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Abstract: This paper focuses on the robust stability analysis of a class of linear systems in-
cluding multiple delays subjected to constant or time-varying perturbations. The approach
considered makes use of appropriate stability radius concepts (dynamic, static) and relies
on a feedback interconnection interpretation of the uncertain system. Various computable
bounds on stability radii are obtained that exploit the structure of the problem. Systems
including perturbations on both system matrices and delays are also dealt with.
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1. INTRODUCTION uncertainty on the corresponding system matrices in
Michiels et al. (2006); Michiels and Roose (2003). In
It is well-known that the characterization of stability this context stability radii correspond to the size of the
regions in the parameter space for time_de|ay Sys_Sma”eSt perturbations that render the SyStem unstable.

tems is a difficult problem (see, e.g. [Diekmaeh  1he aim of this paper is to adopt the concept of sta-
al. (1995)], and the references therein). Furthermore,bi"ty radii to linear systems including multiple de-

the characterization in the delay parameter space forjays subject to constant or time-varying perturbations
linear systems with multiple delays i§"P-hard as o the delay parameters, and to derive computable
proven by [Toker an®zbay (1996)]. expressions. The case of constant perturbations for
Stability radii are well known in the context of ma- @ class of quasi-polynomials including two delays
trix distance problems, see Hinrichsen and PritchardWas addressed in a geometrical setting in [Gal.
(2005) and the references therein. Recently, they have(2007)], where the authors introduced the notion of
been used to assess or optimize robustness of stabiliflelay deviation The idea can be resumed in com-
of linear time-delay systems subjected to structured Puting the distance between the “nominal” point (in



the delay parameter space) and the “closest” crossinghe special case of constant perturbations, where be-
curve for which there exists at least one characteristicsides the inherent increase of the stability radii (due
root on the imaginary axis. Such a delay deviation to the restriction of the perturbations), the structure of
characterization is nothing else than a characterizationthe interconnection can be better exploited by using
of astability radiusin the delay parameter space. frequency domain techniques. Finally, implicit expres-
sions are given which rely on exploiting all structure
of the problem and leave conservatism only in the fact
that phase information is not fully exploited in the

S . : feedback loop (inherent to the adopted approach). For
dynamig in order to characterize constant and time- DN . )
reasons of simplicity and clarity of the presentation

varying perturbations on the nominal system’s param- :
. - the cases of uncertainty on delays only and of uncer-
eters. These stability radii are scalar robustness mea;

o S tainty on both delays and system matrices are treated

sures based on an a priori chosen weighting of the .
. . separately. The notations are standard.

perturbations of delays and -as we shall discuss at
the end- system matrices. Secondly, we will employ a
feedback interconnection interpretation of the uncer- 2 UNCERTAINTY ON THE DELAYS
tain system in order to derive estimates for the defined
stability radii. Note that a similar point of view was 5 4 Concept
taken in (Guet al, 2003, Chapter 3); Kao and Lin-
coln (2004); Fridman and Gil' (2006); Fridman and \ye address the uncertain system
Shaked (2006); Shustin and Fridman (200Z) ¢ain -
analysis applied to systems with time-varying delay ./, _ P
perturbations), Huang and Zhou (2000) énalysis #(t) = Aoz (t) + ;Alw(t i — widTi(t),
applied to systems with constant delay perturbations) (9) = ¢(4), —n S_ 6 <0, ¢ €C([-n, 0],R"),
and Michielset al. (2006); Wagenkneclt al. (2007) (1)
(pseudospectra and stability radii for nonlinear eigen- wherex(t) € R, > 0, A; € R™"™ andr; > 0.
value problems), and some of the references therein.The uncertainty on the delays is modeled by uniformly
In the present paper the robust stability characteriza-bounded scalar functions€ [0, oo] — §7;(¢) and
tions in these references are combined and extendegcalar weightsy; > 0, which are such that
in a unifying framework, and reformulated in terms
of appropriately defined stability radii. Finally, in Kao
and Rantzer (2007) and the references therein theWe assume that the zero solution of the corresponding
IQC approach is applied to deal with time-varying unperturbed system
delays, leading to easy-to-check stability conditions

The approach considered in this paper is quite distinct
to the one mentioned above. First, we will introduce
two appropriate notions of stability radistatic and

wi57'i(t) > —Ti, Vit > 0, 1= 1,. cey M.

expressed as LMIs, under the assumption that the cor- @(t) = Agx(t) + Z Az (t — 7)), )
responding delay-free system is asymptotically stable. i=1 @
Such an assumption will not be made in this paper. z(0) = ¢(0), —n<6<0,

Although in the case of uncertainty on the delays the IS @Symptotically stable.

feedback interconnection pOint of view and related The dynam|(stab|||ty radiusT;i_ of the system (2) W.I.t.
tools from robust control will typically lead to ex- the delays is defined as:

pressions for lower bounds on stability radii (corre- p ) )
sponding to sufficient yet not necessary robust stabil- 7+ = sup {v =0 the zero solution of (1) is

ity conditions), as we shall see, they offer several ad- asymptotically stable for all functions 7 (t)

vantages. Explicit computable expressions for bounds o )

are namely obtained that impose no limitations on the satisfying §1>118 o) <y i=1,... >m} )
number of delays and the dimension of the problem. -

Also time-varyingperturbations andombinecpertur- ~ Note that, althoughr¢ explicitly depends on the

bation on delays and system matrices (matrix valued Weightsw;, this dependence is suppressed in the nota-
perturbations) can be easily dealt with, as we shall tion, for reasons of simplicity.

demonstrate. Finally the interconnection framework is Similarly, if the uncertainty on the delay is assumed

appropriate for solving associated synthesis problems jme_invariant then the statigtability radiusw.r.t. the
The latter issue will however not be further addressed delays is defined as:

in this paper.

. 3= >0: th luti f(1)i
The paper adopts a step-by-step approach, by im- rri=sup{y = e zero solution of (1) is

posing more conditions on the perturbations and ex- ' ’
ploiting this information accordingly. More precisely, o with |67;| <, i=1,...,m}. (4)
first time-varying perturbations are considered ifi-a

analysis framework. Next it is shown how the derived !N the next paragraph several lower bounds on the
explicit bounds on the stability can be improved for aPove stability radii are derived. Such lower bounds
correspond taobust stability conditions

asymptotically stable for all constant



2.2 Feedback interconnection point of view

We factorize

A; = B;C;, B; € Ran,;’ C; € Rnixn, 1=1,...,m,

(5)
where all B; have full column rank, al; have full
row rank, and we lek = > | n;.

Foru € L([0, o], R™), lety = Gu be defined by

—i—ZAm (t—m)
Z < Bplu(t), z(0) =

y(t) = [w101 w1 ().
Clearlyy € £4(]0, 00], R™). By the asymptotic stabil-

( Aol‘

0, 0 <0,

Lemma 2.Assume thator; ()| < u, forallt > 0 and
1 <7< m.Then

Dlle, < V7/4 [ 1lloo- 9)
Proof. Expression (9) follows from

IDlle, = max 157 e,
and Lemma 1. O

By combining the above lemmas we arrive at the main
result of this section:

Proposition 1. We have the following estimate:

L (6wl )

VA

rd > (10)

ity of the unperturbed system and Parseval’s theorem

the Lo-induced norm ofj satisfies

19l 2. = IG(jw) ..,
where
w16’1
G(jw) = jw
Wy, Oy . (6)
. (]wl — AO — Z Aie_jw‘ri> [Bl “ee Bm] .
i=1
Next, we let

SV 1 L5([0,00),RY) — Lo([0,00),RY),
(876) (1) = - / L s,

Wi Jt—r;—w;67;(t)

wherev € N, i € {1,...,m}, andé € Ly(R,RY)

satisfies
w-{i0z0 o
By defining
D : Ly([0, 00),R™) — L5([0, o0), R™),
('Df)(t) = diag((s?lgl)(t)v EE) (S:angm)(t))(é)
where £(t) =[] (1)~ &L(0]T, with &(t) €
R™ ¢=1,...,m,we caninterpret the system (1) as

afeedback interconnectioof G andD.

Remark 1.If some of the matricesl;, i = 1,...,m,
have low rank, thed andD haven < nm inputs and
outputs, which is due to the factorization (5)

2.3 Time-varying perturbations

As a first step we characterize the inducég gain
of D. We need the following result from Shustin and
Fridman (2007, 2006):

Lemma 1.Assume that/ér;(t)| < u; for all ¢t >
0. Then the induced’; norm of S is bounded by

Proof. From the small gain theorem we have that if

1Gllz. [Pllz, = GG IHa [Plle, <1, (11)

then the feedback interconnection®@fandD is L,-
stable, which induces the asymptotic stability of the
zero solution of (1). Under the assumptions of Lemma
2 the condition (11) is fulfilled if

VT/AG(w0) e [lplloe < 1. 12
The assertion of the proposition follows. O

Proposition 1 can be strengthened by an appropriate
scaling in the feedback loop. More precisely, with the
set7 defined as

T= {diag(Tl,...,Tm):
det Ty #0, i =1,...,

Tl e C'I’L7 ><77.1,,

m}, (13)

we get:

Proposition 2. We have the following estimate:

-1
rd > a7 <1Tn€19HTG(jw)T—1HHw) . (14

Remark 2.The optimization problem

i TG T,

can be reformulated as

il
such that
>0, U0Ue€T,U=U">0,

G(jw)*UG(jw) —7*U < 0, Yw >0, (15)

whereT' can be computed fro = T*T. Hence,
a good scaling matri” in (14) can for instance be
obtained by relaxing (15) to values®fon a frequency
grid and solving the resultingonvexoptimization
problem.



Remark 3.If the delay perturbations are such that the roots to the imaginary axis, that is, if (18) has no solu-
functions tions. Based on this observation we have the following
Fost— 1 — widmi(t), i=1 m result, which makes use of structured singular values
¢ A T (see the appendix for a short introduction):
are non-decreasing, then the factgf /4 in (10) and
(14) can be replaced with This follows from the fact ~ Proposition 3. Define the uncertainty set
that in such casgS? ||z, < pi if [07;(¢)] < p; for all ) ,
t > 0, see Fridman and Shaked (2006). A= {dioglditns, o dnlnn) i € G 1 <8 %1;7;}'
For improvements of Lemma 1 for the case where the Then
delays are differential functions with a given upper S\t
bound on their derivatives, we refer to Shustin and 2 (i‘i%NAG(JW)> ’ (20)
Fridman (2006). -
where ua(+) is the structured singular value w.r.t.
(19).
2.4 Time-invariant perturbations
Proof. From (18) and the fact thd®(jw) € A for all
We reconsider the estimates for the stability radii , > 0, a sufficient stability condition is given by
under the additional assumption of constant delay
. . , 1
perturbations. Then improvements can be made by ID(jw)|2 < ——=——, Yw > 0.
decoupling the signals in the frequency domain, and pa(Gw))
by further exploiting the structure in the problem This condition is satisfied if

under consideration. 5 )
Tloo < G(jw))) ~, Vw >0,
Let the entire functions; be defined as ol (na(G(w))
which leads to the statement of the proposition. O

1— e—)\(wién)

si(\) = e T DY , AFO Because the exact computation of the structured singu-
’ ! o lar of a complexi x 7 matrix M w.r.t. the uncertainty
1, A=0 ; i
. structure (19) is a hard problemyifi is large [Toker
1=1,...,m.

andOzbay (1995)], the available numerical algorithms
As they satisfy typically compute lower and upper bounds, see the
appendix. We have for instance

_—jw(widr) in widTi M) < mi TMT ! 21
151 ()| S‘l e J < smwg w < ér, pa(M) < 79161901( ), (21)
w; W W i .
2 whereT is given by (13) and () = || - ||2. The com-
Yw =0, (16) putation of the upper bound in (21) can be formulated
we obtain as aconvexoptimization problem, using the arguments

spelled out in Remark 2.

157 e, = llsi Gyl <07 (17) iy : .

From Proposition 3 and the estimate (21) we obtain:

This result can also be derived in the time-domain, see
[Fridman and Shaked (2006)]. Denote with

—1
Ty > <sup min ||T1G(jw)T||2> . (22)
. w>0 TET
D(A) = dlag(sl()\)l—nm RN} Sm()\).[nm) N
It is instructive to compare expressions (22) and (14),

transfer function associated with the operafyrde- )
the latter corresponding to:

fined in (8). From (16) it follows that

—1
”-D(jw)”?-tOQ < T 7,;1' > < /7/4 jmelg Sli}())||T1G(jw)T||2> )
The characteristic equation of (1) can be written on the ) i
imaginary axis as Besides th_e factog_ /7/4 (du_e to the better estimate
of ||S¥||z, in the time-invariant case), the outer and
m inner optimization have been inter-changed, that is,
det <jw] — Ay — Z Aiejuﬂ'i> the scaling has become frequency dependent in (22).
=1

~det (I — G(jw)D(jw)) = 0, (18) Further improvements of the estimate (20) can be
made by using the smallest possible upper bound on
where the first factor is nonzero for all> 0 because  |s;(jw)| instead of (16). The price to be paid is that the
the unperturbed system is assumed to be asymptoti-expression for the stability radius is no longer explicit.
cally stable. The perturbed system is asymptotically The following result slightly generalizes Theorem 3 of
stable if the perturbations cannot shift characteristic Huang and Zhou (2000):



Proposition 4. Lets : R, — Ry,
sin(w), w<
(23)

1, w >

SN RN

DefineF : Ry \ {0} — Ry,

wiow
25 () ©
S B) 1
a — F(a) :=sup pa :
w>0

95 (w,,;xw) .,

m -1
. (]u}[ — AO — Z Aiejwﬂ>

i=1
-[B1...Bnl),

(24)
wherepua (+) is the structured singular value w.r.t. the
uncertainty set (19).

If F(o) < 1, thenr? > a.. Consequently,

ry >sup{a>0: Fla) <1}. (25)

Proof. The proof is based on an additional scaling
within the feedback loop. Equation (18) is equivalent
with

det(I = A w; @)G(jw) D(jw)A(w; a)) =0,
where

Jwwi
o (%) Ingy.. .,

By construction, we have

F(a) = sup pa (A~ (@3 a)G(jw)).

w>0

JwWWm

2 (wzw)I”’") |

A(w; a) = diag (

Furthermore, the structure &f(jw) is not affected by
the post-multiplication withA(w; «). Hence, under
the assumptiod'(«) < 1, the system is stable if

[A(w; @)D(jw)ll2 <1, Yw >0
1— efjwwiﬁri

= o Twiaw\ <1, sz(),z:l,,m
2s (+13)

0 ()| 0,1
—_— , Vw=>0,1=1,...,m
5 (75)
S lonl<a,i=1,...,m.
The assertion of the proposition follows. O
Remark 4.Since for allw > 1 andi = 1,...,m, we
have
sin W 0T W
sup % =1, Yw >0,
orl<a| 5 (45)

a further improvement of the estimate (25) can only

3. UNCERTAINTY IN COEFFICIENT MATRICES
AND DELAYS

We consider the uncertain system

#(t) = (Ao + Do 6 Ao(t) Eo) x(t) (26)
+ 3 (A + D; 0Ai(t) E) a(t — 75 — widTi(t)),
i=1

under appropriate initial conditions. The uncertainty is
expressed by the piece-wise continuous functions

8A; € Loo([0, 00), R™*™)) 4 =0,...,m,
01 € Loo([0, 00), [T, 00)), i =1,...,m,
(27)
while D; € R™ "™ and E; € R"*" are weight
matrices, andv; > 0 are scalar weights.

The dynamic stability radius of the unperturbed sys-
tem (2) w.r.t. thecombineduncertainty in (26) is de-
fined as

rd =:sup {y > 0 : the zero solution of (26) is

asymptotically stable for all functions 6 A;(t)

and d7(t) with esssup |[0A4; ()|l <75, i=0,...,m

t>0
and ess sup, 5 |67i(t)| <v, i =1,...,m}.
(28)

The corresponding static stability raditSis defined
in a similar way, by assuming time-invariant perturba-
tions.

From an analysis point of view the main difference
w.r.t. case discussed in the previous section is the
nonlineardependence of the righthand side of (26) on
the uncertainty, in particular, on the productsdof;
andz(t — 7; — w;d7;). This problem can be overcome
by introducing additional input and outputs [Fridman
and Shaked (2006)]. First, |&B;, C;, A;, D;, E; be
such that

4%+Dﬁ&uﬂ2=B4AHwaqu)a,

t=1,...,m,

where eaclC; € R™*" has full row rank. A trivial
choice is given by

B =C =1,
E’i = Ei7

yet it is beneficial if a decomposition can be cho-
sen whererank(C;) = n; < n (as this leads to

be achieved by exploiting phase information in the smallerblock sizes in the uncertainty structure). Next,
feedback loop, which is not possible with the adopted we write (26) as the feedback interconnection of the

u approach.

system



T = {diag(tofnm e ,tmInm,Tl, e ,Tm) N
#(t) = Aox(t +ZA90 t>0,i=0,...,m, T, € C**"_ (32)
= m detT; #0,i=1,...,m},
+Dotio(t Z iDiiii(t) + Y Bidiui(t),  we obtain:

i=1 =1 -1
Jo(t) = Eoz(t), } rd > <min|T1G(jw; \/7/4)T||Hm> :
gi(t) ZEiCi.%‘(t—Ti)+E¢ui7 t=1,...,m, TeT
yi(t) = —CwiCij:(t), 1= 1,...,m,

(29)
where¢ > 0 and the control loop is closed with

ﬂl(t):(SAz(t) gi(lf), i:O,...,m,

1 -
u;(t) = E(S}“ yi)(t), i=1,....m

Using this feedback interconnection point of view,
lower bounds on the stability radii can be derived
analogously as in the case where only the delays are
uncertain, which we have discussed in the previous
section. In the sequel, we therefore restrict ourselvesThen
to formulating the main results.

3.2 Time-invariant perturbations

Taking into account the structure of the feedback path
(30) (30) and the estimate (17), we arrive at:

Proposition 6. Define the uncertainty set

A= {dlag(Ao, . .7Am,d1[ﬁ,1, ‘e .,dmlﬁm) :
A; E(Cnixni,dj eC,
1=0,....,m, 1 <j<m}.

(33)

-1
e > (Sg%MA(G(jW; 1))) .
Remark 5.The nonlinear dependence of the right B

hand side of (26) on the uncertainty can alternatively
be removed by a transformation to a descriptor system.
Such an approach is proposed in (Wagenknetht,
2007, Section 2.1)

Using the scaling based upper bound on the structured
singular value, described in the appendix, we arrive at:

-1
s> s in |77'G(jw; 1)T
12> (sup pin |76 7]

) . . where7 is given by (32).
3.1 Time-varying perturbations

Let G be the transfer function of (29), that is, An improvement of estimate (17) finally leads to:

Ey T Proposition 7. Let the functions : R, — Ry be
e T E1Cl given by (23) Defind™ : R+ \ {0} — R+,
- a— F(a) = sup pa (G2(jw; @), (34)
G\ Q= | e EnCn w>0
—CwiACy where
i oon~ ]
L —CwmACm i e ATl aFE1Cq
m -1 .
A — Ag — Aie_ATi . ATm EmCm
[ ; ‘| Ga2(A; @) = ‘ (w?aw)
~ ~ ~ —2s Cl
[Do BiD1 -+ By D BiA1 -+ BmAp] + 2
ro---0 0 7 :
0 El —2s (wmaw) Cm
. L 2 i
m —1
Em (31) _ AT
. ; lAI Ao Z;Aze ]
. . [DO Blbl "'mem BlAl "'Bm/]m} +
L0 e 0 fo--- 0 0 ]
0 aEl
Proposition 5. We have the following estimate: _
1 aby, (35)
. - 0 0
vt > (1GGw VIDln) , |
Lo 0 |
This proposition can again be strengthened by an
X . ) If F(a) <1,thenr? > a. I
appropriate scaling in the feedback loop. With the set (@) <1, thenr > a. Consequently,
T defined as re Zsup{a>0: F(a) <1}. (36)
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Appendix A. THE STRUCTURED SINGULAR
VALUE

1993, Lemma 6.3)] to non-square block diagonal per-
turbations, the search space of the optimization in the
right hand side of (A.5) can be restricted. This results

We introduce the concept of structured singular valuesin

of matrices and outline the main principles behind the
standard computational schemes. A more elaborate

introduction can be found in the review paper [Packard wherel{ C A is defined as

and Doyle (1993)], Chapter 11 of [Zhat al. (1995)]
and Chapter 4 of [Hinrichsen and Pritchard (2005)].

Let G € CN*M and denote its singular values in
decreasing order witlr; (G) > o02(G) > .... A

:uA(G) = I[}lg&(TU(GU), (A7)
U = {diag(Uo, ..., Us,uolmgs -, usIpm,) :

Ui € CM*i ;€ C, o3 (U;) = 1,
1 <k <min(k;, 1;), Juj| =1,
0<i<f,0<j<s}.

classical result from linear algebra and robust control Note that the elements of areunitary matrices if the
theory, which lays the basis for the celebrated small uncertainty structure only involves square blocks, that

gain theorem, relates the largest singular valug' td
the solutions of the equation

det(I + GA) =0
in the following way:

01(G) = 0, if det(I + GA) #0, YA € CM*N,
! B ~1 otherwise,

m, -,

(A.1)

(A.2)
where

My = min {al(A) t A€ CMXN and det(T 4+ GA) = 0} .

We refer toA as the ‘uncertainty’, as in a robust
control framework, (A.1) typically originates from a
feedback interconnection of a nominal transfer func-
tion and an uncertainty block.

Next we reconsider the solutions of equation (A.1),
whereA is restricted to having a particular structure
by imposingA € A, with A a closed subset of
CM*N In analogy with (A.2) one defines trstruc-
tured singular valueof the matrixG with respect to
the uncertainty seA\ as

[0, det(I+GA) £0, VA € A,
na(G) = { ~1 otherwise.

ms s
(A.3)
where

ms =min {o1(A) : A € A and det(I + GA) = 0}.
It directly follows from the definition that
pa(G) < o1(G).
Furthermore, ifCA = A, then

(A.4)

= max
A€EA, o1 (A)=1

1a(G) o (GA), (A.5)

with r,(-) the spectral radius.

In what follows we restrict ourselves for simplicity to
an uncertainty seA of the form

A = {diag(Ao, ..., Ap,dolmy, -y dsT,) :
A; e CH¥liq; e C,
0<i<f,0<j<s},

(A.6)

where diag(-) represents a block diagonal matrix,
S ki3 mi = MandyS L L+ 35 m
N. Such a set satisfi€@A = A. Furthermore, based

on a slight generalization of [(Packard and Doyle,

iS,k; =1;, i = 1,....f.
Next, the following invariance property can easily be
checked:

pa(G) = pa(D2GDY), ¥(Dy, Do) € D, (A8)
where
D := {(Dy,D>) :
D1 = diag(aolkl,. . ,aflkf,Do, ey DS>,
D2 = diag(aOIll, ce ,afIlf,Do, e ,Ds) :
a; >0,D; € (CWHXWH,.D;IK =D; > O} .

From (A.7) and the combination of (A.8) and (A.4) we
finally obtain

glg&(rg(GU) =pa(G) < o1(D,GDT ).

(A.9)
Therefore pptimizationprocedures are typically used
to compute estimates fora (G). The functionU e
U — r,(GU) may have several local maxima and, for
this, a local search for a maximum is not guaranteed
to lead toua (G), but to lower bounds. An appropriate
formulation of the optimality condition enables algo-
rithms which resemble power algorithms for comput-
ing eigenvalues and singular values, see Ref. [Packard
et al. (1988)] for an example. Although the conver-
gence of such algorithms joa (G) is not guaranteed
either and they may converge to values corresponding
to lower bounds oma (G), they have proven their ef-
fectiveness in practise. The computation of the upper-
bound in (A.9) can be recast into a standewdvex op-
timizationproblem. However, in generala (G) is not
equal to the upper-bound. An exception to this holds
if the number of blocks in the matrices belonging to
the uncertainty seA satisfiesf + 2s < 3 and all the
blocks are squaré; = 1;, i =0,..., f.

min
(D1,D3)€D



