

If ω0 is of type 2, then as ω → ω0, T →∞ and τ →
1
ω0

(
∠Q(jω0)− lim

ω→ω0
∠P (jω)− nπ

2
+ π + m2π

)
.

(12)
Obviously,

lim
ω→ω0

∠P (jω) = ∠
[

d

dω
P (jω)

]

ω→ω0

(13)

if ω0 is the left end point ω`
k of Ωk, and

lim
ω→ω0

∠P (jω) = ∠
[

d

dω
P (jω)

]

ω→ω0

+ π (14)

if ω0 is the right end point ωr
k of Ωk. In other words,

T k
m approaches a horizontal line. Obviously, only ω`

1

may be of type 3. Due to non-singularity assumption
IV, if ω`

1 = 0, we must have 0 < |P (0)| < |Q(0)|.
In this case, as ω → 0, both T and τ approach ∞. In
fact, (T, τ) approaches a straight line with slope

τ/T → (∠Q(0)− ∠P (0)− n arctan α + π + m2π)
α

,

(15)



where

α =

(∣∣∣∣
Q(0)
P (0)

∣∣∣∣
2/n

− 1

)1/2

.

We say an interval Ωk is of type `r if its left end
is of type ` and its right end is of type r. We may
accordingly divide these intervals into the following 6
types.

Type 11. In this case, T k
m starts at a point on the τ -

axis, and ends at another point on the τ -axis.
Type 12. In this case, T k

m starts at a point on the
τ -axis, and the other end approaches ∞ along a
horizontal line.

Type 21. This is the reverse of type 12. T k
m starts at

∞ along a horizontal line, and ends at the τ -axis.
Type 22. In this case, both ends of T k

m approach
horizontal lines.

Type 31. In this case, T k
m begins at ∞ with an

asymptote of slope expressed in (15). The other end
is on the τ -axis.

Type 32. In this case, T k
m again begins at ∞ with an

asymptote of slope expressed in (15). The other end
approaches ∞ along a horizontal line.

Several examples covering the cases mentioned above
can be found in

3.4 Crossing direction characterization

Next, introduce the following notations:

R0 = Re

(
j

λ

∂∆(λ, T, τ)

∂λ

)
λ=jω

,

I0 = Im

(
j

λ

∂∆(λ, T, τ)

∂λ

)
λ=jω

,

R1 = Re

(
1

λ

∂∆(λ, T, τ)

∂T

)
λ=jω

,

I1 = Im

(
1

λ

∂∆(λ, T, τ)

∂T

)
λ=jω

R2 = Re

(
1

λ

∂∆(λ, T, τ)

∂τ

)
λ=jω

,

I2 = Im

(
1

λ

∂∆(λ, T, τ)

∂τ

)
λ=jω

,

the crossing direction is given by the following:

Proposition 3. Let ω ∈ Ω and (T, τ) ∈ T such that
jω is a simple solution of (6) and

∆(jω′; T, τ) 6= 0, ∀ω′ > 0, ω′ 6= ω

(i.e. (T, τ) is not an intersection point of two curves
or different sections of a single curve of T ). Then a
pair of solutions of (6) cross the imaginary axis to the
right, through λ = ±jω if

R2I1 −R1I2 > 0.

The crossing is to the left if the inequality is reversed.

4. ILLUSTRATIVE EXAMPLE

Consider now the case of a cell-to-cell spread model
representing HIV infection mechanisms with Cm =

2 × 106/mL, kI = 2 × 10−6/mL/day, k′I = 1.5 ×
10−6, dI = 0.3/day, rC = 0.68/day (see
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