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Abstract

The theory of backward SDEs extends the predictable representation property of Brow-
nian motion to the nonlinear framework, thus providing a path-dependent analog of fully
nonlinear parabolic PDEs. In this paper, we consider backward SDEs, their reflected ver-
sion, and their second-order extension, in the context where the final data and the generator
satisfy L'-type of integrability condition. Our main objective is to provide the corresponding
existence and uniqueness results for general Lipschitz generators. The uniqueness holds in
the so-called Doob class of processes, simultaneously under an appropriate class of measures.
We emphasize that the previous literature only deals with backward SDEs, and requires ei-
ther that the generator is separable in (y, z), see Peng [Pen97], or strictly sublinear in the
gradient variable z, see [BDHT 03], or that the final data satisfies an L In L—integrability
condition, see [HT18]. We by-pass these conditions by defining LL! —integrability under the
nonlinear expectation operator induced by the previously mentioned class of measures.

MSC 2010 Subject Classification: 60H10

Key words: Backward SDE, second-order backward SDE, nonlinear expectation, nondomi-
nated probability measures.

1 Introduction

Backward stochastic differential equations extend the martingale representation theorem to the
nonlinear setting. It is well-known that the martingale representation theorem is the path-
dependent counterpart of the heat equation. Similarly, it has been proved in the seminal
paper of Pardoux and Peng [PP90] that backward SDEs provide a path-dependent substitute to
semilinear PDEs. Finally, the path-dependent counterpart of parabolic fully nonlinear parabolic
PDEs was obtained by Soner, Touzi & Zhang [STZ12] and later by Hu, Ji, Peng & Song
[HJPS14a, HJPS14b]. The standard case of a Lipschitz nonlinearity (or generator), has been
studied extensively in the literature, the solution is defined on an appropriate IL?—space for
some p > 1, and wellposedness is guaranteed whenever the final data and the generator are
LP—integrable.

In this paper, our interest is on the limiting L' —case. It is well-known that the martingale
representation, which is first proved for square integrable random variables, holds also in L'—
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by a density argument. This is closely related to the connexion with the conditional expectation
operator.

The first attempt for an L' —theory of backward SDEs is by Peng [Pen97] in the context of
a separable nonlinearity fi(t,y)+ f2(t, z), Lipschitz in (y, z), with f1(¢,0) = 0, f2(¢,0) > 0, and
final data £ > 0. The wellposedness result of this paper is specific to the scar case, and follows
the lines of the extension of the expectation operator to L.

Afterwards, Briand, Delyon, Hu, Pardoux & Stoica [BDH"03] consider the case of multi-
dimensional backward SDEs, and obtain a wellposedness result in L' by using a truncation
technique leading to a Cauchy sequence. This approach is extended by Rozkosz & Slominski
[RS12] and Klimsiak [K1i12] to the context of reflected backward SDEs. However, the main result
of these papers requires the nonlinearity to be strictly sublinear in the gradient variable. In
particular, this does not cover the linear case, whose unique solution is immediately obtained by
a change of measure. More generally, the last restriction excludes the nonlinearities generated
by stochastic control problems (with uncontrolled diffusion), which is a substantial field of
application of backward SDEs, see El Karoui, Peng & Quenez [EPQ97] and Cvitani¢, Possamal
& Touzi [CPT18].

We finally refer to the recent work by Hu and Tang [HT18] who provide an L In L-integra-
bility condition which guarantees the wellposedness in L' of the backward SDE for a Lipschitz
nonlinearity.

In this paper, we consider an alternative integrability class for the solution of the backward
SDE by requiring an L' —integrability under a nonlinear expectation induced by an appropriate
family of probability measures. In the context of a Lipschitz nonlinearity, the first main result of
this paper provides wellposedness of the backward SDE for a final condition and a nonlinearity
satisfying a uniform integrability type of condition under the same nonlinear expectation. This
result is obtained by appropriately adapting the arguments of [BDH'03]. Although all of our
results are stated in the one-dimensional framework, we emphasize that the arguments used for
the last wellposedness results are unchanged in the multi-dimensional context.

We also provide a similar wellposedness result for (scalar) reflected backward SDEs, under
the same conditions as for the corresponding backward SDE, with an obstacle process whose
positive value satisfies the same type of uniform integrability under nonlinear expectation. This
improves the existence and uniqueness results of [RS12, Kli12].

Our third main result is the wellposedness of second order backward SDEs in L!. Here
again, the L!—integrability is in the sense of a nonlinear expectation induced by a family of
measure. In the present setting, unlike the case of backward SDEs and their reflected version,
the family of measures is non-dominated as in Soner, Touzi & Zhang [STZ12] and Possamal,
Tan and Zhou [PTZ18].

The paper is organized as follows. Section 2 introduces the notations used throughout the
paper. Our main results are contained in Section 3, with proofs postponed in the rest of the
paper. Section 4 contains the proofs related to (reflected) backward SDEs, and Sections 5 and
6 focus on the uniqueness and the existence, respectively, for the second-order backward SDEs.

2 Preliminaries

2.1 Canonical space

For a given fixed maturity 7" > 0 and d € N, we denote by

0= {w EC([O,T];Rd) D wp :0}



the canonical space equipped with the norm of uniform convergence ||wl|/s = Supg<i<r |wi|
and by X the canonical process. Let M; be the collection of all probability measures on
(Q,F), equipped with the topology of weak convergence. Denote by F := (F;)o<i<r the raw
filtration generated by the canonical process X. We denote by F* := (]__t+ Jo<t<T the right
limit of F. For each P € M, we denote by F+F the augmented filtration of F+ under P. The
filtration FtF is the coarsest filtration satisfying the usual conditions. Moreover, for P C M,
we introduce the universally completed filtration FV := (FY)o<i<7, FP = (FF)o<i<r, and
F+P .= (‘FtJﬁP)ogth’ defined as follows
=07 F=NF FT=FL telD), and 77 :=F].
PeM; PeP

For any family P C M, we say that a property holds P—quasi-surely, abbreviated as P—q.s.,
if it holds P—a.s. for all P € P.

Finally, for 0 < s <t < T, we denote by 7, the collection of all [s, t]-valued F—stopping
times.

2.2 Local martingale measures

We denote by P, € M the collection of probability measures such that for each P € Py,
the canonical process X is a continuous P-local martingale whose quadratic variation (X) is
absolutely continuous in ¢t with respect to the Lebesgue measure. Due to the continuity, X is
an F-local martingale under P implies that X is an FtF-local martingale.

As in [Kar95], we can define pathwisely a version of a d x d-matrix-valued process (X). The
constructed process is F-progressively measurable and coincides with the cross-variation of X
under all P € P;,.. We may introduce

(XDt — (XD

t
a; = limsup )i °, sothat (X); = / asds, t € [0,T], P— a.s., for all P € Py
0

e\0 €

Note that @; € S, (the set of d x d symmetric nonnegative-definite matrices). Therefore, we

1
may define a measurable square root o; := a/. Define
Py = {]P’ € Proc ‘ o is bounded, dt ® P(dw) — a.e.} )

By [NvH13, Lemma 4.5, P, € B(M).

2.3 Spaces and norms
(1) One-measure integrability classes: For a probability measure P € M; and p > 0, we denote:

e [LP(PP) is the space of R-valued and ]-':,Jf *_measurable random variables &, such that
1
€l ) = EF [I€[7)"7 < oc.

e SP(PP) is the space of R-valued, F™F-adapted processes Y with cadlag paths, such that

1AL
p

< oQ.
<T

Y llg» ey := E° [ up [Y[?
0<t




e HP(P) is the space of Re-valued, F™P-progressively measurable processes Z such that

1
T BN
1 Z || ey := EF [(/ |8;PZS\2ds> ] < 0.
0

e NP(PP) is the space of R-valued, F*P-adapted local martingales N such that
P P 1/\‘%
IN oy = EF [ [N]2] 7 < oo.

e [7(P) is the set of R-valued, F*-P-predictable processes K of bounded variation with cadlag
nondecreasing paths, such that

1nL
1K || (p) := EF [K2]"? < 0.

The spaces above are Banach spaces for p > 1 and complete metric spaces if p € (0,1). A
process Y belongs to class D(P) if the family {Y, 7 € 7o r} is uniformly integrable under P.
Here, we denote by 7o 1 the set of all [0, T]-valued stopping times. We define the norm

1Y lpp) == sup EF[|Yz[].

T€70, T

The space of progressive measurable cadlag processes which belong to class D(P) is complete
under this norm. See Theorem [DM82, VI Theorem 22, Page 83].

(ii) Integrability classes under dominated nonlinear expectation: Let us enlarge the canonical
space to © = Q x Q and denote by (X, W) the coordinate process on Q. Denote by F the
filtration generated by (X,W). For each P € Pj, we may construct a probability measure P
on  such that Po X~! = P, W is a P-Brownian motion and dX; = 5;dW;, P-a.s. By abuse
of notation, we keep using P to represent P on 2. Denote by Qp(P) the set of all probability
measures Q* such that

d A t 1 t
Q :Gt)‘ = exp{/ )\s-dWs——/ |)\s|2ds}, te[0,T7],
7. 0 2 Jo

dP
for some FtF-progressively measurable process (At)o<t<T bounded uniformly by L. It is
straightforward to check that the set Qp (P) is stable under concatenation, i.e., for Q1, Q9 €
Qr(P), 7 € To,r, we have Q1 @, Q2 € Qr(PP), where

Q1 @, Qa(A) :=E [E®[14|F]], A€ Fr.

It is clear from Girsanov’s Theorem that under a measure Q* € Qp(P), the process W} :=
W, — fg Asds is a Brownian motion under Q*. Thus, Xt)‘ = X; — fg T\ dt is a QA—martingale.
Given a P € Py, we denote
E¥IX]:= sup E9X],
QeQL(P)

and introduce the space LF(P) € (Ngeg, () LP(Q) of random variables ¢ such that

1
€]l o ey == EF [JE[F]"P < o0

We define similarly the subspaces SP(P), HP(P), NP(P), KP(P) and the subsets ZP(P).



A process Y belongs to D(P) if Y is progressive measurable and cadlag, and the family
{Y;, 7 € Tor} is uniformly integrable under Qp(P), i.e., imy_,o0 SUP, 7 . € Y1y, >ny] =
0. We define the norm

1Y [lpe) == sup E[Y7]].

TG%’T

Note that ||Y|lpp) < oo does not imply ¥ € D(P). However, the space D(P) is complete under
this norm. See Theorem A.2.

(iii) Integrability classes under non-dominated nonlinear expectation: Let P C Py be a subset
of probability measures, and denote

EP[X] = sup EF[X].
PeP

Let G := {Gi}o<t<r be a filtration with G; O F; for all 0 < ¢t < T. We define the subspace
LP(P,G) as the collection of all Gr-measurable R-valued random variables £, such that

1
€]l copy = EP (1117 < oo

We define similarly the subspaces SP(P,G) and HP(P,G) by replacing F+F with G. Similarly,
we denote by D(P,G) the space of R-valued, G-adapted processes Y with cadlag paths, such
that limN_>oo SupTG%’T 57) [|YT|1{|YT|ZN}] = 0.

3 Main results

Throughout this paper, we fix a finite time horizon 0 < T' < co. Let £ be an .7-“;5 "Pb _measurable
random variable, and F : [0, T] x @ x RxR¥xS% — R, a Prog@B(R) ® B(R?) @ B(S?)-measurable
map,' called generator, and denote

filw,y,2) == F (w,y,z,&}(w)), (t,w,y,2) € [0,T] x 2 x R x RY,
By freezing the pair (y, z) to 0, we set f = £:(0,0).

Assumption 3.1. The coefficient F is uniformly Lipschitz in (y,z) in the following sense:
there exist constants Ly, L, > 0, such that for all (y1,21), (y2,22) € R x R? and o € S,

|Fs(y1,21,0) — Fs(y2,22,0)| < Lylyr — y2| + L2|oT (21 — 22)|,  ds @ dP — a.e.

Remark 3.2. Without loss of generality, we may assume that F' is nonincreasing in y. Indeed,
we may always reduce to this context by using the standard change of variable (Y, Z;) =
e (Y;, Zy) for sufficiently large a.

3.1 L!-solution of backward SDE

For a probability measure P € Py, consider the following backward stochastic differential equa-
tion (BSDE):

T
Y, = ¢+ / Fo(Ye, Zy)ds — Zy - dX, — dN,, t€[0,T], P—a.s. (3.1)
t

"We denote by Prog the o-algebra generated by progressively measurable processes.



Here, Y is a cadlag process adapted R-valued process, Z is a predictable R%valued process, and
N a cadlag R-valued local martingale with Ny = 0 orthogonal to X, i.e., [X, N] = 0. Recall
that dX, = 04,dW,, P—a.s. for some P—Brownian motion W.

We shall use the Lipschitz constant L, of Assumption 3.1 as the bound of the coefficients of
the Girsanov transformations introduced in Section 2.3 (ii). In particular, we denote

EPIX]:= sup E9X].
QeQr. (P)

Assumption 3.3. lim,_,o, EF [|§|1{‘5‘2n} + fOT |f£|1{|fg‘2n}ds} =0.
Theorem 3.4. Let Assumptions 3.1 and 3.3 hold true. Then, the BSDE (3.1) has a unique
solution (Y, Z,N) € (SP(P) N D(P)) x HP(P) x NB(P) for all B € (0,1), with
1Y lloe) < €7 [I€l + Jo 1£2]ds], (32)
1Y llss@) + 1 Zllse) + INllwoe) < Corar(EP[IEN” +E7[Jg |£20ds)).  (33)
for some constant Cg 7.

We also have the following comparison and stability results, which are direct consequences
of Theorem 3.7 and the estimates (3.2)-(3.3) of Theorem 3.4.

Theorem 3.5. Let (f,€) and (f', &) satisfy the assumptions of Theorem 3.4, and (Y, Z,N) and
(Y',Z',N") be the corresponding solutions.

(i) Stability: Denoting 6Y = Y' =Y, 0Y := Z' — Z, 6N := N' — N and 6§ = & — &,
3fi(y,2) == fi(y,z) — fi(y, z), we have for all B € (0,1), and some constant Cg 1, :

1Y oy < EE[186] + f |6.£5(Ys, Zs)|ds],

16 s ey + 102 sy + 16N sy < Corar(€7[106)7 + €7 o 18£,(Ys, Z4)1ds]”).

(1) Comparison: Suppose that & < &', P—a.s., and f(y,z) < f'(y,2), dt @ P—a.e., for all
(y,2) € R x Re. Then, Y, <Y!, P—a.s., for all T € Tor.

3.2 L!-solution of reflected backward SDE

Consider the following reflected backward stochastic differential equation (RBSDE)
T
Yi=¢6+ / [s(Ys, Zs)ds — Zs - dXs —dUs, t€[0,T], P—a.s. (3.4)
t

where Z is a predictable R%-valued process, U is a local supermartingale orthogonal to X, i.e.,
[X,U] = 0, starting from Uy = 0, and Y is a scalar cadlag process satisfying the following
Skorokhod condition with cadlag obstacle (S)o<t<7:

T
Y, > S, te€]0,T], and / (Y —Si-)dK; =0, P—as. where U=N - K
0
is the Doob-Meyer decomposition of U into a local martingale N and a nondecreasing process

K starting from Ny = Ko = 0.
Our second wellposedness result is the following.



Theorem 3.6. Let Assumptions 3.1 and 3.3 hold true. Assume that ST € D(P). Then, the
RBSDE (3.4) has a unique solution (Y, Z,N,K) € (S?(P) N D(P)) x H?(P) x N¥(P) x Z°(P)
for all B € (0,1).

We also have the following stability and comparison results.

Theorem 3.7. Let (f,£,5) and (f',&,S") satisfy the assumptions of Theorem 3.6 with corre-
sponding solutions (Y, Z,N,K) and (Y',Z',N', K').

(i) Stability: with 0Y :=Y'-Y, 6Z:=2'—Z, U :=U"-U, 0§:=¢&—¢&, 0 fr:= f|— fr, we have

T
¥l < [+ [ lor@olds]. 6y = (2,
and for all 5 € (0,1), there exists a constant C' = Cg 1, 7 such that

B, AB 5 By 1Ay vy L
16V [|ss@y + 16Z lygs @y + 10U |\ @y < O{Ag +AL (A2 +A7)(CT+CT) }

B
. T T
with Ag i= EF(10€1], Ay i= | [J10£(O,)lds], C = IV oy HIY o +E5 [ Sy [£0]s)
and CY' defined similarly.
(14) Comparison: Suppose that & < &, P-a.s.; f(y,2) < f'(y,2), dt @ P-a.e., for all y,z €
R x R%; and S < ', dt ® P-a.e. Then, Yy <Y/, for all T € To,T-
3.3 L!-solution of second-order backward SDE

Following Soner, Touzi & Zhang [STZ12], we introduce second-order backward SDE as a fam-
ily of backward SDEs defined on the supports of a convenient family of singular probability
measures. We introduce the subset of Py:

Po:={PePy: ff(w) < oo, for Leb@P-a.e. (t,w) € [0,T] x Q}.
We also define for all stopping times 7 € 7o 7:

P(r,P):={P ePy: P=PonF,} and P(r,P):=|]P((r+h)ATP).
h>0

Our general 2BSDE takes the following form:
T
Y, =¢ +/ Jo(Yo, Zo)ds — Z, - dXs — dU,, Py — q.s. (3.5)
t

for some local supermartingale U satisfying with [X, U] = 0 and together with an appropriate
minimality condition. A property is said to hold Py-quasi surely, abbreviated as Py-q.s., if it
holds P-a.s. for all P € P,.

Definition 3.8. For 5 € (0,1), the process (Y,Z) € D(PO,IF”“PO) x HP (PO,FPO) 18 G SUperso-
lution of the 2BSDE (3.5), if for all P € Py, the process
t
Utp =Y, -Y, +/ FS(YS,ZS,ES)ds —Zs-dXs, t€][0,T], P—a.s.
0

1s a P—supermartingale, with U(IJP =0, [X, UP] =0, P—a.s. and corresponding Doob-Meyer de-
composition UY = N¥ — K¥ into a P—local martingale N¥ € NB(IP’) and a P—a.s. nondecreasing
process K¥ € TP(P) starting from the origin N} = K§ = 0.



The dependence of the supermartingale UF on P is inherited from the dependence of the
stochastic integral Z « X = fo Zs-dX, on the underlying semimartingale measure P.2 Because
of this the 2BSDE representation (3.5) should be rather written under each P € Py as:

T
Y, =€+ / Fy(Ys, Zs,55)ds — Zs - dXs — ANF + dKE,  P-as. (3.6)
t

We next introduce the notations of the shifted variables:
(W) = E(w @ W), S’t’w(wl) = Fiys (w @ w',0,0, 3s(wl)),
which involve the paths concatenation operator (w®sw’)s := Liscpws+1 ey (We+wi_y). Define
P(t,w) :={PEPy: fObe (W) < 0o, for Leb@P — ace. (s,w') € Ry x Q},
so that Py = P(0,0), in particular.

Assumption 3.9. The terminal condition & and the generator F satisfy the integrability:

i H‘ft’“’“{st’wen}*/o [ 1 pore )y ds

n—oo

=0 forall (t,w)el0,T]x Q.
LY(P(tw))

For all P € Py, we denote by (yP, ZF N P) the unique solution of the backward SDE (3.1).
By (H1), there exist two random fields a®(y, z) and b (y, ) bounded by L such that
Foly,2) = £ (V5 20) = al(y = V&) + 05 -5 (= = Z).

We now introduce our notion of second order backward SDE by means of a minimality condition
involving the last function b”.

Definition 3.10. For g € (0,1), the process (Y,Z) € D(PO,IE‘”“PO) X 7.[5(7)0719‘730) s a solu-

tion to 2BSDE (3.5) if it is a supersolution in the sense of Definition 3.8, and it satisfies the
minimality condition:

P P Q]P” P’ + P
K; = essinf E“r [KT F ], P-a.s. forall P € Py, 7€ Tor, (3.7)
P/EP, (1,P)
, / WPy, 2)
where QY € Qp_(P') is defined by the density d%),i = %.
ar ™

Note that Qfl‘ = P’ ‘ = ]P" 7+ and the process Wy — fTs bf/ds is a Brownian motion
starting from W..

Theorem 3.11. Under Assumptions 3.1 and 3.9, the 2BSDE (3.5) has a unique solution
(Y,Z) € D(Po,FP0) x HP (Py,F™), for all B € (0,1).
Moreover, if Py is saturated 2, then N¥ =0 for all P € Py.

Similar to Soner, Touzi & Zhang [STZ12], the following comparison result for second order
backward SDEs is a by-product of our construction; the proof is provided in Theorem 5.1.

Proposition 3.12. Let (Y, Z) and (Y, Z") be solutions of 2BSDEs with parameters (F,§) and
(F',&"), respectively, which satisfy Assumptions 3.1 and 3.9. Suppose further that & < & and
F, (y, z,&\t) < F] (y, z,c?t) for all (y,z) € RxR?, dt@Py-q.5. Then, we have Y <Y', dt®@Py-q.s.

*By Theorem 2.2 in Nutz [Nut12], the family {(Z * X)F}pep, can be aggregated as a medial limit (Z ¢ X)
under the acceptance of Zermelo-Fraenkel set theory with axiom of choice together with the continuum hypothesis
into our framework. In this case, (Z ¢ X) can be chosen as an F™"0-adapted process, and the family {UF }pep,
can be aggregated into the resulting medial limit U, i.e., U = UY, P—a.s. for all P € Py.

3We say that the family Py is saturated if, for all P € Py, we have Q € Py for every probability measure
Q ~ P on (Q,F) such that X is Q—local martingale. The assertion follows by the same argument as in [PTZ18,
Theorem 5.1].




4 Wellposedness of reflected BSDEs

Throughout this section, we fix a probability measure P € P, and we omit the dependence on
P in all of our notations (e.g. D(PP) denoted as D). It is clear from Girsanov’s Theorem that
under a measure Q* € Q L., the process Wr.=W — fo Asds is a Brownian motion under Q*.

Remark 4.1. We note that under a measure Q* € Q. defined as above, the RBSDE satisfies

dYy = —(f:(Ys, Zt) — 6F Zy - M) dt + Zy - dX} + ANy — d K,

where the process X} = X; — fg Gs\sds is a local martingale under Q*, and the generator
fi(y,z) — G 2 - )\ satisfies the Assumption 3.1 with Lipschitz coefficients L, and 2L,.

4.1 Some useful inequalities
First of all, we provide an estimation of a running supremum process.

Lemma 4.2. Let X be a nonnegative cadlag process, and X{ = maxs<; X5. Then,

E[(X})] < S sup E[X,]%, forall B e (0,1).
1_/8 TE%,T

Proof. For x > 0, let us define 7, := inf{t > 0| X; > 2} AT. We have that X; = X, , and

x

E[X,,] c
- 'z S —
x x

A 1. Then, for 8 € (0,1)

Plr, < T] = P[X,, > 1] <

)

with ¢ := sup, <7, . E[X;], which implies that P[r, < T] <

E [(X:’F)B] =E [/OO I{X*>r}ﬁajﬁ_ldaj} = /OOOIP’ (X% > 2] B~ Ldx
0 T

o] o B
= / Plr, <T] Bz e < / (E A 1) Bz e = ¢
0 0 €z

1- 3

O

Lemma 4.3. Let ( be a nonnegative Fr-measurable r.v. andY a nonnegative process such that

sup {YT _ g [C|}"f’P]} <0, forsome Q€ Qr.. (4.1)

TG%’T
Then, sup,er; EFY,) < EF[¢).

Proof. Fix Q € Qr, and 7 € 7o 7. Notice that Q ®- @ € 9y, for all @ € Qr.. Then, it follows
from (4.1) that

EQY;|) < E2 [E%[¢|F]| = E®Q)) < £P(g).
The required inequality follows by taking supremum over all stopping times and Q € Q.. O

Now, we show a Doob-type inequality under the nonlinear expectation ¥, which turns out
to be crucial for our analysis.

Lemma 4.4. Let (M;)o<i<T be a nonnegative submartingale under some @ € 9r.. Then,

1
|M|lss < 13 SP[MT]’B forall 0<pf<1.



Proof. Let x > 0 and Q € Qy, be arbitrary. Define
Tr ::inf{tzO‘Mt>x}/\T,

with the usual convention that inf() = oco. From the optional sampling theorem, Jensen’s
inequality and the definition of concatenation, we obtain that

E [M,,) < B® [BC [Mr| 7] | = E9®nC [y,
foreach Q € Qr,. As Q ®,, @ € Q.. this provides that EQ [M,,] < EF [Mr] =: c.
Let us denote M, := supg<;<p My. It follows that
2Q[M, > 2] = 2Q[r, < T] < E%[M,, 1(, 1] <EU[M, ] <.

Then,
CB

EQ[MP] = /OOOQ (M, > 2] BzP~Ldz < /OOO (1 A g) B ldz = =5

As Q € Q. is arbitrary, the assertion follows. O

4.2 A priori estimates for reflected backward SDEs

We will construct a solution of the RBSDE (3.4), using a sequence of L2-solutions to the related
RBSDEs. The following a priori estimation is crucial for the existence result.

Proposition 4.5. Let (Y,Z,N,K) be a solution of RBSDE (3.4). For all 5 € (0,1), there
exists a constant Cg 7 > 0 such that

1Zls + N1+ 1Kllss < Cowr(IVllss + Y15+ 7 [ Cjas]”).

Before proving this result, we establish some more general intermediate estimates.
Lemma 4.6. Let 8 € (0,1). For (Y,Z, N, K) € S’(Q") x H?(Q") x N#(Q*) x I%(Q"), define
MN=Z« X+ N-K=6T27-W*+ N-K.

Then,
¢s (12 o + INllws @) < 1M+ Ko gy < Co (Mo o0y + 1K oo ) 5 (4:2)
¢s (121 + IN = Klls@y) ) < Moy < Cs (1215 @) + IN = Kllnony) - (4:3)

Proof. As [X*,N] =5 ¢ [W?*, N] =0, we obtain that

(NI

C,B(HZH]HW(QA) + ||N||NB(QA)) < IE:QA [([Z . X)\]T + [N]T)

]

:EQA“Z.XA+N}7§“] - HM)\+KHNB(QA) < ZgIEQAK[M)‘]T_F [K]T)

N1y

|

< 0 (B2 [)5] + B2 [1617]) < Co (1A sy + 1K e ).

where the last inequality is deduced from the fact that K is nondecreasing and of finite variation,
together with the following simple calculation

T
[K|r < [K]r + 2/ K, dK, = K.
0

Again by [X* N] = 0, we have [M?] = [Z « X* + N — K| = [Z + X*] + [N — K]. With
the similar calculation as above, we obtain (4.3). O
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Proof of Proposition 4.5. Step 1. We first derive the following estimate of K:

Kl < Chur(b+ [ [ 1120as]”), (4.0

where C’éf L7 1s a positive constant depending on 3, Ly, L, and T Indeed, it follows from (3.4)
and Assumption 3.1 that

t t ¢ t
K; < |Yo| + |V +/ | £2|ds —I—Ly/ |Y,|ds —I—LZ/ 5T Z,|ds +/ Zs-dX, + N
0 0 0 0
Define
ATZ d@)\ T 1 T )
As =L, 5T, |1{|0.TZS|750} and —p = XP {—/O As - AW — 5/0 [As] ds}. (4.5)
By a localization argument, we obtain

E®' (K] < 2+ Ly D)||Y [Ipgr) +E@A[/ |fo|ds} 2+ L,D)|Y|p +5P[/OT|fg|ds] < 0.

(4.6)
Now take any ||\ ||oc < L.. By the Girsanov transformation and the Holder inequality, we have

’ 1
£ [K;Q] < exp (3¢L2T)EQ [K1)%,  with =15
As X is arbitrary, together with (4.6) we obtain (4.4).

Step 2. We next estimate the stochastic integral fOT Y,_dM}. Using Burkholder-Davis-Gundy
inequality and Young’s inequality, we obtain

T 5
/ Y,_dM
0

B
T 1
< C4EY (/ Yf_d[Z-XMN}S) +EY
0

u 2
gE@A sup /Ys_(Zs°dXS)‘—|—st)
0

0<u<T

_|_

g_B
sup |Ys[2 K7
0<s<T

B
§C’/31EQA sup |Ys|§[Z°X>‘—|—N]1‘&
0<s<T

B
+E? | sup |Vi|7 K
0<s<T
Og +1

O +1
< IV llssgr) +

Cge €
1Y [|s5 (@) +—||Z x* + Nllnsyy + §||K||116(QA)

(Cgcé +1)e
2

1K |lzs (@) (4.7)
where the last inequality follows from (4.2) with parameter Cé.

Step 3. We now show that

T B
1Zll3s + IN = Kllwe < CLas (Y llss + Y[ +E° flds| |-
b 7/3 0
Applying Ito’s formula on Y2, we obtain

T T
/ 6T Z,Pds + [N — K]r = €2 = Y3 + / 2V, (fs(Ys, Zs) — GX Zs - As)ds — 2Y,_dM?,
0 0

11



where A is defined as in (4.5). Hence, by Assumption 3.1 and Young’s inequality, we obtain

1T 9
5/ 16X Zs|"ds + [N — K]r
0

T 2 T
< (34 2L,T +8L*T) sup Y2+ (/ |f£|ds> +2'/ Y,_dM}
0 0

0<s<T
g
]) s

Together with (4.7) and (4.3), we have for 5 € (0, 1)

1Zllms @) + 1IN — Kllns (@)

T B
(e ([ )
0

Cs+1 A
<CrLrp ( 625 + 1> 1Y |lgs(@ry + Cr,r,sE?

T
+EY ‘ / Y,_dM)
0

([ )

CL,TﬂCﬁCEE A\ CL7T,5(CQC% +1)e

+ LB (17 Xy + IV = Klhogeny) + — 2222 K g

. . 1 .
Choosing € = (oPFpIerete/d together with (4.4) we get

A T 0 B
/
121y + I = Klhwray < s (W ooy + B | ([ 1520s) | + 1o
T B
<Y (nynsﬁ VG4 | [ 110las] ) .
Step 4. It remains the prove that:
5 T B
INlwe < Chirs (HYHSB + Y lp +&° [/0 |fso|d8] > - (4.9)

By (4.3), (4.8) and (4.7), we get

1M s @y < €5 (12120 + IN = Kooy

([ )
([’

C
+ ?/BHYHSB(QA) + C%EHM)\HNB(QA) + C;g’EHKH]IB(QA)> .

< CsCLrp (Ysﬂ(@x) +EY

T
+EQ ['/ Y, dM)
0

)

A
< CsCLrp (llYllgﬁ(@A) +EQ

Choosing € = m, we have
A M A g 0 ’
| M HNa(@A) <Crg | 1Y llgsgry + E® </0 |/ ‘d8> + 1K@ | - (4.10)
Then, (4.9) follows by (4.2), (4.4) and (4.10). O
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4.3 Existence and Uniqueness
4.3.1 Square integrable obstacle

Theorem 4.7. Let Assumption 3.1 hold true. Assume that ST € S2, then Theorem 3.6 holds
true.

Proof. Existence: For each n € N, we denote £ := q,,(&) and f/*(y, 2) := fi(y, 2) — f2 +qu (),
where ¢, (z) := 2. As ST € S%, by [BPTZ16, Theorem 3.1], RBSDE(f",£", S) has a unique

= lz|vn*

solution (Y™, Z" N™ K") € S x H? x N? x I, and Y belongs to class D(Q) for each Q € Q..

Step 1: We are going to show that {Y"},cn is a Cauchy sequence in S8 and D. Let m,n € N
and n > m. Set Y ;=YY" —-Y™ 062 :=2Z" — 272" 6N := N*"— N™ and 6K := K" — K™.
Clearly, the process (0Y,0Z,0N,dK) satisfies the following equation

T
3Y; = 6 + / 9s(0Ys,074)ds — 6Z5 - dXs — dONs + dd K, (4.11)
t
where
9s(0Ys,075) = [ (V" +0Ys, 25" +0Z5) = [ (Y™, Z7").
It follows by Proposition 4.2 in [LRTY18] that
T

9, <[6¥2| ~ [ sen(6Y.. Y.

T

T
= |6¢| + / sen(0Y3){gs(6Ys, 6Zs)ds — 6Zs - dX, — dSN, + dS K, }.

By Assumption 3.1 we obtain

sgn(0Y;)gs(8Ys,02) = sgn(8Ys) (f2 (Y + 0Ys, Z + 6Zs) — f2(Y", 21" + 62))

s

+sgn(8Y) (fr (Y™, 20 + 0Z,) — fr (Y, Z))

+sgn(0Ys) (fr (Y, ZM) — Y, Zm)
< Lo|of6Zs| + [0fs(Y" 2| < La|5y0Zs| + | £9| 14 012my-

We note that by Skorokhod condition,

5}/s—d5Ks = (szn— - Ss—)ng - (}/sn— - Ss—)dK;n - (}/STE - Ss—)ng + (YZE - Ss—)ngn
= — (YL = S )dK" — (Y = 5, )dKg <0, (4.12)

and

sgn(dY-)

sgn(0Ys_ )dd K, = 5.

0Ys déK <O. (4.13)
Therefore, we obtain

T
0Y;| < \§|1{5>n}+/ (L:|5T6 24| + | f2|1q 0|50} ) ds — sgn(6Ys_) (d6Ns + 6 Z - dX)

T
= |¢1g¢(5n) + / | £ 14015y ds — sgn(6Ys_) (d6Ns + 62 - (dXs — GsAsds)),
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~ ~T
where \ = L, sgn(é)@)éﬁr—ggs‘l{\agazs#o}. As 0Z € H? and 6N € N?, we deduce from
Burkholder-Davis-Gundy inequality that the last two terms are uniformly integrable martin-
gales under the measure Q € Q. such that % = Gg‘p. Taking conditional expectation with

respect to Fi P ynder the equivalent measure @, we obtain that

~ T
We deduce immediately from Lemma 4.3 that
P T o
[0Y[lp <€ |:|£‘1{|§|Zn} +/0 ‘fs‘1{|fg|>n}d3:| : (4.14)
and from Lemma 4.4 that for any g € (0,1),
I _p T o ’
1Y llso < T—5¢ [\ﬂl{szn} +/0 |fs |1{f9>n}d3] : (4.15)

This shows that {Y™},cy is a Cauchy sequence in D and S®. By completeness of D and S,
there exists a limit Y € DN SP.

Step 2: We prove that {Z"},,cn is a Cauchy sequence in HP. By Itd’s formula, we have

T T T
(6Y7)? — (6Yp)? = —2/ 6Y,_gs(0Ys,6Z5)ds + 2/ 6Y, 672, -dX, + 2/ §Y,_dS N
0 0 0
T T )
—2/ 5Ys_d5Ks+/ |6X6Z,|"ds + [6(N — K)]r,

0 0

and therefore by Assumption 3.1, Skorokhod condition (4.12) and Young’s inequality

r 2
/ |6X6Z,|"ds + [S(N — K)]r
0
T T
< sup (0Y5)° + 2/ Y| f2|1q o5 myds + QLZ/ RAIERIALE
0<s<T 0 N 0

T T
- 2/ 0Y0Zs - dXs — / 0Ys_ddN;
0 0

T T
sup (5Y8)2+2/ \53@\\f§|1{f9>n}ds+4Lz/ 0Y;||5T 62, |ds
0 0

<
0<s<T
+2 sup / 0Y,0Z, - dX) + / §Y,_dSN,
0<u<T |JO 0

IN

T 2 T
1
(2+8L2T) sup (6Y;)” + </ \fg\l{fg>n}ds> +—/ 5T62,|%ds

0<s<T 0 - 2.Jo

/ 0Y,0Z, - dX) + / 8Y,_dSN,
0 0

+ 2 sup
0<u<T

)

which implies that

T T 2
/ 6762, ds < 2(2 + 8L2T) sup (3Y;)? +2 </ \f?\l{fg>n}ds>
0 0<s<T 0 -
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+4 sup . (4.16)

0<u<T

/ 8Y0Z, - dX + / 8Y,_déN,
0 0

Taking expectation we obtain

T 0 B
</0 £ \1{|f£|zn}d3>

/ 0Y,0Zs - dX) + / 0Y,_dSN,
0 0

A
16Z llms @y < Cé,L,T(”(SYHSﬂ(Q)‘) +EY

+ EQ’ sup

0<u<lT

)

By Burkholder-Davis-Gundy inequality, we have

u u ﬁ
EQ | sup / 5,67, - dX) + / §Y._dSN, 2]
0 0

0<u<T

T B T B
1 QA 2(~T 2 * 2 ‘
< CBIE |5YS| |as 523‘ ds + |5Ys_| d[dN]s
0 0

/ !

Cs Che sy |13 5
< 2—€||5Y||§6(QA) + 7||5Z||HB(QA) + OB||5Y||§B(QA)H‘SNHNB(QA)'

Choosing ¢ := , we obtain by Jensen’s inequality for 8 € (0, 1) that

N S
Co,.,7C%

/ (C%)zc%l;T ’ QA T 0 B
16Zlgs @) = 2C5, L |1+ ——5—= | 10V [lss @) + 205 1,7E [(/0 |/ |1{f2>n}d3>}
1 1
+2C% 1. 7CB10Y 135 (o) 10N 155 (g (4.17)

It remains to show that the term [|0N||ys@» is bounded. Clearly, we have
Il
1001l 3y < 22 (I s oy + IV o)) -

Hence, it is enought to show that | N"([ys(g») is bounded uniformly for all n € N and Qe 9r..
By Proposition 4.5, we have

T B
[N™|ars < Cp,r,r <HY"HSB +yp + £F UO |f§|d8} ) -

Since {Y"},en converges to Y in D and S?, we deduce that

sup |[Y"||lp <oo and  supl||Y"|gs < oc.
neN neN

Therefore, [|[N"|[ys(@») are uniformly bounded. Further, it follows from (4.17) that

1 T B
||Z||HBécﬁ,L,T,wansﬁ+||Y||§B+5P[(/0 |f£|1{fg>n}ds>} ) (4.18)

As the right-hand side converges to 0 for m,n — 0o, {Z"}nen C HP is a Cauchy sequence. By
completeness of HP, there exists a limit Z € HP.
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Step 3: We next show that {U" := N™ — K"}, is a Cauchy sequence in S”. By (4.11), we
have

t ¢
60U = 0Y; — 6Yy +/ (gs(éYs,éZs) — A;,réZS . )\S)ds — / 6Zs - dXS)‘,
0 0
and therefore, together with Assumption 3.1

sup_[oU
0<s<T

T
<2 sup \5Y\+/ (Ly|oYs| + 2L, [6T6Z| + |5 £, (YD, Z1M)|) ds + sup
0<s<T 0<u<T

/ 62, - dX2
/ 6Zg - dX2.

Applying Cauchy-Schwarz inequality and Burkholder-Davis-Gundy inequality, we obtain that
for g € (0,1)

T
<(24+TLy) sup |5y;,|+/ (2|57 6Zs|ds + | fQ|1{|0)5ny )ds + sup
0<s<T 0 0<u<T

8
(2+ TLy)ﬂ“(sY”SB(QM + ((2L.)°T= + Cu) 1625 @)

A T B
+E° [</0 \f§\1{|f2|zn}d8>]

T B
</0 \fso\l{f9>n}d8> D

T B
</0 \f3\1{|f9|zn}d8> ) (4.19)

Since the right-hand side converges to 0, we obtain lim,, ,— oo EP [SUPogng |Um — Ug\ﬁ] =0,
and that by completeness of S?(IP) there exists a limit U € S#(P).

10U |lss @y <

A
< Og,L,T <||5Y||§6(QA) + 16 Z s @y + EC

and hence

16U lss < CF L. <||5Y||sa + 12l + €

Step 4: The process U is a local supermartingale. To see this, we shall find a localizing sequence
of stopping times {73 }ren, such that up to 73, we have U™ converges to U in “L!-sense”. Indeed,
for t € [0,7] and £ > 0, by Markov’s inequality and BDG inequality, we have

u u u
P[sup /Z?-dXs—/ /(ZQ—ZS)-
0<u<t|Jo 0 0

which implies that fg Z?-dXs converges to fg Zs-dXs in ucp. We may extract a subsequence such

that fOT Z"-dX converges to fOT Z-d X, almost surely and sup,,cy Supg< <7 | [5 21 - dX;| < 00,
a.s. By Assumption 3.1, we have

Cs
< Ll\zr—-Z2
sup =5 || llms s

0<u<t

1
s >€]<5_5E

T
/O |Fe(V Z8) = fo(Ys, Zo)|ds
T T T
S/ |f?|1{f92n}d8+Ly/ \Y;"—Y;\ds+Lz/ T2 — 2,)|ds
0

1

T 2

< [ 1RRgends 7 s 17 -+t ([T - 20fa) o o
0<s<T 0
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as n — 00, and hence sup,,cn SUPg<, <7 fou ‘fg(Ys", Z;L)‘ds < 00, a.s. We now define

t
(From above the sequence of stopping times {7,, }men converges almost surely to co and the
processes fOATm fryr zZhds — f EATm. Z?-dX, are uniformly bounded by m. Hence, the process

t
T 1= {t>0 : sup/ ‘fs (Y, ZT) ‘ds—l—sup
neNJQ neN

tATm tATm
Un. = Np KD = Yi Yo+ / PV, Z0)ds — / Zr - dx,
0 0

is of class D(P), and U}, converges to Usnr,, in L!(P) for each t € [0,T]. This implies that U
is a local supermartingale under each Q € Qy,_.

Step 5: We now show that the limiting process (Y, Z, N, K) solves the RBSDE (3.4). By a
general version of Doob-Meyer decomposition, see e.g. [CE15, Theorem 9.2.7], the local super-
martingale U uniquely decomposes as U = N — K, where N is a local martingale and K is
a nondecreasing predictable process starting from zero. By Kunita-Watanabe inequality for
semimartingale, we obtain that

'ﬂw\»—t

N, X}z = [U, X < [U = U™, X]g + [U", X]g < [U — U"J2[X]2.

The right-hand side converges a.s. to 0, at least along a subsequence. Therefore [N, X] = 0.
As fO“ Z" - dX, converges to fO“ Zs-dXs in ucp and the map (y, z) — fi(y, 2) is continuous,

S

taking a limit in ucp implies that (Y, Z, N, K) solves the correct RBSDE.

Step 6: We now Snell envelop approach to optimal stopping in order to derive the Skorokhod
condition. By following the proof of [LX05, Proposition 3.1], we may show the following repre-
sentation for each n € N

-
+,P
Y/, = esssup E [ fMYs, Z3)ds + Sy 1o crnmmy + YT,\Tml{T TATm} ]:t,wm}
7-672/\‘1'771,T/\‘nn tATm
< esssup K |: fs(Y:% ZS)dS + ST]-{T<T/\Tm} + YT/\Tm]'{T:T/\Tm} E—’/_\fm]
7—67—t/\'r7n,T/\'rm tATm

TATm
+E [/ |V ZE) = fo(Ye, Zs)|ds + [Yin,, = Yinn, || F
0

+ P
tATm | °

It follows from Yy}, — Yinrm, Yo, = Yran, and [ "™ | f2(YE, Z7) — fo(Ys, Zs)|ds — 0 in
L' that

Yirr,, < esssup E [ fs(Ys, Zs)ds + Srlircrpm,y + YT Arm Lir=TAmn )
t

Teﬁ/\Tm,T/\Tm NTm

fmf’m] |

On the other hand, it is clear that Yiar, > Star, Lit<Tarn} T YTA7, L{t=TAr}- Since Yiar,, +
fJAT’" fs(Ys, Zs)ds is a supermartingale, we have

Yiprr,, = esssup E [ fs(Ys, Zs)ds + Srlircrpr,y + YT Arm Lir=TArn}
t

Teﬂ/\Tm,T/\Tm NTm

Fhr } (4.20)

Define

t
= /0 [s(Ys, Zs)ds + Stlgcrnmny + YT Lit=TArm}
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TNATm
_E [ / Fo(Ya, Z2)ds + Yiepr,
0

}“;“P] .

Clearly, ny',,. = 0. Note that n™ = (n{")o<t<Tar, is of class D(P). Let Ji" be the Snell
envelope of ™

J{" == esssup E[m .EAT }

Teﬂ/\Tm TATm
which is a cadlag process of class D(PP) and is the smallest supermartingale dominating the
process 7. Hence, by the Doob-Meyer decomposition, there exist a martingale M™ and a
predictable nondecreasing process A™ such that J;* = Jg* + M;" — Aj". By the definition of
J™ and the representation (4.20), we obtain

TATm
Jtm = Y;ﬁ/\Tm -E |:/ fs(Y:% Zs)ds + YT/\Tm
t

NTm,

f;fm] : (4.21)
We have that

T NATm P tATm
Jtm +E |:/ fs(Y:% Zs)dS + YT/\Tm ‘Ft/\}m:| = Y;t/\Tm + / fs(YYs, Zs)ds
0 0

is a supermartingale. Therefore, by the uniqueness of the Doob-Meyer decomposition, A7 =
Kips,, . Decompose A™ (and the same for K) in continuous part A"™¢ (K€¢) and pure-jumps
part A™? (K9). By [KQ12, Proposition B.11], see also [El 81, Proposition 2.34], we obtain

a.s. for t < 7,

T ANTm
/0 (" —n)dATC =0 and  AAP = AAT g ey,

By noticing that J;" — i = Yiar, — Starm Lit<Trrm} — YTArm L{t=TAr,,}» We Obtain that

T ATm T ATm
/ (Yoo — S )dk, = / (7~ )dK, =0, a.s.
0 0

Letting m — oo, the Skorokhod condition holds true for K.

Uniqueness: Let (Y,Z,N,K) and (Y',Z',N', K’) be two solutions to RBSDE(f,&,S). Set
Y =Y -Y' 6Z=72—-27Z"6N=N—N"and 6K = K — K'. Using the similar computation
as above, we have

sgn(0Ys)0Zs - (dXS — stsds) - / " sgn(0Ys_)ddNg,

TNATm

Tm

1Y | < (0¥, | — /

ATm,

where )\S := Lsgn(dY5) |AT5 |1{‘UT(;ZS‘750} and

t
:inf{tzo;/\Zs\2+\zg\2dszm}mm,ﬁj
0

and {7 },.en denotes the localizing sequence of the local martingale §N. Taking the conditional
expectation with respect to F, under the equivalent measure @ ~ P, defined by % = G%, we
obtain that

16Yr pry, | < BQ[|6Y5,, || FF].

Again, since 0Y belongs to ]D)(@), it follows that Y, — 0 in ILI(@), therefore |6Y;| = 0
It follows by the section theorem that Y and Y’ are indistinguishable. By (4.18) and (4.19),
(6Z,6N,6K) = (0,0,0). O
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4.3.2 General obstacles

Before proving the wellposedness result, we state the following comparison result for the general
cadlag solution and general filtration in the L2-setting, which is a generalization of [RS12,
Proposition 3.2]. The proof is omitted as it follows the same argument as in the classical one.

Proposition 4.8. Let (f,£,5) and (f',&',5") be such that f and f' satisfy Assumption 3.1 and
E[fOT |f£|2ds] < 0, E[fOT |f§0‘2ds] < o0, £,& €2, and S, S € S?, and let (Y,Z,N,K) and
(Y',Z' N',K') be the corresponding solutions.

Assume that £ < &', Sy < S}, and (fy — f))(Y/,Z]) <0, P—a.s., t € [0,T]. Then Y, <Y/,
for all T € To 7.

Proposition 4.9. Let (f,£,5) and (f',¢',5") satisfy the assumptions of Theorem 4.7. Let
(Y,Z,N,K) and (Y',Z',N', K') be solutions of corresponding RBSDFEs. Suppose that & < ¢,
P-a.s.; f(y,2) < f'(y,2), dt @ P-a.e., for each y,z € R x R%; and S < ', dt ® P-a.e. Then,
Y: <Y/ for each T € Tor.

Proof. Let (Y™, Z" N"™ K") and (Y™, Z" N K'™) be the approximation sequences of the so-
lutions of RBSDE with (f,&,S) and (f',&’,5"), respectively. By the comparison result, Propo-
sition 4.8, we have Y* < Y/", therefore Y, <Y/ for each 7 € Ty 1. O

Now we are ready to prove the main theorem.

Proof of Theorem 3.6. Define SJ* := Sy A n. Clearly, S > S™ for n > m. By Theorem 4.7,
RBSDE with (f,&,S™) has a unique solution (Y™, Z" N™, K™). Define (0Y,0Z,0N,0K) =
(Yn—ym zn—7Zm N" — N™ K" — K™). By Proposition 4.9 we have 0¥ > 0.

Step 1: We are going to show that {Y"},cn is a Cauchy sequence in D and S?. Let o € To,T
be arbitrary. Define

=inf{t >0 : Y <SP +e} AT,
t
T), = inf {t >0: / (|38TZ:1‘2 + |33Z§|2)ds > k:} AT AT,
0

where {Tév }ren is the localizing sequence for the local martingales N™ and N™. It follows from
the definition of 75 that K™ is flat on [o, 7Z], hence sgn(dY;_)ddKs < 0 on [o,7Z]. Again by
Proposition 4.2 in [LRTY18] and Assumption 3.1, we obtain

TENTE

|(5Y0'/\Tk| < |(5Y’T§/\Tk| _/ Sgn(éYs_)ddYs

ATy

Tg/\Tk
Y sepn ] + / san(8Y2) (Fu(Y7, Z7) — Fu(Yi™, Z))ds

/\7’]€

ENTE ENTE TENTE
- / sgn(0Y5)0Zs - dXs — sgn(0Ys_)doN; —I—/ sgn(0Ys_ )do K

ATk ONTE ONTE
TENTE R TENTE
< |6Y e pr, | — / sgn(3Y,)07Z, - (dXS - GSASds) - / sgn(8Y,_)dd N,
ONTE ONTE
where A, := L. sgn(0Ys ) |AT 6 ZS\ 145T57,|+0}- Conditioning with respect to FaF under the equiv-

alent measure Q € Qy,. defined by ‘fi% = G%, and then, as §Y is of class D(PP), letting k — oo,
we deduce from the above inequality that

: Q
}SE [S% {S+> }
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where the last inequality follows from 0 < §Y7e = ST +e—Y[& < ST +e—S5T < S;% 1{SJr >m) +e.
Let Q € Q. be arbitrary. We obtain that ’

EQ[|5Y,|] < EQ [E@ [5%1{S+ o)

J-"j’Pﬂ +e< sup & [Sil{sizm}] e

TG7&T

Together with Lemma 4.2, we obtain that for any 8 € (0, 1)

16Y g6 < —||5Y||p <

1 sup EF [S:I{Sizm}]ﬁ'

1 /37676T

As the spaces D and S? are complete, we may find a limit Y € DN SP.
Step 2: We will show that {Z"},cn is a Cauchy sequence in H?. Similar to (4.16), we have
T
/ 5T62,|ds < 2(2 + 8L2T) sup (5Y;)? +4/ 0Y,_doK,
0<s<T 0

+4 sup
0<u<T

(4.22)

/ 8Yy0Z, - dX) +

Comparing to (4.16), the extra term dY;_dd K is due to the different obstacles S™ # S™. Note
that by Skorokhod condition and Y > S™ Y™ > §"

t
/ 3Y,_dSK, = / VAK™ + / (S™ — Y™)dK™
t
- / (Y2~ S VKT + / (Y~ ST KT
0

t
_ / SrdK™ — / YmaK? — / YR aK™ 4 / Sm K™
0
t
< / 58, dK" — / 55, dK™
0 0

< sup [5S,|(KF + KP).
0<s<T

Plugging this inequality in (4.22), we obtain

T
/ ‘33525|2ds <2(2+8L2T) sup (0Ys)? +4 sup [6Ss|(KP + K})
0 0<s<T 0<s<T

+4 sup
0<u<lT

(4.23)

/ 0Y,0Z, - dX 2 +

Taking expectation and using Young and Cauchy-Schwarz inequality, we obtain that
1 ik ok
162l gy < Corir [ 1Y llsson) + 18513 g0, (HK 12, s, + 15 H;B(QA))

1 1 1
1Y 2 o) (HNmngﬁ(@ + HN"H;WQQ )
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Since 0 < 65; < Sj1{5j>m} for ¢ € [0,T], we have 0 < supg<g<r [0Ss] < supg<s<r Sjl{sj>m}
and by Lemma 4.2

sup <IEQA [Sjl{sizm}})ﬁ'

B
0S||¢s < EQA sup S 1 <
105 Is8 (@) ( (SF>m} 1= B ony

0<s<T

As in the proof of Theorem 4.7, by the convergence of {Y"},en and Proposition 4.5 we have
sup,en [IN"|[as < 0o and sup,,cy || K™||xs < oo. Therefore, we obtain

As the right-hand side converges to 0, {Z"}nen € H? is a Cauchy sequence. Again by com-
pleteness, there exists a limit Z € HP.

[NJjsY

1
10Zl135 < C.n.my (HéY”sﬂ HIVIg + swp €[S 1grs)]
7€ o, T -

Step 3: Using the same argument as in Step 3 of the proof of Theorem 4.7, we show that
{U"}nen is a Cauchy sequence in S?. Hence, there exists a limit U € S®. We also show
similarly that U is a local supermartingale, and can be uniquely decomposed as N — K, where
N is a local martingale satisfying [V, X] = 0 and K is a nondecreasing predictable process
starting from zero.

Clearly Y > S. In the same way, we show the Skorokhod condition and that (Y, Z, N, K)
solves the correct RBSDE with (f,&,5).

The uniqueness follows by the same argument as in the proof of Theorem 4.7. U

Proof of Theorem 3.7 (ii). Let (Y™, Z™ N" K™) and (Y™, Z™ N'™ K'™) be the approximation
sequences of the solutions of RBSDEs with (f,£,5) and (f’,&’,S"), respectively. By the com-
parison result, Proposition 4.9, we have Y* < Y" therefore Y; <Y/ for each 7. ]

4.4 Stability of reflected BSDE
Proof of Theorem 3.7 (i). Obviously, the process (6Y,0Z,IN,0K) satisfies

T
§Y, = 66 + / 95(0Ys,0Z5)ds — 62, - dXy — dSN, + doK,, P —as.
t

where ¢4(0Y5,075) = fs(YS +0Ys, Zs + 6Z5) — fs(Ys, Zs). Define 7, := inf{t > 0| fg |Zs|? +
|Z!12ds > m} AT A7), and {7} }nen denotes the localizing sequence of the local martingale
ON. Following the same argument as in Step 1 of the proof of Theorem 4.7, we obtain that

T TATm .
Y | < |5YTW|+/ |6fs(Ys,Zs)|ds—/ sen(8Ys_) {doN, — 62, - (dX, — Goheds) ),
0 TNATm

where g = L, sgn(dYs) | T6 ‘1{‘UT528#0} Define d(@X = Gg}dIP’. Since 0Y € D, it follows
that §Y,,, — 8¢ in £, and therefore

- T
0% < B9 [\5&\ n /0 1644 (Yor Z5)\ds

f—i—,P]
ARl
We deduce immediately from Lemma 4.3 that

T
16Y [lp < €7 [wa T /0 |6fs<n,zs>|ds] , (4.24)
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and from Lemma 4.4 that for any g € (0,1),

T B
o7 llso < 12¢* (06l + [ 1670 Z0las) (1.25)

Further, following Step 2 in Theorem 4.7, we obtain that

< / e zs>|ds>6

The assertion follows from (4.25) and Proposition 4.5. O

1621135 + [6(N = K)l| e

<Chprr <||5Y||36 +&F

1 1
1Y 1135 (INllps + (1Nl vs) 2)-

4.5 A priori estimates and stability of BSDE

For § = —o0, we have the existence and uniqueness result of the BSDE in general filtration. As
we have seen in Proposition 4.5, there is no a priori estimate for Y for reflected BSDE. However,
for the BSDE (3.1) without reflection we may find a priori estimate for Y.

Proof of Theorem 3.4: estimates (3.2)-(3.3). Let 7, := inf{t > 0| fg 6T Z,?ds > n} ATY AT,
where {7V },cn denotes the localizing sequence for the local martingale N. Applying Tanaka’s
formula, by Assumption 3.1 and Remark 3.2, we obtain that

Tn

Yonm] < Vo] — / sen(Ys_)dY,

TNATn
Tn Tn Tn
Vol [ (R0 Z0ds — [ se(V)ZdX, - [ sen(v)an,
TNATn TNATn TNTn

Tn

T n ~
<|Y; |+ / | £2|ds — / sgn(Y3)o Y Z, - dW) — / sgn(Y,_)dNj,
0 TNATn

TNTn

i

~ T
with A\g := L, sgn()@)ﬁgz‘l (15T z,|20y- Taking conditional expectation with respect to FF
under the measure (@X defined by % = GZ);, we obtain Vs, | < EQ [|an| + fOT | f2|ds fj’ﬂ .

AsY € D(P), letting n — oo, we obtain that

~ T
¥,| < £ [m s [ 1s2las

fjvﬂ”] , (4.26)

and (3.2) follows immediately from Lemma 4.3. By Lemma 4.4, (4.26) implies that

T B
Wlso < 257 [lel+ [ 1s3)as]  foran g€ @) (127
- 0

Further, by applying It6’s formula on Y2, we see that
T 2
/ |6X Z,|"ds + [N]r
0
T T T
—v7-¥p 2 [ V(020 -T2 A)ds -2 [ vz axd -z [ veav,
0 0 0

T
< sup Y82+2/ |YS|(LZ‘38TZS‘+|f£|)dS—I—2 sup
0<s<T 0 0<u<T

u u
/ YSZS-dX;\—i—Z/ Y,_dN,
0 0
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1 (7 2 r ?
< (24 2L2T) sup \Y;|2+—/ |oXZs|"ds + (/ |f§|ds>
0<s<T 2 Jo 0

+ 2 sup
0<u<T

/mzs.dxg+/ Y,_dN,
0 0

Finally, by Burkholder-Davis-Gundy inequality and Young’s inequality, we obtain

([ 110) ])-

Taking supremum over all Q* € Qy,_, (3.3) follows from the above inequality and (4.27). O

A
1Zlms @) + IV Ins @ty < CLr g <||Y||§6(@A) +EQ

As in the proof of Theorem 4.7 and that of the estimates (3.2)-(3.3) of Theorem 3.4, we may
estimate the difference of two solutions of two BSDEs. Let (Y™, Z", N") be the solution of the
approximating BSDE with (f™,£™) as in previous section. Define (6Y,0Z,0N) :=(Y =Y, Z —
Z" N — N").

Proposition 4.10. Under Assumptions 3.1 and 3.8, we have

T
16Y [lp < & [l€\1{|5|>n} +/0 \fso\lﬂfsen}d% :

T B
ond |3Y llss + 102w + [N 1Lys < Corr (fﬁ” eftgn])” + € | [ 15810015 ) -
Corollary 4.11. For any 6 >0 and A € f;’P such that E¥[14] < § we have

T
1
sup E7[|Vy[14] < ¥ [|5|1{5zn}+/0 |f£|1{|f9|2n}d5] + Cnd?,

TG%’T
where C,, is a constant dependent on n.

Proof. 1t is clear that for any n € N

sup E7[|V7[1a] < sup E(|6Y|1a] + sup ET[Y[14]
T€70, T T€T0, T€T0,

T 1
<& [|€\1{|5|>n}+/ \fso\l{|f9|>n}d8} + sup EF[|Y 2] 2EP (142
0 T€To,1

T
<& [|€\1{|§|zn} +/0 \f3\1{|f9|>n}d3} + Cp2.

The second inequality is due to Proposition 4.10, and the last inequality is due to the classical
estimate on L? solution of BSDE. ]

5 Second-order backward SDE: representation and uniqueness

We now prove the following representation theorem for the solution of the 2BSDE (3.5). Note
that this representation implies the uniqueness of the process Y, and further that of the process
Zas d(Y,X) = Zd(X).
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Theorem 5.1. Let Assumption 3.9 hold true and (Y,Z) be a solution to the 2BSDE (3.5)
satisfying the minimality condition (3.7). For each P € Py, let (Y, Z¥, NT) be the solution of
the corresponding BSDE (3.1). Then, for any P € Py and 7 € To T,

Y, = essﬁgup V. P—as. (5.1)
PP, (1,P)

In particular, the 2BSDE has at most one solution in D(PO,IE*‘J“PO) x HP (PO,FPO) for all B €
(0,1) satisfying the minimality condition (3.7), and the comparison result of Proposition 3.12
holds true.

Proof. The uniqueness of Y is an immediate consequence of (5.1), and implies the uniqueness
of Z, adt ® Po-q.s. by the fact that (Y, X), = ([ Zs - X, X); = fg asZsds, P—a.s. This repre-
sentation also implies the comparison result as an immediate consequence of the corresponding
comparison result of the BSDEs JF.

This proof of the respresentation is similar to the one in [STZ12]. The only difference is due
to the different minimality condition (3.7). Let P € Py and P’ € P, (7,P) be arbitrary. Since
(3.6) holds P-a.s., we can consider Y as a supersolution of the BSDE on [r,7T] under P’. By
comparison result, Proposition 3.7(ii), we obtain that Y; > V' P-a.s. As V¥ is F-measurable

and Y, is Fi ’Po—measurable, we deduce that the inequality also holds P-a.s., by definition of
P+ (1,P) and the fact that measures extend uniquely to the completed o-algebras. Therefore,

Y. > ess]};up y}."’, P—a.s. (5.2)
PP (1,P)

by arbitrariness of P,
We now show the reverse inequality. Define § := Y —-Y¥ 67 := Z—2Z¥ and 6N := N¥' —-NT".
By Assumption 3.9, there exist two bounded processes af and bF such that

3Y, = /T (af’ays P -a’fazs) ds—/

T / T /
:/ aféYS—/ a;fazs.(dws—bfds)—/

T

T T T ,
6Xsz, - dw, — / doN, + / dK*

T T ,
d5N5+/ dKY, P —a.s.

' P’ ' . . .
Under the measure QY , the process WSQT =W, — f: bY' du is a Brownian motion on [r, T

]P,l
u du’

beginning with W,. Applying It6’s formula with §Yselr @
TP dust P T oraa T du P
5YT:—/ ef-rau UO.S 5ZSdW;@7— _/ efTau ud5N8+/ ef'rau usz ’ ]P/—(I.S.

Taking conditional expectation with respect to Qﬂ:/ and localization procedure if necessary, we
obtain that

/ T s o ,
5Y, = E® [ / elr audug P

f:] < e TEY (K} — KX |F).
By minimality condition (3.7)
P / ,
0<Y; - essﬁgup §Y, < elvT < essinf EY- [K%I,’i |.7-";r] — Kf) =0, P-—a.s.
PPy (7,P) PrePy (r,P)

Together with (5.2) the assertion follows. O
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6 Second-order backward SDE: existence

To prove the existence, we first define a value function V' by means of the solutions of BSDEs
on shifted spaces, then we show that V satisfies the dynamic programming principle, and
introduce the corresponding pathwise right limit V. By combining the standard Doob-Meyer
decomposition with our results on reflected BSDEs, we obtain that VT satisfies the required
2BSDE.

We shall use the following notations for on the shifted space for some F-stopping time 7:
WO W =W W, &Y= ey YT and YAY(W') 1= Vigs(w @ W),
for all 0 <t < s <T. In the context of the canonical process X, this reduces to

X(W) = Xpps(w @ w') = (W@ w)igs =wp +wl, s€[0,T -t

6.1 Backward SDEs on the shifted spaces
For every (t,w) € [0,T] x  and P € P(t,w), we consider the following BSDE

T—t
Vil = ghw 4 / Eb (Yol zbe P G dr — 209 dX, — dNP9P P —ae.  (6.1)
S

with s € [0, T —t]. By Theorem 3.4 we have a unique solution (vaP, Zt""’P,/\/’t""’P) € Sg_t(IP’) X
Hjﬁ“—t(]?) x Nﬁ—t(P) and Y"F € Djﬁ“—t(P)-

In this section, we will prove the following measurability result, which is important for the
dynamic programming.
Proposition 6.1. Under Assumption 3.1, the mapping (t,w,P) s Y2*F[¢ T) is B([0,T]) ®
Fr & B(M1)-measurable.
Proof. Let ™ and f™ be defined as in Section 2. Following Step 1-4 in the proof of [LRTY18,
Lemma 4.2], we may construct the solution (J/Q’t’w’]?, Z;”’W’P,N:’t’“’ﬂ’) of the following BSDE

T—t T—t T—t
7t7 7P P 7t7 7t7 7t7 7P 7t7 7P = 7t7 7]P> 7t7 7]P>
YbeF = gn w+/ Fbe (Pt gzt ,ar)dr—/ Zphe .dXT—/ AN
S S S

in a measurable way, such that (t,w, s,’, P) — Y2"F (') is B([0,T]) ® Fr @ B(0,T]) ® Fr ®
B(Py)-measurable. By Proposition 4.10 and (H2) we have that
P twP _ ytwp|?
E Sup ‘y:ﬂ W, ys’w’ ‘
0<s<T—t

— 0,

where VP is the solution associated with (Ft’w ,{t"*’). Then, it follows from [NN14, Lemma
3.2] that there exists an increasing sequence {nf} wen & N such that P — nfg is measurable for
each k£ € N and

n{,t,w,P

lim sup A - y;"*”P‘ =0.

k—00 g<s<T—t

Therefore, (t,w, s,w’,P) — YrF (W) is B([0,T]) ® Fr @ B([0,T])) ® Fr @ B(Py)-measurable, and
the mapping

(t,w,P) = Yo Pe 7] = EF [J/é’w’P]

is B([0,7T]) ® Fr @ B(Py)-measurable. Since P, € B(M;), the mapping (¢, w,P) — Y-F[¢ T]
is B([0,T]) ® Fr @ B(M;)-measurable. O
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Lemma 6.2. Let Assumptions 3.1 and 3.9 hold true. Then, for all T € Tor and P € Py:

(i) BSDE (3.1) and shifted version (6.1): EF [y}f

}'0} (W) = YOP™[¢, T, for P—a.e. w € Q;

(ii) Tower property of BSDE: Y[, T| =YY, 0] =Y, [E [Yg[g,THJ-'U],a]
We omit the proof as the assertion (i) is a direct result of the uniqueness of the solution to
BSDE and the assertion (i¢) is similar to [PTZ18, Lemma 2.7].
6.2 Dynamic programming

We define the value function

B e
PeP(t,w)

Now, we show the dynamic programming result by the measurable selection theorem. We
first prove the following class D(P) integrability result for the process V.

Lemma 6.3. Let Assumption 3.9 hold true. Then, the mapping w — Vi (w) is ff-measumble
for each [0, T)-valued F-stopping time 7. For any (t,w) € [0,T] x Q,

lim sup sup sup  EQ[|(Vy)t¢|1 Voytw|>ny| = 0.
fm sup  sup | osup | | 1wy zm)]

Proof. By the measurability result proved in Proposition 6.1 and the measurable selection the-
orem (see, e.g., [BS96, Proposition 7.50]), for each & > 0, there exists an ]-"y -measurable kernal
V¥ w1 (w) € P(7(w),w), such that for all w € ©

Vi(w) < Yr @e 7] +e. (6.2)
This implies that w + V;(w) is FY-measurable. Further it follows from Lemma 6.2 (i) that

Yr,w,us(w) [é, T] — EP@TVE |:y£"®7—1/5

]-"T} (w), P-as. for each P e Py. (6.3)
Together with (6.2) we have for Q € Qp_(P)

EQ“VTH < EQ [EJP@TVE [‘yf&”s\‘}}ﬂ o< Epﬂy}f&w” iy
T T
< &P [IE\ +/0 |f50|ds] +e< &M [\§| +/O ‘fg‘ds} +e.

The second last inequality is due to the estimate (3.2) on the BSDE solution. So we have

T
sup EP[|V;]] < €7 [|§\ +/ ‘fg‘ds] + e < 0. (6.4)
0

T€T0, T

Further, fix any § > 0 and A € FY such that £7°[14] < §. It follows again from (6.2) and (6.3)
that for Q € Qr_(P)

EQ[|V7|14] < B [Fe [|3Fer|1,

]-}” +e< SPUJ/?@T”EHA} +€

T
< gP |:|£|1{|§|>m} +/ ‘f£‘1{|f9|2m}dsj| + Cm(sé +e, for all m € N.
0
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The last inequality is due to Corollary 4.11. Now let m be large enough such that

T
gro |5|1{|£|zm}+/0 | F1 g p0myds | < e

and § be small enough such that C’méé < &. Then we obtain EQ“VTH A] < 3e. Further note
that the choice of m and § is independent from P and 7, so we have

sup EPO[|Vi[14] < 3e.
T€T0,

Finally, since

1
sup 7 1y, >npy) < = sup EPQVA,
Te%,T nTG%’T

for n big enough, sup,¢7. .. 5P0[1{\VT|zn}] < 0 and thus sup, ¢ .. EPo [|VT|1{|Vf\zn}] < 3e. O

Using the last integrability result, we now show the following results using the same argument
as in [PTZ18] and [LRTY18].

Proposition 6.4. Under Assumption 3.9, we have

Vi(w)= sup Y"F[V. 7] forall (t,w)e€[0,T]xQ, and T € Trr. (6.5)
PeP(t,w)

Moreover, we have for all P € Py and T € To 1:

Vi = esssup BX [0F [V, 7] | 7], Poas (6.6)
P/eP(t,P)
Proof. See [LRTY18, Theorem 6.7]. O

Based on the previous result we can define the right limit of the value function, and the next
result shows that V' is actually a semimartingale under any P € Py, and gives its decomposition.

Lemma 6.5. Let Assumptions 3.1 and 3.9 hold true. The right limit

VW)= lm V() (6.7)

exists Po-q.s. and the process VT is cadlag Po-q.s. Also we have:

(i) The process V't € D(Py).

(i1) For any F*-stopping times 0 <71 <19 < T

VTJ{: ess]Péup J/E/[VT';,TQ], P—a.s. (6.8)
P'ePy(1,P)

Further, for any P € Py and B € (0,1), there is (Z¥, M¥, K*) € HP(P,F™F) x NP (P,FHF) x
IZ8(P,FF), such that

T T T T
W:§+/ FS(I/;,ZE,aS)ds—/ Z;P’.dxs—/ dN;P’+/ dKY, P-a.s.
t t t t

where [NP,X] = 0. Moreover, there is some FF0-predictable process Z which aggregates the
family {ZP}PE%.

Proof. See [LRTY18, Proposition 6.8] and the step 1 in the proof of the existence part of
[LRTY18, Theorem 3.12]. O
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6.3 Existence through dynamic programming

Lemma 6.5 above provides us a candidate (Y, Z) = (V*, Z) of the solution of the 2BSDE (3.5).
Then, it sufficies to verify that the family {K P}P Po satisfies the minimality condition (3.7).

Proof. Let P € Py, 7 € To,r and P’ € P, (7,P) be arbitrary. Let (yP’, ZPI,NP/) be the solution
of

T T T
OF =&+ [ RO7.25)ds— [ 20 ax, - [LanT, P oas
t t t
Define §Y :=V+ —Y¥ 57 := Z — 2% and 6NT := N¥ — N?'. Then,
T S T T ) T )
o= [ (R 2050 - BOF 25 )ds = [ ozeax,— [ aoNE v [ ant
TT / l . T T l T . l T
= / (af oYy + V5 -5T07)ds —/ Y07, - dW, —/ dSNY +/ dKY, P —a.s.
where of and ¥’ are two bounded processes bounded by L. Under the measure QIE/, we have
T o T ” T ) T )
oY, = / a8V, ds — / 6Y62, - dWQ- —/ dSN¥ +/ dKY, P —as.
We next get rid of the linear term in Y by introducing §Y , := §Yyelr “z/d“, 7 < s < T so that
T s P P’ T P’ / T . P’ /
§Y, = — / elr wduTsz  aw @ — / el7 wdugsNT' / elr wdugg? P s

Taking conditional expectation with respect to @IE, and localization procedure if necessary, we
obtain that

/ T s ,
5Y, = E [ / eJr dudug P

T

7| 2 B (K5 - KE|7)
therefore,
0 <E% [K}|FH] - KT < Moy,
Then, the result follows immediately thanks to (6.8). O

A Appendix

A.1 Uniform integrability under Q (IP)

Here, we show that the space of progressive measurable cadlag processes which belong to class
D(P) is complete under the norm

1Y |lp@) == sup EF[|Y].

T€T0, T
First of all, we proof an equivalent characterization of the concept of uniform integrability.

Proposition A.1. A family {X;}ier of random variables, where T is an arbitrary index set, is
uniformly integrable under Qr(P), i.e.,

. P o
i sup £ (XL 2] = 0, (A1)

if and only if the following two conditions are satisfied:
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(@) supyer 7| X¢] < o0,

(b) For every e > 0, there exists § > 0 such that for any A € F with supgeg, (v) Q[A4] < § we

have

sup EF[| X [14] < e.
teT

Proof. Clearly, (A.1) implies (a). Next, let A € F and write A; := {|X;| > N}. Then, we have

supEP[\Xt|1A] = supEP[|Xt|(1AmAt + 1A\At):|
teT teT

< supEP[|Xt|1At] + N sup EF[1 4]

teT teT
< SupEP[|Xt|1At] + N sup Q4]
teT QeQr(P)

Given € > 0, by (A.1), we may find N such that sup,cr ¥ [|Xy|14,] < §. Therefore, (b) follows
by setting § = 5% .
Conversely, suppose that (a) and (b) hold. Then, by Markov inequality, we obtain that

1 M
sup sup Q[ X¢| > N] <sup —SP[|Xt|] < —,
t€T QeQL(P) teT NV N

where M is the bound indicated in (a). Hence, if N > %, then supgeg, () Q[At] < 4, for each
t € T. By (b), we have for each t € T that £¥[|X;|14,] < . Thus, (A.1) follows. O

Now, we show the completeness of D(P).
Theorem A.2. The space D(P) is complete with respect to the norm || - [|p(p)-

Proof. Let {X"}nen € D(P) be a Cauchy sequence with respect to || - | pp). In particular, this
is a Cauchy sequence with respect to || - [[pp). By [DM82, VI Theorem 22, Page 83|, there exists
a cadlag process X such that

lim sup (X;—X{)=0, P-—a.s.,

=0 ¢e[0,T]

and [| X |[|p@p) < oo. Since Q ~ PP for each Q € Q1 (IP), the above convergence holds also for each
Q € Qr(P). As {X"},en is a Cauchy with respect to || - |[pp), for each € > 0 there exists a
N €N, such that || X — X% |pr) < &, and by triangle inequality we obtain

[Xllo@) < [[X = X |pe) + X [l < o

To show the uniform integrability, it suffices to show (b) in Proposition A.1. For each
e > 0, there exist N € N such that supTe%TSPHXT — XiVH < 5, and § > 0 such that
SUP-e75 1 EP HXiV !1 A] < 5, for each supgeg L(P) Q[A] < 4. Therefore, by triangle inequality, we
obtain that

sup E|X;|14] < sup EF[|X: — XN|] + sup EF[|XN|14] <,
T€T0, T T€T0, T T€T0,T

and the assertion follows. O
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