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Introduction

The literature on non-parametric monotonicity testing deals usually with the model

Y = f (X) + ξ,
where Y is a scalar dependent random variable, X a scalar independent random variable, f (•) an unknown function, and ξ an unobserved scalar random variable with E{ξ|X} = 0. We are interested in testing the null hypothesis, H 0 that f (x) is increasing against the alternative, H 1 that there are x 1 and x 2 such that x 1 < x 2 and f (x 1 ) > f (x 2 ). The decision is to be made based on the i.i.d. sample {X i , Y i } 1≤i≤n from the distribution of (X, Y ). Typical applications of monotonicity testing are related to econometric models, see, e.g., Chetverikov [START_REF] Chetverikov | Testing regression monotonicity in econometric models[END_REF]. Usual approaches to this problem have in their core simple heuristic ideas and assumptions. So, the tests proposed in Gijbels et. al. [START_REF] Gijbels | Tests for monotonicity of a regression mean with guaranteed level[END_REF] and Ghosal, Sen, and van der Vaart [START_REF] Ghosal | Testing monotonicity of regression[END_REF] are based on the signs of (Y i+k -Y i )(X i+k -X i ). Hall and Heckman [START_REF] Hall | Testing for monotonicity of a regression mean by calibrating for linear functions[END_REF] developed a test based on the slopes of local linear estimates of f (•). Along with these papers we can cite Schlee [START_REF] Schlee | Nonparametric Tests of the Monotony and Convexity of Regression[END_REF], Bowman, Jones, and Gijbels [START_REF] Bowman | Testing monotonicity of regression[END_REF], Dümbgen and Spokoiny [START_REF] Dümbgen | Multiscale testing of qualitative hypotheses[END_REF], Durot [START_REF] Durot | A Kolmogorov-type test for monotonicity of regression[END_REF], Baraud, Huet, and Laurent [START_REF] Baraud | Testing convex hypotheses on the mean of a Gaussian vector. Application to testing qualitative hypotheses on a regression function[END_REF], Wang and Meyer [START_REF] Wang | Testing the monotonicity or convexity of a function using regression splines[END_REF], and Chetverikov [START_REF] Chetverikov | Testing regression monotonicity in econometric models[END_REF]. As to typical hypothesis about f (•), it is often assumed that f (x) is a Lipschitz function, i.e., |f (y

) -f (x)| ≤ L|y -x|,
where the constant L < ∞ may be known or unknown.

In this paper, we look at the problem of monotonicity testing from a little different and less intuitive viewpoint. As we will see below, our approach permits, in particular, to understand links between this problem and sparse vectors detection and to construct new powerful tests. In order to simplify technical details and to get rid of supplementary assumptions, we begin with monotonicity testing of an unknown function f (t), t ∈ [0, 1], in the so-called white noise model similar to that one considered in [START_REF] Dümbgen | Multiscale testing of qualitative hypotheses[END_REF]. So, it is assumed we have at our disposal the noisy data

Y (t) = f (t) + σn(t), t ∈ [0, 1], (1) 
where n(•) is a standard white Gaussian noise and σ > 0 is a known noise level. With the help of these observations we want to test the null hypothesis

H 0 : f (t) ≥ 0, for all t ∈ [0, 1],
vs. the alternative

H 1 : f (t) < 0, for some t ∈ [0, 1].
Our approach to this problem is based on estimating the following linear functionals:

θ h,t (f ) def = 1 h t+h t f (u) du - 1 h t t-h f (u) du
for all h, t that are admissible, i.e., such that [t -h, t + h] ⊆ [0, 1]. It is clear that θ h,t (f )/h may be interpreted as approximations of the derivative f (t) since

lim h→0 θ h,t (f ) h = f (t),
for any given t ∈ (0, 1). With the help of (1), the functionals θ h,t (f ) are estimated as follows:

θh,t (Y ) = 1 h t+h t Y (u) du - 1 h t t-h Y (u) du
and these estimates admit the obvious representation

θh,t (Y ) = θ h,t (f ) + σ h ξ h,t , (2) 
where

σ h = σ 2 h , ξ h,t = 1 √ 2h t+h t n(u) du - t t-h n(u) du ∼ N (0, 1).
Notice that if H 0 is true, then θ h,t (f ) ≥ 0 for all admissible h, t, otherwise (H 1 is true) there exist h , t such that θ h ,t (f ) < 0. That is why in what follows we will focus on testing the null hypothesis H 0 : θ h,t (f ) ≥ 0, for all admissible h, t vs. the alternative

H 1 : θ h,t (f ) < 0, for some admissible h, t (3) 
based on the observations [START_REF] Bowman | Testing monotonicity of regression[END_REF].

Let us denote for brevity

θ h,t = θ h,t (f ), θh,t = θh,t (Y ).
In order to explain our approach to the problem (3), we begin with the simple case assuming that h, t are given. So, we have to test two composite hypotheses H h,t 0 : θ h,t ≥ 0 vs. H h,t 1 : θ h,t < 0. Intuitively, the most powerful test with the type I error probability α rejects

H h,t 0 if θh,t ≤ -σ h t α , ( 4 
)
where t α is α-value of the standard Gaussian distribution, i.e., a solution to

Φ(t α ) = 1 -α, where Φ(x) = 1 √ 2π x -∞ exp - x 2 2 dx.
Of course, there exist a lot of motivations for this test. In this paper, we make use of the so-called improper Bayes approach assuming that θ h,t in ( 2) is a random variable uniformly distributed on the interval [0, A], A > 0, if H h,t 0 is true, and on [-A, 0] if H h,t 1 is true. So, we observe a random variable θh,t with the probability density

p A 0 (x|H h,t 0 is true) = 1 A A 0 exp - (x -θ) 2 2σ 2 h dθ and p A 1 (x|H h,t 1 is true) = 1 A 0 -A exp - (x -θ) 2 2σ 2 h dθ.
Thus, we deal with the simple hypothesis testing and by the Neyman-Pearson lemma, the most powerful test at significance level α rejects H h,t

0 when p A 1 ( θh,t ) p A 0 ( θh,t ) ≥ t A α .
Taking the limit in this equation as A → ∞, we arrive at the improper Bayes test that rejects

H h,t 0 if S θh,t σ h ≥ t α , (5) 
where

S(x) = 0 -∞ exp -(x -θ) 2 /2 dθ ∞ 0 exp -(x -θ) 2 /2 dθ = 1 Φ(x) -1. ( 6 
)
Since S(x) is decreasing in x ∈ R, the tests (4) and ( 5) are obviously equivalent.

In what follows, we will make use of the following asymptotic result:

S(x) = 1 + O 1 x 2 √ 2π(1 -x) exp x 2 2 , as x → -∞. (7) 
Along with this method, one can apply the maximum likelihood (ML) or minimax approaches. Finally, all these methods result in (4) but their initial forms are different. For instance, the ML test rejects H h,t 0 when max

θ<0 exp -( θh,t -θ) 2 /(2σ 2 h ) max θ>0 exp -( θh,t -θ) 2 /(2σ 2 h ) = exp - θ2 h,t 2σ 2 h sign( θh,t ) ≥ t α . ( 8 
)
Emphasize that from a viewpoint of testing H h,t 0 vs. H h,t 1 there is no difference between (8) and ( 5), but the aggregation of these methods for testing H 0 vs. H 1 from (3) results in different tests. In this paper, we make use of the tests defined by (5) since their aggregation is simple.

In order to aggregate the statistical tests, we will make use of the socalled multi-resolution approach assuming that 1. h belongs to the following set of dyadic bandwidths

H def = 1 2 , 1 4 , . . . 1 2 k , . . . ;

t belongs to the family of dyadic grids G h , h ∈ H, defined by

G h def = h, 3h, . . . , 1 -h , h ∈ H.
There are simple arguments motivating these assumptions

• random variables ξ h,t and ξ h ,t in (2) are independent if {h, t} = {h , t }. This fact simplifies significantly the statistical analysis of tests.

• h/2 θh,t are the Haar coefficients admitting a fast computation in the discrete version of (1).

Testing at a given resolution level

Let us fix some bandwidth h ∈ H and denote for brevity by n h = 1/(2h).

In this section, we focus on testing the null hypothesis

H h 0 : θ h,t ≥ 0 for all t ∈ G h vs.

the alternative

H h

1 : θ h,t < 0 for some t ∈ G h . In order to construct Bayes and MAP tests, we assume that for given h ∈ H

• the set {θ h,t , t ∈ G h } contains the only one negative entry θ h,τ ;

• τ is an unobservable random variable uniformly distributed on G h .

A Bayes test

With the arguments used in deriving (5), we get the following Bayes test:

H h 0 is rejected if 1 n h t∈G h S θh,t σ h ≥ t B α ,
where S(•) is defined by [START_REF] Dümbgen | Multiscale testing of qualitative hypotheses[END_REF]. The critical level t B α is defined by a conservative way, i.e., as a solution to

max Θ≥0 P Θ 1 n h t∈G h S θh,t σ h > t B α = α,
where here P Θ stands for the measure generated by observations θh,t defined by ( 2)

for given Θ = {θ h,t , h ∈ H, t ∈ G h }.
It follows from Mudholkar's theorem [START_REF] Mudholkar | The integral of an invariant unimodal function over an invariant convex set -an inequality and applications[END_REF], see also Theorem 6.2.1 in [START_REF] Tong | Probability Inequalities in Multivariate Distributions[END_REF], that for any Θ with nonnegative entries θ h,t ≥ 0

P Θ 1 n h t∈G h S θh,t σ h > x ≤ P 1 n h t∈G h S(ξ h,t ) ≥ x (9)
and, thus, t B α may be computed as a solution to

P 1 n h t∈G h S(ξ h,t ) ≥ t B α = α. ( 10 
)
Therefore our next step is to study the following random variable:

B h (ξ) def = 1 n h t∈G h S(ξ h,t ).

A weak approximation of B h (ξ)

We begin with computing a weak limit of B h (ξ) as h → 0. Recall some standard definitions (see, e.g., [START_REF] Nolan | Stable Distributions: Models for Heavy-Tailed Data[END_REF]).

Definition. Let X 1 and X 2 be independent copies of a random variable X. Then X is said to be stable if for any constants a > 0 and b > 0 the random variable aX 1 + bX 2 has the same distribution as cX + d for some constants c > 0 and d.

In the class of stable distributions there is an interesting sub-class of the so-called stable distributions with the index of stability α = 1. For brevity, we will call them 1-stable distributions. The formal definition of this class is as follows:

Definition. A random variable X is called 1-stable if its characteristic function can be written as

E exp(itX) = exp µit -|ct| -i 2β|c| π t log(|t|) . ( 11 
)
The next theorem shows that the weak limit of

B h (ξ) -log(n h ) is a 1-stable distribution. Theorem 1. lim h→0 E exp it B h (ξ) -log(n h ) + γ = exp it log 1 |t| - π|t| 2 ,
where γ ≈ 0.57721 is Euler's constant.

In other words, this theorem states that

lim h→0 B h (ξ) -log(n h ) + γ] D = ζ,
where ζ is a 1-stable random variable (see [START_REF] Ingster | Nonparametric Goodnessof-Fit Testing Under Gaussian Models[END_REF]) with

µ = 0, c = π 2 , β = 1. (12) 
Apparently, ζ appeared firstly in [START_REF] Dobrushin | A statistical problem arising in the theory of detection of signals in the presence of noise in a multi-channel system and leading to stable distribution Laws[END_REF]. Emphasize also that this random variable originate usually in Bayes hypothesis testing related to sparse vectors, see e.g. [START_REF] Burnashev | On a problem of signal detection leading to stable distributions[END_REF], [START_REF] Ingster | Nonparametric Goodnessof-Fit Testing Under Gaussian Models[END_REF].

The probability distribution of ζ has the following invariance property that plays an important role in Bayes tests aggregation.

Proposition 1. Let ζ k be i.i.d. copies of ζ and π be a probability distribution on Z + with a bounded entropy. Then

∞ k=1 πk ζ k -log 1 πk D = ζ. ( 13 
)
The proof of ( 13) follows immediately from ( 11) and ( 12).

A strong approximation of B h (ξ)

Theorem 1 is not very informative about the tail behavior of the distribution of B h (ξ). However, for obtaining a good approximation of t B α in [START_REF] Hall | Testing for monotonicity of a regression mean by calibrating for linear functions[END_REF] this behavior may play a crucial role because in some applications α may be very small (of order 10 -7 ) and so, the Monte-Carlo method and Theorem 1 may not be good in this case.

Therefore our goal is to find an approximation of B h (ξ) that controls well the tail of its distribution. Fortunately, this can be easily done. It is clear that

Φ(ξ k ) D = U k ,
where U k are i.i.d. random variables uniformly distributed on [0, 1]. Hence

B h (ξ) D = 1 n h n h k=1 1 U k -1 = 1 n h n h i=1 1 U (k) -1,
where 

U (k) is a non-decreasing permutation of U k , k = 1, . . . ,
U (k) D = E k E n h +1 , (14) 
where

E k = k l=1 κ l
is the cumulative sum of i.i.d. standard exponentially distributed random variables κ l P κ l ≥ y = exp(-y).

In other words, E k ∼ Gamma(k, 1). With this in mind, we obtain

B h (ξ) D = 1 + O 1 √ n h n h k=1 1 E k -1 = 1 + O 1 √ n h n h k=1 1 E k - 1 k + n h k=1 1 k -1. (15) 
Next, we make use of the following simple equations:

E ∞ k=n h +1 1 E k - 1 k 2m 1/(2m) ≤ O 1 √ n h and n h k=1 1 k = log(n h ) + γ + O 1 n h .
So, substituting them in [START_REF] Schlee | Nonparametric Tests of the Monotony and Convexity of Regression[END_REF], we arrive at the following theorem.

Theorem 2. Let ζ • = ∞ k=1 1 E k - 1 k . ( 16 
)
Then

B h (ξ) -log(n h ) + γ D = 1 + O(ε h ) ζ • + 2γ -1 + O(ε h ) log(n h ), ( 17 
)
where ε h is such that

E ε 2m h 1/(2m) ≤ C m √ n h . ( 18 
)
Remark. The random variable ζ in Theorem 1 admits the following representation

ζ = ∞ k=1 1 E k - 1 k + 2γ -1.
Notice also that it follows immediately from [START_REF] Wang | Testing the monotonicity or convexity of a function using regression splines[END_REF] that convergence rate in Theorem 1 is log(n h )/ √ n h , i.e., as h → 0,

E exp it B h (ξ) -log(n h ) + γ = exp it log 1 |t| - π|t| 2 + O log(n h ) √ n h .
Figure 1 illustrates numerically Theorem 2 and the above remark showing log-tail approximation error

∆(x; n h ) = log P B h {ξ) -log(n h ) + γ ≥ x -log P ζ • + 2γ -1 ≥ x .
computed with the help of the Monte-Carlo method with 0.5 • 10 6 replications. This picture shows that even for small n h = 4 the approximation [START_REF] Wang | Testing the monotonicity or convexity of a function using regression splines[END_REF] works very good.

A MAP test

Similarly to the Bayes test, we can construct the MAP test that rejects where t M α is defined as a solution to max

H h 0 if max t∈G h 1 n h S θh,t σ h ≥ t M α ,
Θ≥0 P Θ max t∈G h 1 n h S θh,t σ h > t M α = α.
Similarly to (9), t M α may be obtained from

P max t∈G h S(ξ h,t ) n h > t M α = α.
As to the limit distribution of max t∈G h S(ξ h,t )/n h , as h → 0, it follows immediately from (14) that max

t∈G h S(ξ h,t ) n h D = 1 + ε h κ , as h → 0, ( 19 
)
where κ is a standard exponential random variable and ε h satisfies (18).

3 Multi-level testing

MAP multi-level tests

A heuristic idea behind our construction of multi-level MAP tests for (3) is related to (19) and consists in computing a positive deterministic function U h , h ∈ H, bounding from above the random process log(1/κ h ), h ∈ H, where κ h are independent standard exponential random variables. In other words, we are looking for U h such that

ζ U = sup h∈H log 1 κ h -U h
would be a non-degenerate random variable. Let q U α be α-value of ζ U , i.e., solution to

P ζ U ≥ q U α = α.
Therefore with (19), upper bounding random process log(1/κ h ) by U h , we arrive at the test that rejects

H 0 if sup h∈H max t∈G h log 1 n h S θh,t σ h -U h ≥ q U α . ( 20 
)
Computing q U α is based on the following simple fact. Assume that

K U = log h∈H e -U h < ∞. Then sup h∈H log 1 κ h -U h -K U D = log 1 κ . ( 21 
)
The proof of this identity is very simple. Indeed,

P sup h∈H log 1 κ h -U h -K U > x = 1 - h∈H P log 1 κ h ≤ U h + x + K U = 1 -exp - h∈H exp -x -U h -K U = 1 -exp[-exp(-x)].
Let us we denote πh = e -U h h∈H e -U h , then (21) can be rewritten in the following form:

Proposition 2. Let π be a probability distribution on H. Then

sup h∈H log 1 κ h + log(π h ) D = log 1 κ . ( 22 
)
Therefore with the help of (21) we can compute α-critical level q U α in (20)

q U α = q κ α + K U ,
where

q κ α = -log log 1 1 -α is α-value of log(1/κ).
Summarizing (see (20)), the MAP multi-level test rejects

H 0 if sup h∈H Z M h + log(π h ) ≥ q κ α , ( 23 
)
where

Z M h = max t∈G h log 1 n h S θh,t σ h
and π is a probability distribution on H.

In order to study the performance of this method, we analyze the type II error probability. For given {ρ, τ :

ρ ∈ H, τ ∈ G g } and A ∈ R + define Θ ρ,τ (A) = θ h,t : θ ρ,τ = -A; θ h,t ≥ 0, (h, t) = (ρ, τ ) . ( 24 
)
In other words, we consider the situation, where all shifts θ h,t in (2) are positive except the only one. The position of the negative entry {ρ, τ } and its amplitude are unknown, but it is assumed that {ρ, τ } are random variables with the distribution defined by

• P{ρ = h} = πh , • P{τ = t|ρ = h} = n -1 h ,
where π is a probability distribution on H with a bounded entropy

H π = h∈H πh log 1 πh .
In what follows, we will deal with priors π with large uncertainties assuming that π → 0, or more precisely, sup h∈H πh → 0, but such that

lim π→0 1 log[H π] h∈H πh H π -log 1 πh = 0. ( 25 
)
In particular, we will consider the following class of prior distributions:

πh = πω,ν h = ν log 2 (1/h) ω ∞ k=1 ν k ω ≈ 1 ω ν log 2 (1/h) ω . ( 26 
)
This class is characterized by the bandwidth ω > 1 and the probability density ν(x), x ∈ R + , which is assumed to be continuous, bounded, and with

H ν = ∞ 0 ν(x) log 1 ν(x) dx < ∞, ∞ 0 ν(x) log(x + 1) dx < ∞. (27) 
A typical example of a such distribution is the uniform one that corresponds to ν

(x) = 1, x ∈ [0, 1].
It is clear that πω,ν h → 0 as ω → ∞ and that Condition (25) holds. Let us begin with the case, where the prior distribution is known, the case of unknown π will be considered later in Section 4.

The type II error probability over Θ ρ,τ (A) of the MAP test ( 23) is defined as follows:

β M ρ,τ (A) = sup Θ∈Θρ,τ (A) P Θ max h∈H Z M h + log(π h ) ≤ q κ α .
Our goal is to study the average type II error probability

βM π (A) = h∈H πh n h t∈G h β M h,t (A h ),
where here and below A = {A h , h ∈ H}.

Denote for brevity

R h (q, H) = 2[q + log(n h ) + H] -log[4π(q + log(n h ) + H)] and log * (x) = log[log(x)], H * π = log(H π).
The next theorem shows that R h (q κ α , H π) is a critical signal/noise ratio.

Roughly speaking, this means that if

A h σ h π ≤ R h (q κ α , H π) + x
for any given x > 0, then the MAP multi-level test cannot discriminate between H 0 and H 1 . Otherwise, if

A h σ h π ≥ R h (q κ α , H π) + H * π,
for some > 0, then reliable testing is possible.

In the next theorem, E π stands for the expectation w.r.t. π.

Theorem 3. Suppose (25) holds. If for some x ∈ R and > 0 lim

π→0 1 H * π E π A h σ h -x 2 + H * π -R h (q κ α , H π) + = 0, ( 28 
)
then lim π→0 βM π (A) ≥ (1 -α)[1 -Φ(x)]. ( 29 
)
If for some > 0

lim π→0 1 H * π E π R h (q κ α , H π) + 2 H * π A h σ h - A 2 h σ 2 h + = 0, ( 30 
)
then lim π→0 βM π (A) = 0. ( 31 
)

Multi-level Bayes tests

To construct these tests, let us consider the following statistics:

Z B h = 1 n h t∈G h S θh,t σ h -log(n h ) -γ + 1, h ∈ H.
When all θ h,t = 0, in view of Theorem 2, these random variables are approximated by the family of independent and identically distributed random variables ζ • h , h ∈ H, defined by ( 16). An important property of this family is provided by [START_REF] Nolan | Stable Distributions: Models for Heavy-Tailed Data[END_REF], which is used in our construction multi-level Bayes tests. More precisely, the multi-level Bayes test rejects

H 0 if h∈H πh Z B h -log 1 πh ≥ q • α ,
where q • α is α-value of ζ • . The type II error probability over Θ ρ,τ (A) (see ( 24)) is defined by

β B ρ,τ (A) = sup Θ∈Θρ,τ (Aρ) P Θ h∈H πh Z B h -log 1 πh ≤ q • α
and our goal is to analyze the average type II error probability

βB π (A) = h∈H πh n h τ ∈G h β B h,τ (A h ).
Theorem 4. Suppose (25) holds and for some x ∈ R and > 0 lim

π→0 1 H * π E π A h σ h -x 2 + H * π -R h [log(q • α ), H π] + = 0, ( 32 
)
then lim π→0 βB π (A) ≥ (1 -α)[1 -Φ(x)]. ( 33 
)
If for some > 0

lim π→0 1 H * π E π R h log(q • α ), H π + 2 H * π A h σ h - A 2 h σ 2 h + = 0, ( 34 
)
then lim π→0 βB π (A) = 0. ( 35 
)
Remark. Notice that as α → 0

log(q • α ) = (1 + o(1))q κ α = (1 + o(1)) log 1 α .
Therefore, since H π → ∞ as π → 0, conditions (28) and (32) along with (30) and (34) are almost equivalent. This means that in the considered statistical problem there is no substantial difference between MAP and Bayes tests.

Adaptive multi-level tests

The main drawback of the MAP and Bayes tests is related to their dependence on the prior distribution π that is hardly known in practice. Therefore our next goal is to construct a test that, on the one hand, does not depend on π, but on the other hand, has a nearly optimal critical signal-noise ratio.

In order to simplify our presentation, we will deal with the class of prior distributions πω,ν defined by (26). The entropy of πω,ν obviously satisfies

H πω,ν = log(ω) + H ν + o(1), ω → ∞, (36) 
and therefore denote for brevity

R h (q, ω) = 2[q + log(n h ) + log(ω)] -log[4π(q + log(n h ) + log(ω)]. (37) 
With (36), Condition (25) is checked easily and the next result follows immediately from Theorem 3.

Corollary 1. If for some x ∈ R and > 0 lim ω→∞ 1 log * (ω) E πω,ν A h σ h -x 2 + log * (ω) -R h (q κ α , ω) + = 0, then lim ω→∞ βM πω,ν (A) ≥ (1 -α)[1 -Φ(x)].
If for some > 0

lim ω→∞ 1 log * (ω)] E πω,ν R h (q κ α , ω) + 2 log * (ω) A h σ h - A 2 h σ 2 h + = 0, then lim ω→∞ βM πω,ν (A) = 0.
In order to construct an adaptive test, let us compute a nearly minimal function U h in (21). We begin with

ψ 0 (x) = 1 + log(x), x ∈ R + ,
and then iterate this function m times

ψ l (x) = ψ 0 ψ l-1 (x) , l = 1, . . . , m.
Finally, for given ε ∈ (0, 1), define

L m,ε (k) = -log 1 ε[ψ m (k)] ε - 1 ε[ψ m (k + 1)] ε , k ∈ Z + . ( 38 
) Since ψ m (1) = 1, it is clear that ∞ k=1 exp[-L m,ε (k)] = 1 ε .
In what follows, we will make use of the following approximation of L m,ε (k) for large k. Denote (see (38)) by the Taylor formula we obtain from (38)

L m,ε (k) = -log - 1 ε [dψ m (k)] -ε dk = -log 1 [ψ m (k)] 1+ε dψ m (k) dk = log(k) + log[ψ 0 (k)] + • • • + log[ψ m-1 (k)] + (1 + ε) log[ψ m (k)]. (39) Since d 2 ψ m (k) dk 2 dψ m (k) dk = O 1 k ,
∆ m,ε (k) = L m,ε (k) -L m,ε (k) = O 1 ψ m (k) . ( 40 
)
Figure 2 shows that L m,ε (k) and approximation errors ∆ m,ε (k). Since h ∈ H = {2 -1 , . . . , 2 -k , . . .}, we choose

U h = L m,ε [log 2 (1/h)]
and in view of (38) we arrive at the following prior distribution:

Π h = 1 {ψ m [log 2 (1/h)]} ε - 1 {ψ m [log 2 (1/h) + 1]} ε , h ∈ H.
It is easy to check that the entropy of Π is unbounded and this is why this distribution might be viewed as an improper prior.

The MAP test associated with Π rejects H 0 when

max h∈H Z M h + log Π h ≥ q κ α
and its type II error probability over Θ ρ,τ (A) (see ( 24)) is defined by

β Π ρ,τ (A) = sup Θ∈Θρ,τ (A) P Θ max h∈H Z M h + log(Π h ) ≤ q κ α .
Denote for brevity

R + (q κ α , ω) = R(q κ α , ω) + log * (ω), (41) 
where R(q α , ω) is defined by (37), and let

βΠ πω,ν A) = h∈H πω,ν h n h t∈G h β Π h,t (A h )
be the average type II error probability.

Theorem 5. If for some x ∈ R and > 0 lim

ω→∞ 1 log * (ω) E πω,ν A h σ h -x 2 + log * (ω) -R + h (q κ α , ω) + = 0, then lim ω→∞ βΠ πω,ν (A) ≥ (1 -α)[1 -Φ(x)].
If for some > 0

lim ω→∞ 1 log * (ω) E πω,ν R + h (q κ α , ω) + 2 log * (ω) A h σ h - A 2 h σ 2 h + = 0, then lim ω→∞ βΠ πω,ν (A) = 0.
This theorem and Corollary 1 demonstrate that the critical signal-noise ratio of the adaptive test is only slightly greater, see (41), (by the additive term log * (ω)) than the one of the MAP test that knows the prior distribution πω,ν .

Appendix

Proof of Theorem 1

With a simple algebra we obtain

log E exp itB h (ξ) = n h log 1 √ 2π ∞ -∞ cos tS(x) n h e -x 2 /2 dx + i √ 2π ∞ -∞ sin tS(x) n h e -x 2 /2 dx = n h log 1 + ∞ -∞ cos t n h 1 Φ(x) -1 -1 dΦ(x) + i ∞ -∞ sin t n h 1 Φ(x) -1 dΦ(x) = n h log 1 + 1 0 cos t n h 1 u -1 -1 du + i 1 0 sin t n h 1 u -1 du = n h log 1 + ∞ 0 1 (1 + u) 2 cos tu n h -1 du + i ∞ 0 1 (1 + u) 2 sin tu n h du = n h log 1 + |t| n h ∞ 0 cos(u) -1 (|t|/n h + u) 2 du + it n h ∞ 0 sin(u) (|t|/n h + u) 2 du . (42) It is clear that as n h → ∞ ∞ 0 cos(u) -1 (|t|/n h + u) 2 du → ∞ 0 cos(u) -1 u 2 du = - π 2 . ( 43 
)
Let us choose h < 1 such that lim

h→0 h = 0, lim h→0 h n h = ∞.
Then we get by the Taylor formula

∞ 0 sin(u) (|t|/n h + u) 2 du = h 0 sin(u) (|t|/n h + u) 2 du + ∞ h sin(u) (|t|/n h + u) 2 du = h 0 u (|t|/n h + u) 2 du + O h 0 u 3 (|t|/n h + u) 2 du + (1 + o(1)) ∞ h sin(u) u 2 du = log 1 + h n h |t| - h n h (|t| + h n h ) + (1 + o(1)) ∞ h sin(u) u 2 du + O( 2 h ). (44) 
Next, integrating by parts, we obtain

∞ x sin(z) z 2 dz = - ∞ x sin(z) z d log 1 z = sin(x) x log 1 x + ∞ x z cos(z) -sin(z) z 2 log 1 z dz.
Hence, as x → 0

∞ x sin(z) z 2 dz = log 1 x + ∞ 0 z cos(z) -sin(z) z 2 log 1 z dz + O x 2 log 1 x = log 1 x + (1 -γ) + O x 2 log 1 x ,
where γ is Euler's constant.

With this equation we continue (44) as follows:

∞ 0 sin(u) (|t|/n h + u) 2 du = log 1 |t| + log(n h ) -γ + O |t| h n h + O 2 h log 1 h .
Substituting this equation and ( 43) in (42), we get

log E exp itB h (ξ) = - π|t| 2 + it log 1 |t| + log(n h ) -γ + o(1),
thus, proving the theorem.

Proof of Theorem 3

I. A lower bound. By (22) we have for any given x

β M ρ,τ (A) ≥ P log S - A σ ρ + ξ ρ,τ -log n ρ πρ ζ ρ -log 1 πρ ≤ q κ α P max h∈H ζ h -log 1 πh ≤ q κ α = P S - A σ ρ + ξ ρ,τ ≤ exp q κ α + log n ρ πρ × P ζ ρ ≤ q κ α + log 1 πρ P ζ ≤ q κ α ≥ (1 -α) 1+πρ P S - A σ ρ + ξ ρ,τ ≤ exp q κ α + log n ρ πρ ; ξ ρ,τ ≥ x ≥ (1 -α) 1+πρ P ξ ρ,τ ≥ x 1 S - A σ ρ + x ≤ exp q κ α + log n ρ πρ . ( 45 
)
Let R(z) ≥ 0 be a solution to

S -R(z) = z.
It is easy to check with the help of (7) that as z → ∞

R(z) = 2 log(z) -log[4π log(z)] + o(1). ( 46 
)
Denote for brevity

r h (q, u) = 2 q + log n h u -log 4π q + log n h u .
With (46) and the Markov inequality we obtain for any > 0

E π 1 S - A h σ h + x ≤ exp q κ α + log n h πh = 1 -E π 1 S - A h σ h + x > exp q κ α + log n h πh = 1 -E π 1 A h σ h -x 2 -r h (q κ α , πh ) > o(1) ≥ 1 - 1 H * π E π A h σ h -x 2 -r h (q κ α , πh ) + H * π + . ( 47 
)
With Condition (25) and simple algebra it is easy to check that lim

π→0 1 H * π E π r h (q κ α , π) -R h (q κ α , H π) = 0.
Therefore (29) follows from (45), (47) and the above equation.

II. An upper bound. Since S(x) is a decreasing function, we have obviously for any x ≥ 0 βM π (A) ≤E π P S -

A h σ h + ξ ≤ exp q κ α + log n h πh ≤E π P S - A h σ h + ξ ≤ exp q κ α + log n h πh ; ξ ≤ x +E π P S - A h σ h + ξ ≤ exp q κ α + log n h πh ; ξ > x ≤E π 1 S - A h σ h + x ≤ exp q κ α + log n h πh + P ξ > x .
Next, with (46), the Markov inequality, and Condition (25) we get for any > 0

h∈H πh 1 S - A h σ h + x ≤ exp q κ α + log n h πh ≤ h∈H πh 1 r h (q κ α , πh ) - A h σ h -x 2 > o(1) ≤ 1 H * π h∈H πh r h (q κ α , πh ) - A h σ h -x 2 + H * π + ≤ 1 H * π h∈H πh R h (q κ α , H π) - A h σ h -x 2 + H * π + + o(1).
To complete the proof, let us choose x = H * π.

Proof of Theorem 4

A lower bound. For given x and δ > 0 by ( 17) and ( 13), we obtain

β B ρ,τ (A) ≥ P πρ n ρ S - A σ ρ + ξ ρ,τ + ζ • ≤ q • α ; ξ ρ,τ ≥ x ≥ P πρ n ρ S - A σ ρ + x + ζ • ≤ q • α ; ξ ρ,τ ≥ x = P ξ ρ,τ ≥ x P ζ • ≤ q • α - πρ n ρ S - A σ ρ + x ≥ P ξ ρ,τ ≥ x P ζ • ≤ (1 -δ)q • α 1 πρ n ρ S - A σ ρ + x ≤ δq • α .
Similarly to (47), since π → 0, we get

E π 1 πh n h S - A h σ h + x ≤ δq • α ≥ 1 - 1 H * π E π A h σ h -x 2 + H * π -R h [log(δq • α ), H π] + ≥ 1 - 1 H * π E π A h σ h -x 2 + H * π -R h [log(q • α ), H π] + ≥ 1 + o(1).
So, since δ is arbitrary, (33) follows from the above inequalities.

An upper bound. Since S(x) is decreasing, we get

β B ρ,τ (A) ≤P πρ n ρ S - A σ ρ + ξ ρ,τ + ζ • ≤ q • α ; ξ ρ,τ ≥ x +P πρ n ρ S - A σ ρ + ξ ρ,τ + ζ • ≤ q • α ; ξ ρ,τ ≤ x ≤P ξ ρ,τ ≥ x + P πρ n ρ S - A σ ρ + x + ζ • ≤ q • α . ( 48 
)
Next, for any given x • < q • α we obtain with the help of the Markov inequality and ( 46)

E π P πh n h S - A h σ h + x + ζ • ≤ q • α ≤ E π P πh n h S - A h σ h + x + ζ • ≤ q • α ; ζ • < x • + E π P πh n h S - A h σ h + x + ζ • ≤ q • α ; ζ • ≥ x • ≤ P ζ • < x • } + E π 1 πh n h S - A h σ h + x ≤ q • α -x • ≤ P ζ • < x • } + 1 H * π E π R h [log(q • α -x • ), H π] + H * π - A h σ h -x 2 +
.

Finally choosing x = H * π and combining this equation with (48), we complete the proof of (35). (50)

Proof of Theorem 5

In view of ( 49) and (50) the rest of the proof is similar to the one of Theorem 3 and therefore omitted.
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 1 Figure 1: Log-tail approximation errors ∆(x; n h ) for n h = 4 and n h = 1024.

Figure 2 :

 2 Figure 2: The functions L m,ε (•) and the approximation errors ∆ m,ε (•) for m = 1, 2 and ε = 0.1.

  One can check easily with (38)-(40) and (26) that as ω → ∞H πω,ν , s (xω)] + (1 + ε) log[ψ m (xω)] dx. It is also clear in view of (27) that ∞ 0 ν(x) log(xω + 1) dx = log(ω) + O(1)and for any integer s ≥ 0∞ 0 ν(x) log[ψ s (xω)] dx = log[ψ s (ω)] + O(1). Therefore as ω → ∞ H πω,ν , Π = log(ω) + (1 + o(1)) log * (ω). (49)Next, with similar arguments we obtain h∈H ) H(π ω,ν , Π) -log(xω + 1) -(1 + o(1)) log[log(xω + 1) + 1] log(ω) + (1 + o(1)) log * (ω)] -log(xω + 1) -(1 + o(1)) log[log(xω + 1) + 1] ) -log(x + 1) + o(1) log * (ω) + dx = o(1) log * (ω)].