
HAL Id: hal-02293038
https://hal.science/hal-02293038

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On stability radii in delay parameters
Wim Michiels, Emilia Fridman, Silviu-Iulian Niculescu

To cite this version:
Wim Michiels, Emilia Fridman, Silviu-Iulian Niculescu. On stability radii in delay parameters.
7th IFAC Workshop on Time Delay Systems TDS 2007, Sep 2007, Nantes, France. pp.322-329,
�10.1016/S1474-6670(17)69308-X�. �hal-02293038�

https://hal.science/hal-02293038
https://hal.archives-ouvertes.fr


ON STABILITY RADII IN DELAY PARAMETERS

Wim Michiels ∗ Emilia Fridman ∗∗

Silviu-Iulian Niculescu ∗∗∗

∗ Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
E-mail: Wim.Michiels@cs.kuleuven.be

and
Department of Mechanical Engineering,

Eindhoven University of Technology
PO Box 513, 5300 MB Eindhoven, the Netherlands

∗∗ Department of Electrical Engineering, Tel-Aviv University,
Tel-Aviv, 69978, Israel

E-mail: emilia@eng.tau.ac.il

∗∗∗ L2S (UMR CNRS 8506), CNRS-Supélec,
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Abstract: This paper focuses on the robust stability analysis of a class of linear systems in-
cluding multiple delays subjected to constant or time-varying perturbations. The approach
considered makes use of appropriate stability radius concepts (dynamic, static) and relies
on a feedback interconnection interpretation of the uncertain system. Various computable
bounds on stability radii are obtained that exploit the structure of the problem. Systems
including perturbations on both system matrices and delays are also dealt with.
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1. INTRODUCTION

It is well-known that the characterization of stability
regions in the parameter space for time-delay sys-
tems is a difficult problem (see, e.g. [Diekmannet
al. (1995)], and the references therein). Furthermore,
the characterization in the delay parameter space for
linear systems with multiple delays isNP-hard as
proven by [Toker and̈Ozbay (1996)].

Stability radii are well known in the context of ma-
trix distance problems, see Hinrichsen and Pritchard
(2005) and the references therein. Recently, they have
been used to assess or optimize robustness of stability
of linear time-delay systems subjected to structured

uncertainty on the corresponding system matrices in
Michiels et al. (2006); Michiels and Roose (2003). In
this context stability radii correspond to the size of the
smallest perturbations that render the system unstable.

The aim of this paper is to adopt the concept of sta-
bility radii to linear systems including multiple de-
lays subject to constant or time-varying perturbations
on the delay parameters, and to derive computable
expressions. The case of constant perturbations for
a class of quasi-polynomials including two delays
was addressed in a geometrical setting in [Guet al.
(2007)], where the authors introduced the notion of
delay deviation. The idea can be resumed in com-
puting the distance between the “nominal” point (in



the delay parameter space) and the “closest” crossing
curve for which there exists at least one characteristic
root on the imaginary axis. Such a delay deviation
characterization is nothing else than a characterization
of astability radiusin the delay parameter space.

The approach considered in this paper is quite distinct
to the one mentioned above. First, we will introduce
two appropriate notions of stability radii:static and
dynamic, in order to characterize constant and time-
varying perturbations on the nominal system’s param-
eters. These stability radii are scalar robustness mea-
sures based on an a priori chosen weighting of the
perturbations of delays and -as we shall discuss at
the end- system matrices. Secondly, we will employ a
feedback interconnection interpretation of the uncer-
tain system in order to derive estimates for the defined
stability radii. Note that a similar point of view was
taken in (Guet al., 2003, Chapter 3); Kao and Lin-
coln (2004); Fridman and Gil’ (2006); Fridman and
Shaked (2006); Shustin and Fridman (2007) (L2 gain
analysis applied to systems with time-varying delay
perturbations), Huang and Zhou (2000) (µ analysis
applied to systems with constant delay perturbations)
and Michielset al. (2006); Wagenknechtet al. (2007)
(pseudospectra and stability radii for nonlinear eigen-
value problems), and some of the references therein.
In the present paper the robust stability characteriza-
tions in these references are combined and extended
in a unifying framework, and reformulated in terms
of appropriately defined stability radii. Finally, in Kao
and Rantzer (2007) and the references therein the
IQC approach is applied to deal with time-varying
delays, leading to easy-to-check stability conditions
expressed as LMIs, under the assumption that the cor-
responding delay-free system is asymptotically stable.
Such an assumption will not be made in this paper.

Although in the case of uncertainty on the delays the
feedback interconnection point of view and related
tools from robust control will typically lead to ex-
pressions for lower bounds on stability radii (corre-
sponding to sufficient yet not necessary robust stabil-
ity conditions), as we shall see, they offer several ad-
vantages. Explicit computable expressions for bounds
are namely obtained that impose no limitations on the
number of delays and the dimension of the problem.
Also time-varyingperturbations andcombinedpertur-
bation on delays and system matrices (matrix valued
perturbations) can be easily dealt with, as we shall
demonstrate. Finally the interconnection framework is
appropriate for solving associated synthesis problems.
The latter issue will however not be further addressed
in this paper.

The paper adopts a step-by-step approach, by im-
posing more conditions on the perturbations and ex-
ploiting this information accordingly. More precisely,
first time-varying perturbations are considered in aL2

analysis framework. Next it is shown how the derived
explicit bounds on the stability can be improved for

the special case of constant perturbations, where be-
sides the inherent increase of the stability radii (due
to the restriction of the perturbations), the structure of
the interconnection can be better exploited by using
frequency domain techniques. Finally, implicit expres-
sions are given which rely on exploiting all structure
of the problem and leave conservatism only in the fact
that phase information is not fully exploited in the
feedback loop (inherent to the adopted approach). For
reasons of simplicity and clarity of the presentation
the cases of uncertainty on delays only and of uncer-
tainty on both delays and system matrices are treated
separately. The notations are standard.

2. UNCERTAINTY ON THE DELAYS

2.1 Concept

We address the uncertain system

ẋ(t) = A0x(t) +
m∑

i=1

Aix(t− τi − wiδτi(t)),

x(θ) = φ(θ), −η ≤ θ ≤ 0, φ ∈ C([−η, 0],Rn),
(1)

wherex(t) ∈ Rn, η > 0, Ai ∈ Rn×n andτi ≥ 0.
The uncertainty on the delays is modeled by uniformly
bounded scalar functionst ∈ [0, ∞] → δτi(t) and
scalar weightswi > 0, which are such that

wiδτi(t) ≥ −τi, ∀t ≥ 0, i = 1, . . . ,m.

We assume that the zero solution of the corresponding
unperturbed system

ẋ(t) = A0x(t) +
m∑

i=1

Aix(t− τi),

x(θ) = φ(θ), −η ≤ θ ≤ 0,

(2)

is asymptotically stable.

The dynamicstability radiusrd
τ of the system (2) w.r.t.

the delays is defined as:

rd
τ := sup {γ ≥ 0 : the zero solution of (1) is
asymptotically stable for all functions δτ (t)

satisfying sup
t≥0

|δτi(t)| ≤ γ, i = 1, . . . ,m

}
. (3)

Note that, althoughrd
τ explicitly depends on the

weightswi, this dependence is suppressed in the nota-
tion, for reasons of simplicity.

Similarly, if the uncertainty on the delay is assumed
time-invariant then the staticstability radiusw.r.t. the
delays is defined as:

rs
τ := sup {γ ≥ 0 : the zero solution of (1) is

asymptotically stable for all constant
δτ with |δτi| ≤ γ, i = 1, . . . ,m} . (4)

In the next paragraph several lower bounds on the
above stability radii are derived. Such lower bounds
correspond torobust stability conditions.



2.2 Feedback interconnection point of view

We factorize

Ai = BiCi, Bi ∈ Rn×ni , Ci ∈ Rni×n, i = 1, . . . ,m,
(5)

where allBi have full column rank, allCi have full
row rank, and we let̂n =

∑m
i=1 ni.

Foru ∈ L2([0, ∞],Rn̂), let y = Gu be defined by



ẋ(t) = A0x(t) +
m∑

i=1

Aix(t− τi)

+
m∑

i=1

[B1 · · ·Bm]u(t), x(θ) = 0, θ ≤ 0,

y(t) = [w1C
T
1 · · ·wmCT

m]T ẋ(t).

Clearlyy ∈ L2([0,∞],Rn̂). By the asymptotic stabil-
ity of the unperturbed system and Parseval’s theorem
theL2-induced norm ofG satisfies

‖G‖L2 = ‖G(jω)‖H∞ ,

where

G(jω) = jω




w1C1

...
wmCm


 ·

·
(

jωI −A0 −
m∑

i=1

Aie
−jωτi

)−1

[B1 . . . Bm] .

(6)

Next, we let

Sν
i : L2([0,∞),Rν) 7→ L2([0,∞),Rν),

(Sν
i ξ) (t) =

1
wi

∫ t−τi

t−τi−wiδτi(t)

ξ̃(s)ds,

whereν ∈ N, i ∈ {1, . . . , m}, and ξ̃ ∈ L2(R,Rν)
satisfies

ξ̃(t) =
{

ξ(t), t ≥ 0,
0, t < 0.

(7)

By defining

D : L2([0, ∞),Rn̂) 7→ L2([0, ∞),Rn̂),
(Dξ)(t) = diag((Sn1

1 ξ1)(t), . . . , (Snm
m ξm)(t)),

(8)
where ξ(t) = [ξT

1 (t) · · · ξT
m(t)]T , with ξi(t) ∈

Rni , i = 1, . . . ,m , we can interpret the system (1) as
a feedback interconnectionof G andD.

Remark 1.If some of the matricesAi, i = 1, . . . , m,
have low rank, thenG andD haven̂ < nm inputs and
outputs, which is due to the factorization (5)

2.3 Time-varying perturbations

As a first step we characterize the inducedL2 gain
of D. We need the following result from Shustin and
Fridman (2007, 2006):

Lemma 1.Assume that|δτi(t)| ≤ µi for all t ≥
0. Then the inducedL2 norm of Sν

i is bounded by√
7/4µi.

Lemma 2.Assume that|δτi(t)| ≤ µi for all t ≥ 0 and
1 ≤ i ≤ m. Then

‖D‖L2 ≤
√

7/4 ‖µ‖∞. (9)

Proof. Expression (9) follows from

‖D‖L2 = max
1≤i≤m

‖Sni
i ‖L2

and Lemma 1. 2

By combining the above lemmas we arrive at the main
result of this section:

Proposition 1.We have the following estimate:

rd
τ ≥

1√
7/4

(‖G(jω)‖H∞
)−1

. (10)

Proof. From the small gain theorem we have that if

‖G‖L2 ‖D‖L2 = ‖G(jω)‖H∞‖D‖L2 < 1, (11)

then the feedback interconnection ofG andD is L2-
stable, which induces the asymptotic stability of the
zero solution of (1). Under the assumptions of Lemma
2 the condition (11) is fulfilled if

√
7/4 ‖G(jω)‖H∞ ‖µ‖∞ < 1. (12)

The assertion of the proposition follows. 2

Proposition 1 can be strengthened by an appropriate
scaling in the feedback loop. More precisely, with the
setT defined as

T =
{
diag(T1, . . . , Tm) : Ti ∈ Cni×ni ,

det Ti 6= 0, i = 1, . . . , m} , (13)

we get:

Proposition 2.We have the following estimate:

rd
τ ≥

1√
7/4

(
min
T∈T

∥∥TG(jω)T−1
∥∥
H∞

)−1

. (14)

Remark 2.The optimization problem

min
T∈T

∥∥TG(jω)T−1
∥∥
H∞

can be reformulated as

min
U,γ

γ,

such that

γ > 0, U ∈ T , U = U∗ > 0,

G(jω)∗UG(jω)− γ2U < 0, ∀ω ≥ 0, (15)

whereT can be computed fromU = T ∗T . Hence,
a good scaling matrixT in (14) can for instance be
obtained by relaxing (15) to values ofω on a frequency
grid and solving the resultingconvexoptimization
problem.



Remark 3.If the delay perturbations are such that the
functions

t 7→ t− τi − wiδτi(t), i = 1, . . . ,m,

are non-decreasing, then the factor
√

7/4 in (10) and
(14) can be replaced with1. This follows from the fact
that in such case‖Sν

i ‖L2 ≤ µi if |δτi(t)| ≤ µi for all
t ≥ 0, see Fridman and Shaked (2006).

For improvements of Lemma 1 for the case where the
delays are differential functions with a given upper
bound on their derivatives, we refer to Shustin and
Fridman (2006).

2.4 Time-invariant perturbations

We reconsider the estimates for the stability radii
under the additional assumption of constant delay
perturbations. Then improvements can be made by
decoupling the signals in the frequency domain, and
by further exploiting the structure in the problem
under consideration.

Let the entire functionssi be defined as

si(λ) =





e−λτi
1− e−λ(wiδτi)

wi λ
, λ 6= 0

1, λ = 0
,

i = 1, . . . , m.

As they satisfy

|si(jω)| ≤
∣∣∣∣
1− e−jω(wiδτi)

wi ω

∣∣∣∣ ≤
∣∣∣∣∣
sin wiδτi

2 ω
wi

2 ω

∣∣∣∣∣ ≤ δτi,

∀ω ≥ 0, (16)

we obtain

‖Sν
i ‖L2 = ‖si(jω)Iν‖H∞ ≤ δτi. (17)

This result can also be derived in the time-domain, see
[Fridman and Shaked (2006)]. Denote with

D(λ) := diag(s1(λ)In1 , . . . , sm(λ)Inm)

transfer function associated with the operatorD, de-
fined in (8). From (16) it follows that

‖D(jω)‖H∞ ≤ δτ .

The characteristic equation of (1) can be written on the
imaginary axis as

det

(
jωI −A0 −

m∑

i=1

Aie
−jωτi

)
·

· det (I −G(jω)D(jω)) = 0, (18)

where the first factor is nonzero for allω ≥ 0 because
the unperturbed system is assumed to be asymptoti-
cally stable. The perturbed system is asymptotically
stable if the perturbations cannot shift characteristic

roots to the imaginary axis, that is, if (18) has no solu-
tions. Based on this observation we have the following
result, which makes use of structured singular values
(see the appendix for a short introduction):

Proposition 3.Define the uncertainty set

∆ := {diag(d1In1 , . . . , dmInm) : di ∈ C, 1 ≤ i ≤ m} .
(19)

Then

rs
τ ≥

(
sup
ω≥0

µ∆G(jω)
)−1

, (20)

where µ∆(·) is the structured singular value w.r.t.
(19).

Proof. From (18) and the fact thatD(jω) ∈ ∆ for all
ω ≥ 0, a sufficient stability condition is given by

‖D(jω)‖2 <
1

µ∆(G(jω))
, ∀ω ≥ 0.

This condition is satisfied if

‖δτ‖∞ < (µ∆(G(jω)))−1
, ∀ω ≥ 0,

which leads to the statement of the proposition.2

Because the exact computation of the structured singu-
lar of a complex̂n× n̂ matrixM w.r.t. the uncertainty
structure (19) is a hard problem ifm is large [Toker
andÖzbay (1995)], the available numerical algorithms
typically compute lower and upper bounds, see the
appendix. We have for instance

µ∆(M) ≤ min
T∈T

σ1(TMT−1), (21)

whereT is given by (13) andσ1(·) = ‖ · ‖2. The com-
putation of the upper bound in (21) can be formulated
as aconvexoptimization problem, using the arguments
spelled out in Remark 2.

From Proposition 3 and the estimate (21) we obtain:

rs
τ ≥

(
sup
ω≥0

min
T∈T

‖T−1G(jω)T‖2
)−1

. (22)

It is instructive to compare expressions (22) and (14),
the latter corresponding to:

rd
τ ≥

(√
7/4 min

T∈T
sup
ω≥0

‖T−1G(jω)T‖2
)−1

.

Besides the factor
√

7/4 (due to the better estimate
of ‖Sν

i ‖L2 in the time-invariant case), the outer and
inner optimization have been inter-changed, that is,
the scaling has become frequency dependent in (22).

Further improvements of the estimate (20) can be
made by using the smallest possible upper bound on
|si(jω)| instead of (16). The price to be paid is that the
expression for the stability radius is no longer explicit.
The following result slightly generalizes Theorem 3 of
Huang and Zhou (2000):



Proposition 4.Let s : R+ → R+,

ω 7→ s(ω) :=





sin(ω), ω ≤ π

2
1, ω ≥ π

2
.

(23)

DefineF : R+ \ {0} → R+,

α → F (α) := sup
ω≥0

µ∆







2s
(w1αω

2

)
C1

...

2s
(wmαω

2

)
Cm


 ·

·
(

jωI −A0 −
m∑

i=1

Aie
−jωτi

)−1

· [B1 . . . Bm]) ,
(24)

whereµ∆(·) is the structured singular value w.r.t. the
uncertainty set (19).
If F (α) < 1, thenrs

τ ≥ α. Consequently,

rs
τ ≥ sup {α > 0 : F (α) < 1} . (25)

Proof. The proof is based on an additional scaling
within the feedback loop. Equation (18) is equivalent
with

det(I − Λ−1(ω; α)G(jω) D(jω)Λ(ω; α)) = 0,

where

Λ(ω; α) = diag

(
jωw1

2s
(

w1αω
2

) In1 , . . . ,
jωwm

2s
(

w1αω
2

) Inm

)
.

By construction, we have

F (α) = sup
ω≥0

µ∆(Λ−1(ω; α)G(jω)).

Furthermore, the structure ofD(jω) is not affected by
the post-multiplication withΛ(ω; α). Hence, under
the assumptionF (α) < 1, the system is stable if

‖Λ(ω; α)D(jω)‖2 < 1, ∀ω ≥ 0

⇔
∣∣∣∣∣
1− e−jωwiδτi

2s
(

wiαω
2

)
∣∣∣∣∣ < 1, ∀ω ≥ 0, i = 1, . . . , m

⇔
∣∣∣∣∣
sin

(
wiδτiω

2

)

s
(

wiαω
2

)
∣∣∣∣∣ < 1, ∀ω ≥ 0, i = 1, . . . , m

⇔ |δτi| < α, i = 1, . . . , m.

The assertion of the proposition follows. 2

Remark 4.Since for allω ≥ 1 andi = 1, . . . , m, we
have

sup
|δτi|<α

∣∣∣∣∣
sin

(
wiδτiω

2

)

s
(

wiαω
2

)
∣∣∣∣∣ = 1, ∀ω ≥ 0,

a further improvement of the estimate (25) can only
be achieved by exploiting phase information in the
feedback loop, which is not possible with the adopted
µ approach.

3. UNCERTAINTY IN COEFFICIENT MATRICES
AND DELAYS

We consider the uncertain system

ẋ(t) = (A0 + D0 δA0(t) E0) x(t) (26)

+
m∑

i=1

(Ai + Di δAi(t) Ei) x(t− τi − wiδτi(t)),

under appropriate initial conditions. The uncertainty is
expressed by the piece-wise continuous functions

δAi ∈ L∞([0, ∞),Rni×ni), i = 0, . . . , m,
δτi ∈ L∞([0, ∞), [−τi, ∞)), i = 1, . . . , m,

(27)
while Di ∈ Rn×ni and Ei ∈ Rni×n are weight
matrices, andwi > 0 are scalar weights.

The dynamic stability radius of the unperturbed sys-
tem (2) w.r.t. thecombineduncertainty in (26) is de-
fined as

rd
c =: sup {γ ≥ 0 : the zero solution of (26) is
asymptotically stable for all functions δAi(t)
and δτ (t) with ess sup

t≥0
‖δAi(t)‖2 ≤ γ, i = 0, . . . , m

and ess supt≥0|δτi(t)| ≤ γ, i = 1, . . . , m
}

.
(28)

The corresponding static stability radiusrs
c is defined

in a similar way, by assuming time-invariant perturba-
tions.

From an analysis point of view the main difference
w.r.t. case discussed in the previous section is the
nonlineardependence of the righthand side of (26) on
the uncertainty, in particular, on the products ofδAi

andx(t− τi−wiδτi). This problem can be overcome
by introducing additional input and outputs [Fridman
and Shaked (2006)]. First, letBi, Ci, Ãi, D̃i, Ẽi be
such that

Ai + Di δAi(t) Ei = Bi

(
Ãi + D̃i δAi(t) Ẽi

)
Ci,

i = 1, . . . , m,

where eachCi ∈ Rñi×n has full row rank. A trivial
choice is given by

Bi = Ci = I, Ãi = Ai, D̃i = Di,

Ẽi = Ei, i = 1, . . . , m,

yet it is beneficial if a decomposition can be cho-
sen whererank(Ci) = ñi < n (as this leads to
smallerblock sizes in the uncertainty structure). Next,
we write (26) as the feedback interconnection of the
system







ẋ(t) = A0x(t) +
m∑

i=1

Aix(t− τi)

+D0ũ0(t) +
m∑

i=1

BiD̃iũi(t) +
m∑

i=1

BiÃiui(t),

ỹ0(t) = E0x(t),
ỹi(t) = ẼiCix(t− τi) + Ẽiui, i = 1, . . . ,m,
yi(t) = −ζwiCiẋ(t), i = 1, . . . , m,

(29)
whereζ > 0 and the control loop is closed with





ũi(t) = δAi(t) ỹi(t), i = 0, . . . ,m,

ui(t) =
1
ζ
(S ñi

I yi)(t), i = 1, . . . ,m.
(30)

Using this feedback interconnection point of view,
lower bounds on the stability radii can be derived
analogously as in the case where only the delays are
uncertain, which we have discussed in the previous
section. In the sequel, we therefore restrict ourselves
to formulating the main results.

Remark 5.The nonlinear dependence of the right
hand side of (26) on the uncertainty can alternatively
be removed by a transformation to a descriptor system.
Such an approach is proposed in (Wagenknechtet al.,
2007, Section 2.1)

3.1 Time-varying perturbations

Let G be the transfer function of (29), that is,

G(λ; ζ) =




E0

e−λτ1 Ẽ1C1

...
e−λτm ẼmCm

−ζw1λC1

...
−ζwmλCm




·

[
λI −A0 −

m∑
i=1

Aie
−λτi

]−1

·
[
D0 B1D̃1 · · ·BmD̃m B1Ã1 · · ·BmÃm

]
+




0 · · · 0 0

0 Ẽ1

. . .

Ẽm

0 0
...

...
0 · · · 0




. (31)

Proposition 5.We have the following estimate:

rd
c ≥

(
‖G(jω;

√
7/4)‖H∞

)−1

.

This proposition can again be strengthened by an
appropriate scaling in the feedback loop. With the set
T defined as

T = {diag(t0In0 , . . . , tmInm , T1, . . . , Tm) :
ti > 0, i = 0, . . . , m, Ti ∈ Cñi×ñi ,

detTi 6= 0, i = 1, . . . ,m} ,
(32)

we obtain:

rd
c ≥

(
min
T∈T

‖T−1G(jω;
√

7/4)T‖H∞
)−1

.

3.2 Time-invariant perturbations

Taking into account the structure of the feedback path
(30) and the estimate (17), we arrive at:

Proposition 6.Define the uncertainty set

∆ := {diag(∆0, . . . , ∆m, d1Iñ1 , . . . , dmIñm
) :

∆i ∈ Cni×ni , dj ∈ C,
i = 0, . . . ,m, 1 ≤ j ≤ m} .

(33)
Then

rs
c ≥

(
sup
ω≥0

µ∆(G(jω; 1))
)−1

.

Using the scaling based upper bound on the structured
singular value, described in the appendix, we arrive at:

rs
c ≥

(
sup
ω≥0

min
T∈T

‖T−1G(jω; 1)T‖2
)−1

,

whereT is given by (32).

An improvement of estimate (17) finally leads to:

Proposition 7.Let the functions : R+ → R+ be
given by (23). DefineF : R+ \ {0} → R+,

α 7→ F (α) := sup
ω≥0

µ∆ (G2(jω; α)) , (34)

where

G2(λ; α) =




αE0

e−λτ1αẼ1C1

...
e−λτmαẼmCm

−2s

(
w1αω

2

)
C1

...

−2s

(
wmαω

2

)
Cm




·

[
λI −A0 −

m∑
i=1

Aie
−λτi

]−1

·
[
D0 B1D̃1 · · ·BmD̃m B1Ã1 · · ·BmÃm

]
+




0 · · · 0 0

0 αẼ1

. . .

αẼm

0 0
...

...
0 · · · 0




. (35)

If F (α) ≤ 1, thenrs
c ≥ α. Consequently,

rs
c ≥ sup {α > 0 : F (α) < 1} . (36)



4. CONCLUDING REMARKS

Stability radii of uncertain time-delay were defined
and lower bounds were derived using a feedback in-
terconnection point of view. Both constant and time-
varying perturbations were considered on the delays,
as well as delays and system matrices.

If information on the delays’ variation and / or deriva-
tives is available, then the derived estimates for the
dynamic stability radii may be further improved, as
we indicated in Remark 3.

Alternative estimates for the stability radii can be ob-
tained by rewriting the uncertain system as a feedback
interconnection, where the operatorD2 orD3,

D2(η)(t) = [(Sn1
1 η)(t) · · · (Snm

m η)(t)]T ,

D3(ζ)(t) =
m∑

k=1

(Snk

k ζk)(t),

appears in the feedback loop instead ofD. For par-
ticular cases, e.g. scalar systems with multiple time-
varying delays, this may lead to improved bounds.
This is currently under investigation.
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Appendix A. THE STRUCTURED SINGULAR
VALUE

We introduce the concept of structured singular values
of matrices and outline the main principles behind the
standard computational schemes. A more elaborate
introduction can be found in the review paper [Packard
and Doyle (1993)], Chapter 11 of [Zhouet al. (1995)]
and Chapter 4 of [Hinrichsen and Pritchard (2005)].

Let G ∈ CN×M and denote its singular values in
decreasing order withσ1(G) ≥ σ2(G) ≥ . . .. A
classical result from linear algebra and robust control
theory, which lays the basis for the celebrated small
gain theorem, relates the largest singular value ofG to
the solutions of the equation

det(I + G∆) = 0 (A.1)

in the following way:

σ1(G) =
{

0, if det(I + G∆) 6= 0, ∀∆ ∈ CM×N ,
m−1

u , otherwise,
(A.2)

where

mu := min
{

σ1(∆) : ∆ ∈ CM×N and det(I + G∆) = 0
}

.

We refer to∆ as the ‘uncertainty’, as in a robust
control framework, (A.1) typically originates from a
feedback interconnection of a nominal transfer func-
tion and an uncertainty block.

Next we reconsider the solutions of equation (A.1),
where∆ is restricted to having a particular structure
by imposing∆ ∈ ∆, with ∆ a closed subset of
CM×N . In analogy with (A.2) one defines thestruc-
tured singular valueof the matrixG with respect to
the uncertainty set∆ as

µ∆(G) :=
{

0, if det(I + G∆) 6= 0, ∀∆ ∈ ∆,
m−1

s , otherwise.
(A.3)

where

ms = min {σ1(∆) : ∆ ∈ ∆ and det(I + G∆) = 0} .

It directly follows from the definition that

µ∆(G) ≤ σ1(G). (A.4)

Furthermore, ifC∆ = ∆, then

µ∆(G) = max
∆∈∆, σ1(∆)=1

rσ(G∆), (A.5)

with rσ(·) the spectral radius.

In what follows we restrict ourselves for simplicity to
an uncertainty set∆ of the form

∆ := {diag(∆0, . . . , ∆f , d0Im0 , . . . , dsIms) :
∆i ∈ Cki×li , dj ∈ C,
0 ≤ i ≤ f, 0 ≤ j ≤ s} ,

(A.6)
where diag(·) represents a block diagonal matrix,∑f

i=0 ki +
∑s

i=0 mi = M and
∑f

i=0 li +
∑s

i=0 mi =
N . Such a set satisfiesC∆ = ∆. Furthermore, based
on a slight generalization of [(Packard and Doyle,

1993, Lemma 6.3)] to non-square block diagonal per-
turbations, the search space of the optimization in the
right hand side of (A.5) can be restricted. This results
in

µ∆(G) = max
U∈U

rσ(GU), (A.7)

whereU ⊆ ∆ is defined as

U := {diag(U0, . . . , Uf , u0Im0 , . . . , usIms
) :

Ui ∈ Cki×li , uj ∈ C, σk(Ui) = 1,
1 ≤ k ≤ min(ki, li), |uj | = 1,

0 ≤ i ≤ f, 0 ≤ j ≤ s} .

Note that the elements ofU areunitarymatrices if the
uncertainty structure only involves square blocks, that
is, ki = li, i = 1, . . . , f .
Next, the following invariance property can easily be
checked:

µ∆(G) = µ∆(D2GD−1
1 ), ∀(D1, D2) ∈ D, (A.8)

where

D := {(D1, D2) :
D1 = diag(a0Ik1 , . . . , afIkf

, D0, . . . , Ds),
D2 = diag(a0Il1 , . . . , afIlf , D0, . . . , Ds) :

ai > 0, Di ∈ Cmi×mi , D∗
i = Di > 0

}
.

From (A.7) and the combination of (A.8) and (A.4) we
finally obtain

max
U∈U

rσ(GU) = µ∆(G) ≤ min
(D1,D2)∈D

σ1(D2GD−1
1 ).

(A.9)
Therefore,optimizationprocedures are typically used
to compute estimates forµ∆(G). The functionU ∈
U → rσ(GU) may have several local maxima and, for
this, a local search for a maximum is not guaranteed
to lead toµ∆(G), but to lower bounds. An appropriate
formulation of the optimality condition enables algo-
rithms which resemble power algorithms for comput-
ing eigenvalues and singular values, see Ref. [Packard
et al. (1988)] for an example. Although the conver-
gence of such algorithms toµ∆(G) is not guaranteed
either and they may converge to values corresponding
to lower bounds onµ∆(G), they have proven their ef-
fectiveness in practise. The computation of the upper-
bound in (A.9) can be recast into a standardconvex op-
timizationproblem. However, in generalµ∆(G) is not
equal to the upper-bound. An exception to this holds
if the number of blocks in the matrices belonging to
the uncertainty set∆ satisfiesf + 2s ≤ 3 and all the
blocks are square,ki = li, i = 0, . . . , f .


