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SOME REMARKS ON VEHICLE FOLLOWING CONTROL SYSTEMS WITH DELAYS

In this paper, we consider the problem of vehicle following control with delay. To solve the problem of traffic congestion, one of the solutions to be considered consists in organizing the traffic into platoons, that is groups of vehicles including a leader and a number of followers "tightly" spaced, all moving in a longitudinal direction. Excepting the stability of individual cars, the problem of avoidance of slinky type effects will be explicitly discussed. Sufficient conditions on the set of control parameters to avoid such a phenomenon will be explicitly derived in a frequency-domain setting.

INTRODUCTION

Traffic congestion (irregular flow of traffic) became an important problem in the last decade mainly to the exponential increasing of the transportation around medium-and large-size cities. One of the ideas to help solving this problem was the use of automatic control to replace human drivers and their low-predictable reaction with respect to traffic problems. As an example, human drivers have reaction time between 0.25 -1.25 sec of around 30m or more at 60kms/hour (see, for instance, [START_REF] Sipahi | Deterministic time-delayed traffic flow models: A survey[END_REF]] for a complete description of human drivers reactions, and further comments on existing traffic flow models).

A way to solve this problem is to organize the traffic into platoons, consisting in groups of vehicles including a leader and a number of followers in a longitudinal direction. In this case, the controller of each vehicle of a platoon would use the sensor information to try to reach the speed and acceleration of the preceding vehicle. Another problem to be considered is the so-called slinky-type effect (see, e.g. [START_REF] Burnham | Identification of human drivers models in car following[END_REF]], [START_REF] Ioannou | Autonomous intelligent cruise control[END_REF]], [START_REF] Shiekholslam | Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: a system study[END_REF]] and the references therein). This is a phenomenon of amplification of the spacing errors between subsequent vehicles as vehicle index increases.

In [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]], a control scheme to solve this multi-objective control problem was proposed. Known as autonomous intelligent cruise control, the controller in this scheme has access only to the relative state information of the preceding vehicle. This study is made under the assumptions that the lead vehicle performs a maneuver in finite time before reaching a steady state, and that prior to a maneuver, all the vehicles move at the same steady speed. The stability analysis of the system in closed-loop was performed by using a Lyapunov-Razumikhin approach leading to conservative conditions. The slinky-effect type phenomenon was discussed and some sufficient conditions to avoid slinky effects have been proposed, but without any explicit attempt in computing the whole set of controller's parameters guaranteeing the requested property. To the best of the authors' knowledge, such a problem has not received a definitive answer.

The aim of this paper is to give better answers to the problem mentioned above -construction of explicit control laws guaranteeing simultaneously individual stability and the avoidance of the slinky-type effect phenomenon. We use a frequency-domain method to give necessary and sufficient conditions for the individual stability analysis by computing the explicit delay bounds guaranteeing asymptotic stability. Next, we shall explicitly compute bounds on the controller's gains ensuring the avoidance of the slinky effects.

The remaining paper is organized as follows: In Section 2, the problem formulation is presented. In Section 3, we state and prove our main results. In section 4, two illustrative examples are presented. Finally, some concluding remarks end the paper.

SYSTEM MODEL AND PROBLEM FORMULATION

The general schema of a platoon of n vehicles is represented below, where x i (t) is the position of the ith vehicle with respect to some reference point O and H i is the minimum separation distance allowable between the corresponding vehicles.
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Fig. 1. Platoon configuration

The goal is to maintain a distance λv i + H i between vehicle i and i -1, where λ is a prescribed headway constant and v i the corresponding velocity (see [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]). The spacing error δ i between the ith and (i -1)st vehicles is defined as :

δ i (t) = x i-1 (t) -x i (t) -(λv i + H i )
in the case of system (1).

Model of vehicle dynamics

For each vehicle of the platoon, the model is of the form:

       ẋi (t) = v i (t) vi (t) = γ i (t) γi (t) = - 1 η γ i (t) + 1 mη u i (t -τ i ) - 1 mη T L , (1) 
where x i (t), v i (t) and γ i (t) represent respectively the position, the speed and the acceleration of the ith vehicle. Here, η is the vehicle's engine time-constant, m is the vehicle mass, T L is the load torque on the engine speed, gear ratio, grade change etc., and it is assumed to be constant. τ i is the total (corresponding) delay (including fueling and transport, etc.) for the ith vehicle (see [START_REF] Huang | Design of vehicle following control systems with actuator delays[END_REF] for more details).

Control law

In [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]], the proposed control law is given by:

u i (t) = k ′ s δ i (t) + k ′ v δi (t) + T L , (2) 
where k ′ s and k ′ v are design constants. If one applies the control law (2) to the system (1), we shall obtain the following third order delay equation:

d 3 dt 3 δ i (t) = -α d 2 dt 2 δ i (t) -k s δ i (t -τ i ) -(k v + λk s ) d dt δ i (t -τ i ) -λk v d 2 dt 2 δ i (t -τ i ) +k s δ i-1 (t -τ i-1 ) + k v d dt δ i-1 (t -τ i-1 ), (3) 
where k s and k v are derived from k ′ s and k ′ v by an appropriate re-scaling. For the sake of simplicity, the corresponding computations are omitted (see [START_REF] Huang | Design of vehicle following control systems with actuator delays[END_REF]] and [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]]).

Problem formulation

Individual stability:

Problem formulation A basic control requirement for the overall system is the asymptotic stability of the ith vehicle if the preceding, the (i -1)th, is at steady-state (i.e. the spacing errors verify: δ i-1 = δi-1 = 0). In this case, the system is described by:

d 3 dt 3 δ i (t) = -α d 2 dt 2 δ i (t) -k s δ i (t -τ i ) -(k v + λk s ) d dt δ i (t -τ i ) -λk v d 2 dt 2 δ i (t -τ i ).
(4) Taking the Laplace transform, under zero initial conditions, we obtain a third-order transcendental equation of the form Γ i (s, τ i ) :=

s 3 + αs 2 + [λk v s 2 + (k v + λk s )s + k s ]e -τis = Q(s) + P (s)e -sτ = 0.
(5)

The individual vehicle stability is guaranteed if and only if Γ has all its roots in the left half complex plane. This depends on the delay magnitude τ i .

Then the problem of stability can be formulated as a research of parameters α, λ, k s and k v such that this condition is ensured.

Avoiding slinky effect: Problem formulation

The second part of the multi-objective problem previously defined consist in controlling the slinky effect. The goal is to find sufficient conditions to guarantee that we avoid such a phenomenon. If we consider the system (3) and take Laplace transformation, we get

G(s) = δ i (s)/δ i-1 (s) = (k s + sk v )e -τi-1s (k s + (k v + λk s )s + λk v s 2 )e -τis + αs 2 + s 3 . (6)
We have no slinky-type effect if:

|G(s)| = | δ i (jw) δ i-1 (jw) | < 1 (7)
for any w > 0 (see [START_REF] Ioannou | Autonomous intelligent cruise control[END_REF]], [START_REF] Shiekholslam | Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: a system study[END_REF]], [START_REF] Swaroop | A comparison of spacing and headway control laws for automatically controlled vehicles[END_REF]). Then the problem turns out in finding the set of parameters (k s , k v ) and the delays τ i such that the stability of the system (4) is guaranteed and the condition ( 7) is satisfied (to avoid slinky-effect).

MAIN RESULTS

Stability analysis

Before proceeding further, we consider the case without delay. Analyzing the asymptotic stability of the closed-loop system free of delay turns out to check when the polynomial Γ i (s, 0), with τ i = 0, is Hurwitz. Since α, k s , k v > 0, the third-order polynomial:

s 3 + (α + λk v )s 2 + (k v + λk s )s + k s = 0 (8)
is Hurwitz if and only if:

(α + λk v )(k v + λk s ) > k s , (9) 
which is equivalent to

λk 2 v + (α + λ 2 k s )k v + (αλ -1)k s > 0. (10) 
Note that a sufficient condition for (10) is:

k v > 1 -αλ λ 2 .
Define now by Ω the set of crossing frequencies, that is the set of reals ω > 0, such that ±jω is a solution of the characteristic equation ( 5). We have the following:

PROPOSITION 1. Consider the characteristic equation (5) associated to the system (4). Then:

(a) the crossing frequency set Ω is not empty, and (b) the system is asymptotically stable for all delays τ i ∈ (0, τ ⋆ ) where τ ⋆ is defined by:

τ⋆ = 1 w arccos α(ks -λkvw 2 )w 2 + (kv + λks)w 4 (ks -λkvw 2 ) 2 + (kv + λks) 2 w 2 , ( 11 
)
where w is the unique element of Ω.

The condition (a) above simply says that the corresponding system cannot be delay-independent asymptotically stable, and the condition (b) above gives an explicit expression of the delay margin τ ⋆ . In order to have a self-contained paper, a proof of the Proposition above is included in the Appendix. For a different proof, see, for instance, [?)].

Avoiding slinky effects:

Now, we consider the system (3). If we take Laplace transformation, then we obtain:

G(s) = δ i (s)/δ i-1 (s) = (k s + sk v )e -τi-1s (k s + (k v + λk s )s + λk v s 2 )e -τis + αs 2 + s 3 .
(12) There is no slinky effect if:

|G(jw)| < 1 (13)
for any w > 0. This condition can be rewritten as:

A(w, τ i )(w) = w 2 B(w, τ i ) ≥ 0, (14) 
with

B(w, τ i )(w) = w 4 -2λk v sin(wτ i )w 3 + (λ 2 k 2 v + α 2 + 2(αλk v -k v -λk s )cos(wτ i ))w 2 + 2(k s -α(k v + λk s ))sin(wτ i )w+ λ 2 k 2 s -2αk s cos(wτ i
), which should be satisfied for all w ∈ IR.

The objective is to define conditions on the parameters of the controller, in order to satisfy this constraint. Consider first the case τ i = 0. Then, we have:

B(w, 0) = w 4 + (λk v + α) 2 -2(k v + λk s ) w 2 +λ 2 k 2 s -2αk s .
(15) A necessary condition for the positivity of B(w, 0) is

λ 2 k 2 s -2αk s > 0, (16) 
which implies that:

k s ∈ ( 2α λ 2 , +∞) (17) 
Under this condition, the positivity of B(w, 0) is guaranteed if:

(λk v +α) 2 -2(k v +λk s ) 2 ≤ 4(λ 2 k 2 s -2αk s ).
(18) which leads to:

-2k s λ 1 - 2α λ 2 k s ≤ (λk v + α) 2 -2(k v + λk s ) ≤ 2k s λ 1 - 2α λ 2 k s (19)
In order to complete this analysis, we want to characterize the set of parameters k v guaranteeing the previous inequality under the constraint (17).

If we consider first the right part of ( 19), which is equivalent to:

λ 2 k 2 v +2(λα-1)k v +α 2 -2λk s (1+ 1 - 2α λ 2 k s ) ≤ 0,
we can remark that if

k s > max{ 2α λ 2 , 2αλ -1 2λ 3 }, (20) 
then there exists at least one positive value k v , such that the right part of ( 19) is satisfied. Moreover k v should satisfy:

max{0, 1 -αλ - √ ∆ 1 λ 2 } ≤ k v ≤ 1 -αλ + √ ∆ 1 λ 2 , (21) 
where

∆ 1 = 1 -2αλ + 2λ 3 k s 1 + 1 - 2α λ 2 k s .
The left inequality in ( 19) can be rewritten as:

λ 2 k 2 v +2(λα-1)k v +α 2 -2λk s (1-1 - 2α λ 2 k s ) ≥ 0.
This leads to the following condition on k v :

k v ∈(-∞, 1 -αλ - √ ∆ 2 λ 2 ] ∪ [ 1 -αλ + √ ∆ 2 λ 2 ,+∞), (22) 
where

∆ 2 = 1 -2αλ + 2λ 3 k s 1 -1 - 2α λ 2
k s is assumed to be positive. If ∆ 2 < 0, then the left part of (19) will be satisfied for all positive k v .

Finally, using the conditions ( 21) and ( 22) function of the sign of ∆ 2 , it follows that k v must be chosen in the intersection of the intervals defined by ( 21) and ( 22). Now we analyze the sign of B(w, τ i ) when τ i ≥ 0. We consider again the expression given in (14) of B(w, τ i ). For the terms involving cos(wτ i ), we have:

-2αk s cos(wτ i ) ≥ -2αk s and 2(αλk v -k v -λk s )cos(wτ i ) ≥ -2|αλk v -k v -λk s |.
Concerning the terms involving sin(wτ i ), since sin(wτ i ) ≤ wτ i for w > 0 then:

-2λk v sin(wτ i )w 3 ≥ -2λk v τ i w 4 ≥ -2λk v τ ⋆ w 4 , and 2(k s -α(k v + λk s ))sin(wτ i )w ≥ -2|k s -α(k v + λk s )|τ i w 2 ≥ -2|k s -α(k v + λk s )|τ ⋆ w 2 . Therefore, B(w, τ i ) ≥ (1 -2λk v τ ⋆ )w 4 + [λ 2 k 2 v + α 2 -2|αλk v -k v -λk s | -2τ ⋆ |k s -α(k v + λk s )|]w 2 +λ 2 k 2 s -2αk s ≥ (1 -2λk v τ ⋆ )w 4 + [(λk v -α) 2 -2k v -2λk s -2τ ⋆ k s -2τ ⋆ α(k v + λk s )]w 2 + λ 2 k 2 s -2αk s ≥0.
Let us set:

C(w, τ ⋆ ) = (1 -2λk v τ ⋆ )w 4 + [(λk v -α) 2 -2k v -2λk s -2τ ⋆ k s -2τ ⋆ α(k v + λk s )]w 2 +λ 2 k 2 s -2αk s We suppose that: 1 -2λk v τ ⋆ > 0. ( 23 
)
Then the positivity of C(w, τ ⋆ ) is ensured if ( 17) is satisfied and if we have:

[(λk v -α) 2 -2k v -2λk s -2τ ⋆ k s -2τ ⋆ α(k v + λk s )] 2 ≤ 4(1 -2λk v τ ⋆ )(λ 2 k 2 s -2αk s ).
(24) This leads to the condition:

-2k s λ (1 - 2α λ 2 k s )(1 -2λk v τ ⋆ ) ≤ (λk v -α) 2 -2k v -2λk s -2τ ⋆ (k s +α(k v + λk s )) ≤ 2k s λ (1 - 2α λ 2 k s )(1 -2λk v τ ⋆ )
(25) Now, we search to define the set of parameters k v which satisfy these inequalities. If we consider the right part of ( 25), which can be rewritten as:

λ 2 k 2 v -2(1 + αλ + ατ ⋆ )k v + α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 + (1 - 2α λ 2 k s )(1 -2λk v τ ⋆ ) ≤ 0, (26) with k v under the square root. Since 1 -2λk v τ ⋆ ≤ 1 and 1 - 2α λ 2 k s ≤ 1 then λ 2 k 2 v -2(1 + αλ + ατ ⋆ )k v + α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 + (1 - 2α λ 2 k s )(1 -2λk v τ ⋆ ) ≤ λ 2 k 2 v -2(1 + αλ + ατ ⋆ )k v +α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 + (1 -2λk v τ ⋆ )(1 - 2α λ 2 k s ) (27) Thus, if we can find k v such that: λ 2 k 2 v -2(1 + αλ + 5ατ ⋆ -2τ ⋆ λ 2 k s )k v +α 2 -2τ ⋆ (1 + αλ)k s -4λk s + 4α λ ≤ 0 (28)
then the right part of (25), would be satisfied.

A necessary condition to guarantee this previous condition is to have:

∆ 1,τ ⋆ = 1 + αλ + 5ατ ⋆ -2τ ⋆ λ 2 k s 2 -λ 2 α 2 -2τ ⋆ (1 + αλ)k s -4λk s + 4α λ ≥ 0,
(29) and then under this condition, we choose k v as follows:

max{0, a 1 -∆ 1,τ ⋆ λ 2 } ≤ k v ≤ a 1 + ∆ 1,τ ⋆ λ 2 , ( 30 
) where a 1 = 1 + αλ + 5ατ ⋆ -2τ ⋆ λ 2 k s .
We can remark that (29) can be rewritten as:

4τ ⋆ 2 λ 4 k 2 s + 2λ 2 τ ⋆ (1 + αλ) + 2λ -2τ ⋆ (1 + αλ + 5ατ ⋆ ) k s +(1 + 5ατ ⋆ ) 2 + 10α 2 τ ⋆ λ -2αλ ≥ 0.
Note that this last inequality leads to the following condition on k s :

k s ∈ -∞, ξ 1 ] [ξ 2 , +∞ (31) 
where:

ξ 1 = 2τ ⋆ (1 + αλ + 5ατ ⋆ )λ 2 -2λ 3 -τ ⋆ (1 + αλ)λ 2 -∆ 1,τ ⋆ 4τ ⋆ 2 λ 4 ξ 2 = 2τ ⋆ (1 + αλ + 5ατ ⋆ )λ 2 -2λ 3 -τ ⋆ (1 + αλ)λ 2 + ∆ 1,τ ⋆ 4τ ⋆ 2 λ 4 ,
where

∆ 1,τ ⋆ = λ 4 τ ⋆ (1 + αλ) + 2λ -2τ ⋆ (1 + αλ + 5ατ ⋆ ) 2 -4τ ⋆ 2 λ 4 [(1 + 5ατ ⋆ ) 2 + 10α 2 τ ⋆ λ -2αλ] ,
which is supposed to be positive. If it is not the case, then the condition ( 29) is verified for all k s ≥ 0.

We consider now the left part of ( 25), which can be rewritten as:

0≤λ 2 k 2 v -2(1 + αλ + ατ ⋆ )k v +α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 -(1 - 2α λ 2 k s )(1 -2λk v τ ⋆ ) .
(32) Proceeding as above, we have:

λ 2 k 2 v -2(1 + αλ + ατ ⋆ )k v + α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 -(1 -2λk v τ ⋆ )(1 - 2α λ 2 k s ) ≤λ 2 k 2 v -2(1 + αλ + ατ ⋆ )k v + α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 -(1 - 2α λ 2 k s )(1 -2λk v τ ⋆ ) .
(33) If there exists k v such that:

0 ≤ λ 2 k 2 v -2(1 + αλ + ατ ⋆ +2τ ⋆ λ 2 k s (1 - 2α λ 2 k s ))k v +α 2 -2τ ⋆ (k s + αλk s ) -2λk s 1 -(1 - 2α λ 2 k s ) , (34) 
then the left part of (25), will be verified. This inequality can be simplified as:

0 ≤ λ 2 k 2 v -2(1 + αλ -3ατ ⋆ + 2τ ⋆ λ 2 k s )k v +α 2 -2τ ⋆ (1 + αλ)k s - 4α λ . (35) 
This is satisfied for all k v such that:

k v ∈ -∞, 1 + αλ -3ατ ⋆ + 2τ ⋆ λ 2 k s -∆ 2,τ ⋆ λ 2 ] [ 1 + αλ -3ατ ⋆ + 2τ ⋆ λ 2 k s + ∆ 2,τ ⋆ λ 2 , +∞ , (36) 
where

∆ 2,τ ⋆ = 1 + αλ -3ατ ⋆ + 2τ ⋆ λ 2 k s 2 -λ 2 α 2 -2τ ⋆ (1 + αλ)k s - 4α λ (37) 
is supposed to be positive. If this quantity is negative, then the inequality (34) and by consequence (32), would be satisfied for all k v ≥ 0. The positivity of ∆ 2,τ ⋆ can be rewritten as:

4τ ⋆ 2 λ 4 k 2 s + 6λ 2 τ ⋆ [1 + α -2ατ ⋆ ]k s +(1 -3ατ ⋆ ) 2 + 6αλ(1 -ατ ⋆ ) ≥ 0
which leads to the condition on k s given by:

k s ∈ -∞, 3λ 2 τ ⋆ (2ατ ⋆ -1 -α) -∆ 2,τ ⋆ 4λ 4 τ ⋆ 2 ] [ 3λ 2 τ ⋆ (2ατ ⋆ -1 -α) + ∆ 2,τ ⋆ 4λ 4 τ ⋆ 2 , +∞ (38) if ∆ 2,τ ⋆ defined by: ∆ 2,τ ⋆ = 9λ 4 τ ⋆ 2 [1 + α -2ατ ⋆ ] 2 -4λ 4 τ ⋆ 2 [(1 -3ατ ⋆ ) 2 + 6αλ(1 -ατ ⋆ )] (39) is positive.
It is clear that if ∆ 2,τ ⋆ is negative, then the positivity of ∆ 2,τ ⋆ would be satisfied for all k s ≥ 0. Now the hypothesis of negativity of ∆ 2,τ ⋆ , which would imply that the left part of ( 25) is satisfied for all k v positive, turns out to write that:

4τ ⋆ 2 λ 4 k 2 s + 6λ 2 τ ⋆ [1 + α -2ατ ⋆ ]k s +(1 -3ατ ⋆ ) 2 + 6αλ(1 -ατ ⋆ ) ≤ 0, which is satisfied for max{0, 3λ 2 τ ⋆ (2ατ ⋆ -1 -α) -∆ 2,τ ⋆ 4λ 4 τ ⋆ 2 } ≤ k s ≤ 3λ 2 τ ⋆ (2ατ ⋆ -1 -α) + ∆ 2,τ ⋆ 4λ 4 τ ⋆ 2 ,
(40) where ∆ 2,τ ⋆ is assumed to be positive.

In conclusion, the determination of the parameters k v and k s guaranteeing that ( 25) is satisfied, can be summarized for the right part of (25), by the choice of k v in the interval defined by (30) under the necessary condition that ∆ 1,τ ⋆ is positive. And for the left part of (25), we can choose any k v > 0 or k v in the interval defined by (36), according to the sign of ∆ 2,τ ⋆ .

We can note that ∆ 1,τ ⋆ and ∆ 2,τ ⋆ are function of k s . Their sign are conditioned by the sign of ∆ 1,τ ⋆ and ∆ 2,τ ⋆ .

ILLUSTRATIVE EXAMPLES

Consider the system (4) with the parameters α = 5, λ = 0, 85, k s = 14, 8 and k v = 2, 41. This example has been considered in [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]], where the authors obtained a delay bound τ * < 0.041. By using Proposition 1, we obtain the optimal delay margin equal to τ ⋆ = 0.405. The system (4) is then asymptotically stable for all delays τ < 0.405. We arrive to the same conclusion by using the Matlab package DDE-BIFTOOL (bifurcation analysis of delay differential equations), (see [START_REF] Engelborghs | Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL[END_REF]], [?)]) to represent the rightmost roots of the characteristic equation. Indeed, if we choose the limit value of the delay τ = 0.405 then we can observe that rightmost roots of the characteristic equation are on the imaginary axis.

- Now, if we consider the second part of the multiobjective problem, we can remark that the conditions to avoid slinky-effect given by [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]] enable us to choose τ ⋆ = 0.1637. Therefore combined with the condition of stability that we established, we can take a delay τ ≤ min(0.1637, 0.405) = 0.1637 which remains better than the bound τ * < 0.041 proposed in [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]].
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However, if we consider the conditions that we established for avoiding slinky-effect, then the choice of parameters: α = 5, λ = 0, 85, k s = 14, 8 and k v = 2, 41 doesn't fulfill the conditions that we established. More precisely, the necessary condition ( 16) is satisfied, but the condition to avoid slinky effect is not satisfied by this set of parameters since the condition ( 18) is not verified. Moreover, for delay τ > 0, (example τ ⋆ = 0.1637), the assumption ( 23) is satisfied but not the condition (25). Thus, the condition to avoid slinky 0.1637 effects when the delay is different from zero is no satisfied. However, there exists set of parameters such that the stability can be guaranteed and the condition to avoid slinky type effects proposed in this paper are fulfilled . If we choose α = 5, λ = 1, k s = 19 and k v = 0.12, then by Proposition 1, the delay bound is τ * = 0.215, and in order to have no slinky effects we just have to restrict this bound to τ = 0.0504. Moreover, for this set of parameters, the conditions to avoid slinky effect established by [START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]] are not satisfied. In fact, the condition (c) of Theorem 2 is not verified.

CONCLUSIONS

In this paper, we have considered the problem of vehicle following control system. For a given controller structure, we have developed conditions guaranteeing the individual stability of each vehicle of the platoon, and the derived conditions depend on the size of the delay. Moreover, we considered the problem of slinkyeffect phenomenon, and we proposed sufficient conditions to avoid it. We have given an explicit characterization of some sets of controller parameters which solve the problem.
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 2 Fig. 2. Roots of the characteristic for τ = 0.405
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 3 Fig.3. Roots of the characteristic equation for τ = 0.1637 effects when the delay is different from zero is no satisfied. However, there exists set of parameters such that the stability can be guaranteed and the condition to avoid slinky type effects proposed in this paper are fulfilled . If we choose α = 5, λ = 1, k s = 19 and k v = 0.12, then by Proposition 1, the delay bound is τ * = 0.215, and in order to have no slinky effects we just have to restrict this bound to τ = 0.0504. Moreover, for this set of parameters, the conditions to avoid slinky effect established by[START_REF] Huang | Autonomous Intelligent Cruise Control with Actuator Delays[END_REF]] are not satisfied. In fact, the condition (c) of Theorem 2 is not verified.

Appendix A. PROOF OF PROPOSITION 1 (a) Straightforward. Assume by contradiction that the delay-independent stability holds. As discussed in [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF]], a necessary condition for delayindependent stability is the Hurwitz stability of Q, and this is not the case.

(b) Since the system free of delay is asymptotically stable, the conclusion of (a) leads to the existence of a delay margin τ ⋆ , such that the system is asymptotically stable for all delays τ ∈ [0, τ ⋆ ). Furthermore at τ = τ ⋆ , the characteristic equation ( 5) has at least one root s = jw on the imaginary axis, with w ∈ Ω (crossing frequency). Since

= -e -jwτ = -cos(wτ ) + j sin(wτ ) (A.1) this implies that:

We compute the right hand side of this equation with:

3) where w is a crossing frequency.

In the sequel, we explicitly determinate the expression of the crossing frequencies by solving the equation: .4) For this equation in w 2 , we have one real solution (and two complex roots) or three real roots. We have to analyze their sign to consider only the positive candidates.

If we denote by r i , (i = 1 . . . 3), the roots of the equation, we know that they are solutions of:

s > 0, if we have only one real root (the others are complex and conjugate), this root is positive and if we have three real roots, we have one positive root and two real roots with the same sign. In the latter case, we only take into account only the case where the three real roots are positive. Moreover, with Π 2 = -(k 2 v + λ 2 k 2 s ) < 0, we can remark that we cannot have three positive real roots. Finally, we can have only one positive real root (square of the crossing frequency). Now we apply the method of Cardan to define the form of this crossing frequency. We can establish that if:

then the crossing frequency is of the form:

where

then it is of the form :