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Abstract

Backward stochastic differential equations extend the martingale representation theorem
to the nonlinear setting. This can be seen as path-dependent counterpart of the extension
from the heat equation to fully nonlinear parabolic equations in the Markov setting. This
paper extends such a nonlinear representation to the context where the random variable
of interest is measurable with respect to the information at a finite stopping time. We
provide a complete wellposedness theory which covers the semilinear case (backward SDE),
the semilinear case with obstacle (reflected backward SDE), and the fully nonlinear case
(second order backward SDE).

MSC2010. 60H10, 60H30

Keywords. Backward SDE, second order backward SDE, quasi-sure stochastic analysis, ran-
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1 Introduction

Let (2, F,{Fi}t>0,P) be a filtered probability space, supporting a d—dimensional Brownian
motion W. The martingale representation theorem states that any integrable F—measurable
random variable &, for some F—stopping time 7, can be represented as £ = E{ + (Z - W), + N,
for some square integrable F—predictable process Z, and some martingale N with Ny = 0
and [V, W] = 0. In particular when F is the (augmented) canonical filtration of the Brownian
motion, N = 0. This result can be seen as the path-dependent counterpart of the heat equation.
Indeed, a standard density argument reduces to the case £ = g(Wy,,...,W,,) for an arbitrary
partition 0 = ¢ty < ... < t, = T of [0,T], where the representation follows from a backward
resolution of the heat equation 0;v + %Av = 0 on each time interval [t;_1,t;], i = 1,...,n, and
the Z process is identified to the space gradient of the solution.

As a first extension of the martingale representation theorem, the seminal work of Pardoux &
Peng [PP90] introduced the theory of backward stochastic differential equations in finite horizon,
extended further to the random horizon setting by Darling & Pardoux [DP97]. In words, this
theory provides a representation of an JF,.—measurable random variable £ with appropriate
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integrability as £ = Y, with Yo = Yy — OMT [s(Ys, Zs)ds + (Z - W)inr + Niar, t > 0, where f is
a given random field. In the Markov setting where £ = g(Wp) and fi(w,y, z) = f(t, Wi(w), y, 2),
t >0, it turns out that Y;(w) = v(t, W;(w)) for some deterministic function v : Ry x R? — R,
which is easily seen to correspond to the semilinear heat equation d;v + %Av + f(,,v,Dv) =0,
by the fact that the Z process again identifies the space gradient of v.

As our interest in this paper is on the random horizon setting, we refer the interested reader
to the related works by Briand & Hu [BH98], Briand and Carmona [BC00]|, Royer [Roy04],
Bahlali, Elouaflin & N’zi [BEN04], Popier [Pop07], Briand and Confortola [BC08]. We also
mention the related work of Hamadene, Lepeltier & Wu [HLW99] which considers the infinite
horizon.

Our main interest in this paper is on the extension to the fully nonlinear second order
parabolic equations, as initiated in the finite horizon setting by Soner, Touzi & Zhang [STZ12],
and further developed by Possamai, Tan & Zhou [PTZ17], see also the first attempt by Cheridito,
Soner, Touzi & Victoir [CSTV07], and the closely connected BSDEs in a nonlinear expectation
framework of Hu, Ji, Peng & Song [HJPS14a, HJPS14b] (called GBSDEs). This extension is
performed on the canonical space of continuous paths with canonical process denoted by X. The
key idea is to reduce the fully nonlinear representation to a semilinear representation which is
required to hold simultaneously under an appropriate family P of singular semimartingale mea-
sures on the canonical space. Namely, an Jr— random variable £ with appropriate integrability
is represented as

¢
¢ =Y, where Yt:Yo—/ Fs(}/;,Zs,&s)ds—k(Z'X)t—l—UF, t>0, P—a.s. foral PeP.
0

Here, 62ds = d(X)s, and U¥ is a supermartingale with U} = 0, [U¥, X] = 0, P—a.s. for all
P € P satisfying the minimality condition suppep EF[US] = 0. Loosely speaking, in the Markov
setting where Y;(w) = v(t, X;(w)) for some deterministic function v, the last representation
implies that v is a supersolution of a semilinear parabolic PDE parameterized by the diffusion
coefficient —0yv — %Tr[UJTD%] — F(t,z,v,Dv,0) > 0, and the minimality condition induces
the fully nonlinear parabolic PDE —d,v — sup, {3 Trloc™ D%*v] + F(t,z,v, Dv,0)} = 0.

Our main contribution is to extend the finite horizon fully nonlinear representation of
[STZ12] and [PTZ17] to the context of a random horizon defined by a finite F—stopping time. In
view of the formulation of second order backward SDEs as backward SDEs holding simultane-
ously under a non-dominated family of singular measures, we review —and in fact complement—
the corresponding theory of backward SDEs, and we develop the theory of reflected backward
SDEs, which is missing in the literature, and which plays a crucial role in the well-posedness of
second order backward SDEs.

Finally, we emphasize that backward SDEs and their second order extension provide a
Sobolev-type of wellposedness as uniqueness holds within an appropriate integrability class of
the solution Y and the corresponding “space gradient” Z. Also, our extension to the random
horizon setting allows in particular to cover the elliptic fully nonlinear second order PDEs with
convex dependence on the Hessian component.

The paper is organized as follows. Section 2 sets the notations used throughout the paper.
Our main results are contained in Section 3, with proofs reported in the remaining sections.
Namely, Section 4 contains the proofs related to backward SDEs and the corresponding reflected
version, while Sections 5 and 6 focus on the uniqueness and the existence, respectively, for the
second order backward SDEs.



2 Preliminaries

2.1 Canonical space

Fixde N, meNy, m>d. Let
Q = {w = (whw?) rwl e C([O,oo);Rd), w? e C([O,oo), Rm); Wy = 0},

be the space of continuous paths starting from the origin equipped with the distance defined by
[@ =@ ||l := Y150 27" (SUPg<s<y, [[@¢ — @}|| A1). Define the canonical process X := (X, W) by

Xi(@) :=w; and W;(@)=w?, t>0.

Let M be the collection of all probability measures on (2, F), equipped with the topology of
weak convergence. Denote by F := (F;);>0 the raw filtration generated by the canonical process
X. Denote by F+ := (F;");>0 the right limit of (F;);>0. For each P € M, we denote by F* the
augmented filtration of F+ under P. The filtration F™ is the coarsest filtration satisfying the
usual conditions. We denote by FU := (]—"tU and FHV .= (]—"1:r ’U) the (right-continuous)
universal completed filtration defined by

)tzo >0

U P +,U . P
‘Ft = ﬁIP’GMl}—t and }—t = mPGMl‘Ft .

Clearly, FtU is right-continuous. Simialrly, for P C M;, we introduce FF := (]-'tp and

F+7P .= (Ft+’P)t>0, where

)iz

77) 7]P>
]_—tP = ﬁpgp}—fp and F, = NpepF; .

For any family II C M, we say that a property holds II—quasi-surely, abbreviated as II—q.s.,
if it holds P—a.s. for all P € II.

We denote by Pj. € M the collection of probability measures such that for each P € Py,
e X is a continuous P-local martingale whose quadratic variation is absolutely continuous in ¢
with respect to the Lebesgue measure;

e W is an m-dimensional P-Browinian motion such that (X, W) is absolutely continuous in ¢
with respect to the Lebesgue measure.

Due to the continuity of X, that X is an F-local martingale under P implies that X is an
F*F_local martingale. Similarly, W is an F+F-Brownian motion under P.

As in [Kar95], we can define a pathwise version of a (d+m) x (d+m)-matrix-valued process
(X). The constructed process is F-progressively measurable and coincides with the quadratic
variation of X under all P € Pj,.. In particular, the d x d-matrix-valued and d x m-matrix-valued
processes (X, X) and (X, W) are defined pathwisely, and we may introduce the corresponding
F-progressively measurable density processes

a; = limsupn(<X,X>t — <X,X>t_l), and o0; ;= limsupn(<X, Wi — (X, W>t_1)7 t>0,

n—o00 n n—00

so that (X, X); = fg asds and (X, W), = f(f osds, t >0, P—a.s., for all P € Pj,,.

Remark 2.1. For later use, we observe that, as @ € Sgo, the set of d x d nonnegative-definite

symmetric matrices, we may define a measurable! generalized inverse a—'.

!Any matrix S € Sgo has a decomposition S = QEAsQs for some orthogonal matrix Qs, and a diagonal
matrix Ag, with Borel-measurable maps S +— Qg and S +— Ag, as this decomposition can be obtained by e.g. the
Rayleigh quotient iteration. This implies the Borel measurability of the generalized inverse map S € Sgo —
S71:=QTATIQ € S2°, where A™! is the diagonal element defined by Ai_i1 = Niilgp, 201, 0=1,...,d.



Throughout this paper, we shall work with the the following subset of P
Py, = {]P’ € Py : 0 is bounded and a; = atat , dt ® P(dw)-a.e. }

Lemma 2.2. P, € B(M,), and we have X; = fo 0sdWs, t > 0, P-a.s. for all P € Py.

Proof. The measurability of P, follows from Nutz & von Handel [NvH13, Lemma 4.5]. We
consider the extended space  := Q x €/, where Q' := C([0,00); R™™) equipped with the
filtration (F;);>0 generated by the canonical process. Denote by P{, the Wiener measure on V'
Set F, := F: @ F, F:=FQF and P := P ® P{. Extend @, o, X and W from  to Q in the
obvious way, and denote these extensions by a, o, X and W. Note that

a o;\ _ (or 0\ (oFf 1 ~
<Ef;r 0>—<1 0><0 0} dt @ P(dw)-a.s

By [SV97, Theorem 4.5.2], there is a d + m-dimensional Brownian motion B on (ﬁ,ﬁ,ﬁ’), such

that N
Xe\ (o
d <~t> < 1 0> dBt

Obviously, we have dW, = d(Eg,éf, . ,E{”)T. Then, X; = fo 55,0)dB, = =/, GsdWs, t > 0,
P-a.s. which implies the desired result. U

2.2 Spaces and norms

Let p>1and a € R.

(i) One-measure integrability classes: for a probability measure P € My, let 7 be an FHF-
stopping time. We denote:

o I8 -(PP) is the space of R-valued and F7 ¥ measurable random variables &, such that
I€N7y @) =B [|e"7¢["] < o0
e D%, (P) is the space of R-valued, F+F-adapted processes Y with cadlag paths, such that

Y —EP[ sup e, }<oo.
1Y 1igs, e sup [ W[

e MY -(P) is the space of R?-valued, FF-progressively measurable processes Z such that
1218, @ = EP / |e5T 2| dt) ] < .

o N£ - (P) is the space of R-valued, F*P-adapted martingales N such that

INIRe o) = EP[(/OT eQO‘td[N]t)%] < .

o 11, -(P) is the set of scalar F*-P-predictable processes K with cadlag nondecreasing paths, s.t.

1K1y = [( ] ar)] <o

4



o UL ;(P) is the set of cadlag F-supermartingales U, with Doob-Meyer decomposition U = N —K
into the difference of a martingale and a predictable non-decreasing process, such that

Uz, = INlIng .y + Iz gy < o0

(ii) Integrability classes under dominated nonlinear expectation: For P € Py, denote by Qr(P)
the set of all probability measures Q* such that

dQ> t L[
DQAUP ._& :exp(/ )\s'dWs——/ |)\s|2ds), t >0,
Fi 0 2 0

¢ TdP
for some FTP-progressively measurable process A = (A)>0 uniformly bounded by L, which is a
fixed Lipschitz constant throughout this paper, see Assumption 3.1. By Girsanov’s Theorem,

At
Wi‘\t = Woae — / Asds is an (F, QA)—Brownian motion on [0, t],
0

for all £ > 0. For P € P, we denote

1] = sup E9[]
QeQr(P)

and we introduce the subspace £4 -(P) C Ngeg, LA +(P) of r.v. £ such that

sup [[éllz . = E7[|e*TEP] < oo
QeQy,

We define similarly the subspaces D5 ;(P), Hh +(P), N& - (P), and the subsets Z4 -(P), UL - (P).

(iii) Integrability classes under non-dominated nonlinear expectation: Let P C Py, be a subset
of probability measures, and denote

EP[] = sup&P[.
PeP

Let G := {G; }+>0 be a filtration with G; D F; for all ¢ > 0, so that 7 is also a G-stopping time.
We define the subspace EZJ(P,G) as the collection of all G.-measurable R-valued random
variables £, such that

117 oy = E7 [[e™€[] < 0.

We define similarly the subspaces D5 (P, G) and Hh -(P,G) by replacing FHF with G.

3 Main results

3.1 Random horizon backward SDE

For a probability measure P € Py, a finite F-stopping time 7, an Fi P _measurable r.v. &, and a
generator F: R, x Q x R x RY x Sy — RU {00}, Prog ®B(R) ® B(R?) @ B(S?)-measurable 2,
we set

ft(w7y7 Z) = Ft(w7y7 Z7at(w))7 (t7w7y7 Z) S R-i- X QxR x Rda

2By Prog we denote the o-algebra generated by progressively measurable processes. Consequently, for every

fixed (y,z) € R x R?, the process (Ft (y, 2, Et))t>0 is progressively measurable.



and we consider the following backward stochastic differential equation (BSDE):

T T

Yo = €+ [ fVaZ)is— [ (Zo-dX,+dN), P (3.1)

tAT tAT

Here, Y is a cadlag adapted scalar process, Z is a predictable R%valued process, and N a cadlag
R-valued martingale with Ny = 0 orthogonal to X, i.e., [X, N] = 0. We recall from Lemma 2.2
that dX, = 0,dWs, P—a.s.

By freezing the pair (y,2) to 0, we set £ := f;(0,0).

Assumption 3.1. The generator satisfies the following conditions.

(i) F Lipschitz: there is a constant L > 0, such that for all (y1,21), (y2,22) € R x R, o € Sy,

|E(y1,21,0) — Fy(y2, 22,0)] < L(lyn — ol + [0T (21 — 22)|),  dt @ dP — a.e..

(ii) F Monotone: there is a constant u € R, such that for all z € RY, (y1,y2) € R?, 0 € Sy,

(yl - y2)(Ft(y17Z7U) - Ft(y27270)) < _H|yl - y2|27 dt @ dP — a.e.

Assumption 3.2. 7 is a finite stopping time, £ is Fr—measurable, and
_p T a1
€llcs. ) < 00 and Fpyr = &7 |( / e f2Pds)* |7 < oo, for some p>—p, q>1.
0

Theorem 3.3 (Existence and uniqueness). Under Assumptions 3.1 and 3.2, the backward SDE
(3.1) has a unique’ solution (Y,Z,N) € D) (P) x Hh-(P) x NY-(P), for all p € (1,q) and
n € [~p,p), with

—P
Y18 o)+ 120 o+ NI gy < Consi(ll€ly o+ (Frgr)’)-  (32)

Except for the estimate (3.2), whose proof is postponed in Section 4.5, the wellposedness
part of the last result is a special case of Theorem 3.7 below, with obstacle S = —oc.

We emphasize that Darling & Pardoux [DP97] requires a similar integrability condition as
Assumption 3.2 with p := p + L?/2 instead of p and EF instead of EF. The following example
illustrates the relevance of our assumption in the simple case of a linear generator.

Ezample 3.4. Let P := Py, be the Wiener measure on 2, so that X is a Pj—Brownian motion.
Let 7 := Hy, where H, := inf{t > 0 : X; > z}, £ .= |Xja-|, and fi(w,y,2) := —py + Lz for
some constants 0 < u < 1 < L. Notice that f =0, and ¢ € E(%’T(IP’O) directly verification:

P Poy 27 & 1
gofieP] < sup ERDIEPR] < sup ER[(DEF)’)EP[|¢]Y]? < oo
QeQr(Po) QeQr(Po)
We next show that Darling & Pardoux’s condition is not satisfied. To see this, observe that the

event set A= {w € Q : supgcyc; Xy < 1, X1 € [3, 3] } satisfies Py[A] > 0, and therefore

E]P’o [€2L2T|£|2] > EEPO [62L271A] > E]P’o |:1A]E]P’0[62L2H1—X1 ‘Xl]]

N N N N

> —gPo [1 AEPO[eZ’LQHuﬂ — .

3The solution is unique modulo the norms of the corresponding spaces.



We also have the following comparison and stability results, which are direct consequences of
Theorem 3.8 below, obtained by setting the obstacle to —oo therein, together with the estimate
(3.2) in Theorem 3.3.

Theorem 3.5. Let (f,€), (f', &) be two sets of parameters satisfying the conditions of Theorem
3.3 with some stopping time T, and the corresponding solutions (Y, Z,N), (Y', Z' N").

(i) Stability. Denoting 6§ := & —¢, Y =Y =Y, 6Z .= Z - 7', 6U .= U — U’ and
Of = f—f', we have for all1 <p <p' <qand —p<n<n < p:
/4P

Coma{ 10611, +€7[( [ lemasivi,zojae) "]},

P Tt p
15218 o+ 1SN gy < Comr {107 s o) +€7( /0 €3£, Z0)dt)'] }-

16Y 1y

IN

(ii) Comparison. Assume & < &, P-a.s., and f(y,2) < f'(y,2) for all (y,z) € R x RY,
dt @ P—a.e. Then, Y, <Y! P-a.s. for all stopping time 19 < 7, P—a.s.

T0’

Remark 3.6. Following [EPQ97] we say that (Y,Z) is a supersolution (resp. subsolution) of
the BSDE with parameters (f,£) if the martingale N in (3.1) is replaced by a supermartingale
(resp. submartingale). A direct examination of the proof of the last comparison result reveals
that the conclusion is unchanged if (Y, Z) is a subsolution of BSDE(f,¢), and (Y, Z') is a
supersolution of BSDE(f/,&").

3.2 Random horizon reflected backward SDE

We now consider an obstacle defined by (S¢)¢>0, and we search for a representation similar to
(3.1) with the additional requirement that Y > S. This is achieved at the price of pushing up
the solution Y by substracting a supermartingale U with minimal action. We then consider the
following reflected backward stochastic differential equation (RBSDE):

Yrr = &+ fs(Ys, Zs)ds — (Zs - dXs+dUs), Y > S, P—as.
AT (33)
and EP[/ 1A ((E_ - Sr_))dUr} =0, for all t >0,
0

where Up; is a cadlag P—supermartingale, for all ¢ > 0, starting from Uy = 0, orthogonal to X,
i.e. [X,U] = 0. The last minimality requirement is the so-called Skorokhod condition.?

Theorem 3.7 (Existence and uniqueness). Let Assumptions 3.1 and 3.2 hold true, and let S be
a cadlag FHF —adapted process with HSJF”DZT(P) < 00. Then, the reflected backward SDE (3.3)

has a unique solution (Y, Z,U) € Db +(P) x Hb +(P) x UY -(P), for allp € (1,q) and n € [—pu, p).

The existence part of this result is proved in Section 4.4. The uniqueness is a consequence
of claim (i) of the following stability and comparison results.

Theorem 3.8. Let (f,&,S) and (f',¢',5") be two sets of parameters satisfying the conditions
of Theorem 3.7, with corresponding solutions (Y, Z,U) and (Y',Z',U").

4This condition indeed coincides the standard Skorokhod condition in the literature. Indeed, by using the
corresponding Doob-Meyer decomposition U = N — K into a martingale N and a nondecreasing process K, and
recalling that Y > S , it follows that 0 = E*[ [T (1A (Yoo — S,2))dU.] = EF[— [T (LA (Y, — S, ))dK,] is
equivalent to [ (Y,.— — S, )dK, =0, P—a.s. by the arbitrariness of ¢ > 0.



(i) Comparison. Assume & < ¢, P-a.s., f(y,2) < f'(y,2) for all (y,z) € RxRY, and S < ',
dt @ P-a.e. Then, Y., <Y/ P-a.s., for all stopping time 19 < 7, P-a.s.

70’
(ii) Stability. Let S = S’, and denote 66 :=&—¢',6Y =Y -Y' 62 :=Z—-7',6U :=U-U'
and 6f = f— f'. Then, for all1 <p<p <q and —pu <n<n' < p, we have:

16Y gy + 16212 o) + 1671y )

< Cp,p’,n,n/{Af + Af + (Agé + AJ%‘) ((?g’mﬁ) ,

—] D D y2
+ (Fypr)® + ¥ lipe, ey + 1Yl 2, T(m)}'

3
7

and Ay := 5P[(f0T e’7/5|5fs(Ys,Zs)‘ds)p]P )

ya
2

)
Moreover, 6U = fo edoUy satisfies

where Ag¢ == H&Hizi,f(ﬁ»

16Ty, < Coton (197 s, ) + 1621

ot Af).

The proof of (ii) is reported in Section 4.3, while (i) is proved at the end of Section 4.4.

Notice that the stability result is incomplete as the differences Y, §Z and §U are controlled
by the norms of Y and Y’. However, in contrast with the estimate (3.2) in the backward SDE
context, we have unfortunately failed to derive a similar control of (Y, Z,U) by the ingredients
¢ and f in the present context of random horizon reflected backward SDE .

3.3 Random horizon second order backward SDE

Following Soner, Touzi & Zhang [STZ12], we introduce second order backward SDE as a fam-
ily of backward SDEs defined on the supports of a convenient family of singular probability
measures. For this reason, we introduce the subset of P:

Py = {PePy: f(w) < oo, for Leb®@P-a.e. (t,w) € Ry x Q}, (3.4)
where we recall that f(w) = F(w,0,0,5¢(w)). We also define for all finite stopping times 7:
Pp(19) = {]P” €EPy: P=Pon .7-“7.0}, and 'P];_(To) = Uh>077p(7'0 + h). (3.5)

The second order backward SDE (2BSDE, hereafter) is defined by

T

Yine = f""/ FS(}/:% Zsaas)ds N / (ZS ~dXs + dUS)? Po — as. (36)
t

AT tAT
for some supermartingale U together with a convenient minimality condition.
Definition 3.9. Let p > 1 and n € R. A process (Y, Z) € D - (Po, FT70) x HY +(Po, FT0) is
said to be a solution of the 2BSDE (3.6), if for all P € Py, the process
T T

Ub, =Y — € — FS(YS,ZS,as)dH/ Zs-dX,, t>0, P—a.s.

tAT tAT
is a cadlag P—local supermartingale starting from U(I)ED = 0, orthogonal to X, i.e. [X,UF] =0,

P—a.s. and satisfying the minimality condition

P / /
= esssup EF [UFAT
PP (sAT)

P
Us/\T

F:A’fl], P—a.s. forall0<s<t.




Remark 3.10. Notice that the last definition relaxes slightly (3.6) by allowing for a dependence of
U on the underlying probability measure. This dependence is due to the fact that the stochastic
integral Z « X := fo Zs - dXs is defined P—a.s. under all P € Py, and should rather be denoted
(Z « X)¥ in order to emphasize the P—dependence.

By Theorem 2.2 in Nutz [Nut12], the family {(Z ¢ X)¥}pep, can be aggregated as a medial
limit (Z ¢ X)) under the acceptance of Zermelo-Fraenkel set theory with axiom of choice together
with the continuum hypothesis into our framework. In this case, (Z * X) can be chosen as an
F+Po_adapted process, and the family {U P}Pepo can be aggregated into the resulting medial
limit U, i.e., U = U?, P—a.s. for all P € P,. O

The following assumption requires the following additional notations:
W) = Ew @), fIW) = Frys(w @ w',0,0,6(w), 7 =7t — 1,
which involve the paths concatenation operator (w ®; w')s 1= 1{s<pws + L{gsg (W +wi_,), and
P(t,w) :={P € Py: 0.t () < 00, for Leb®P — a.e. (s,w') € Ry x Q},
so that Py = P(0,0).

Assumption 3.11. (i) 7 is a stopping time with li_>m o [1{T>n}] =0, £ 1s Fr—measurable, and
n o -

there are constants p > —u, and q > 1 such that

T a,1
€l <00 and o= €[ ( [ e o) ] <

(ii) Furthermore, the following dynamic version of (i) holds for all (t,w) € [0, 7]:

7—.'t

tw F0tw | oP(tw) - s £0,t,w|2 3 %
¢ H[:Z’?W(P(w)) <oo, and F,;~ =& [(/0 |ers fte| ds) } < 00.

Theorem 3.12. Under Assumptions 3.1 and 3.11 (i), the 2BSDE (3.6) has at most one solution
(Y, Z) € D%T(PO,IE‘J“PO) X H%T(PO,FPO), forallp € (1,q9) and n € [—p, p), with

Y1 oy 1205y < Cramo(I€12s py + (Fogr)?). (37)

Under the additional Assumption 3.11 (ii), such a solution (Y, Z) for the 2BSDE (3.6) ewists.
If Py is saturated®, then UT is a non-increasing process for all P € Py.

Similar to Soner, Touzi & Zhang [STZ12], the following comparison result for second order
backward SDEs is a by-product of our construction; the proof is provided in Proposition 5.2.

Proposition 3.13. Let (Y, Z) and (Y',Z") be solutions of 2BSDEs with parameters (F,§) and
(F',&"), respectively, which satisfy Assumptions 3.1 and 3.11. Suppose further that & < ¢
and Fy(y,2,0¢) < F/(y,2,6¢) for all (y,z) € R x R?, dt ® Py-q.s. Then, we have Y <Y,
dt @ Po-q.s. on [0,7].

SWe say that the family Py is saturated if, for all P € Py, we have Q € Py for every probability measure
Q ~ P on (Q,F) such that X is Q—local martingale. The assertion follows by the same argument as in [PTZ17,
Theorem 5.1].



4 Wellposedness of random horizon reflected BSDEs

Throughout this section, we fix a probability measure P € P,, and we omit the dependence on

P in all of our notations. We also observe that Qy := Q(PP) is stable under concatenation.
For all Q* € Qy, it follows from Girsanov’s Theorem that

e U remains a Q*—supermartingale, with the same Doob-Meyer decomposition as under P,

e and WA := W — Jo Asds is a Q*—Brownian motion, X* = X — Jo TsAsds is a Q*—local

martingale, and and may we rewrite the RBSDE as

dY; = —f}Yy, Zo)dt + Zy - dX}) + dU;, where  fMy,2) = fi(y,2) —6F 2 M\

satisfies the Assumption 3.1 with Lipschitz coefficient 2L.

4.1 Some useful inequalities
We first state a Doob-type inequality. For simplicity, we write £[-] := EF[].

Lemma 4.1. Let (M;)o<t<, be a uniformly integrable martingale under some @ € Q. Then,

b
q

5[ sup |Mt|p] < L((SHMTH) , forall0 <p<gq.

0<t<r T q—Dp

Proof. Let > 0 and T, := 7 Ainf{t > 0, |[M;| > =}, with the convention inf ) = co. From the
definition of concatenation and the optional sampling theorem, we obtain for all Q € Q;:

EQ[| My, |1] = B[ |EC [0, | Fr,]|7] < BQ[RE[M, |7 Fr,] | = BOOmQ M, 1] < E[|M 1) =:
as Q @7, Q € Q. Then, denoting M, = SUpPg<<, |Mi|, we see that
2IQ[M. > 2] = 2'Q[T, < 7] <E®[|Mr, "1, <ry] <E®[|Mp,|7] <c.

and we deduce that

EQ [M?] :EQ[/O 1{M*>x}pxp_1da:} :/0 Q[M, > x| pxP~ da §/0 [1A (cx™9)]paP~ de = e

The required inequality follows from the arbitrariness of Q € Q.. O

The following result is well-known, we report its proof for completeness as we could not find
a reference for it. We shall denote sgn(z) := 1(,50) — 1{z<q}, for all z € R.

Proposition 4.2. For any semimartingale X, we have | X¢| — | Xo| > fg sgn(X,_)dXs, t > 0.

Proof. Consider a decreasing sequence of C2, symmetric convex functions ¢, on R, such that
on(z) = |z| on (—n%, n%)c, and ¢}, (x) increases to 1 for x > 0 and ¢/ (x) decreases to —1 for

x <0, ie., ¢ (x) converges to sgn(z). By Itd’s formula and convexity of ¢, we obtain that

on(X0)=ulX0) = [ (XXt g [ AUEX T+ T {Apn(Xe) = g (Ko )AX)
0 0 0<s<t

By convexity of ¢, this implies that ¢, (X;) — ¢n(Xo) > fot o (Xs—)dXs. The required in-

equality follows by sending n — oo in the above inequality and by applying the dominated
convergence theorem for stochastic integrals (see, e.g., [Pro05, Section IV, Theorem 32]). O

10



4.2 A priori estimates

Proposition 4.3. Under the conditions of Theorem 3.7, let (Y, Z,U) € DZT x HY Z/{gT be
a solution of RBSDE (3.3). For each p € (1,q) and —p < o < B < p, there exists a constant
Cp.L,a,8 sSuch that

—P
12 4101y < Conas(Tops) + Y1, ).

Proof. Let U = N — K be the Doob-Meyer decomposition of the supermartingale U.

1. We first prove that
A
1212, oo+ IV o < (12 X+ U1 o0 H 1K on).  (4D)
gp(”Z”%{;T(Qk) + ”UHZIZILZT(Q)\)) S HZ ¢ X)\ + UHNQT(QA) S p(”Z”Hg’T(QA) + |’UHNgT(Q>\)>(42)

We only prove (4.1), the second claim follows by similar arguments.
As [X*,N] =G« [W*, N] =0, we obtain that

A T g
121 oo+ IV () < B [( [ (@123 4aIN)) ] = |2« X+ g
We continue by estimating the right hand side term:

D
2

e YA P 2oQA T2as e Y T2as
|12+ X+ N|JEy or) <28 [(/Oe d[Z - X +U]s+/0e SN

<o (5% [(/OTeMd[Z X 4u]) ]+ [(/OTezasd[K]s)gD
2 (B [(/OTezo‘sd[Z X U]S)g] +EY [(/OTeQSsz)pD

=2(1Z « XX + Uy on) + 1K g0

D
2

IN

2
where we used the estimate [; e***d[K]; = D 0<s<r 2 (AK,)? < (Zo<sgr eO‘S(AKS)) <

2 . . .
( fOT e*dK 5) , since K is non-decreasing.

2. Denote U :=Z « X* + U =0TZ « W* + U. By Itd’s formula,
T
0 < YZ=e27g? +/ 2 — 20V ds + 2Ys (fNYi, Zo)dt — dUY) — 6% 2 dt — d[U], }.
0

It follows from Assumption 3.1 and Young s inequality that 2yf(y,2) < —2uy® + 2Jy||f2| +
4Ly|I5T 2] < —2uy® + |f212 + Lly|? + | z| with ¢ := 1+ 8L2. Then, as o+ p > 0,

/TeMt(%‘&;thfdt—l-d[U]t) < 620”52+/7620‘t(|ft0|2+€Yt2)dt—2/Tezo‘th_dU}
0 0 0

T g , T
< / e2at|ft0|2dt + (1 + ,7) sup ey — 2/ ey, _dU},
0 2(ef — @)/ o<e<r 0

for an arbitrary o € (a, p). This implies that

I

| +1vi

A
b, @+ E ), @3)

Q* 7 at £02
121 o)+ 10T @2) < Ot (B K/O e 1P at)

11



where

BN = IEQA[

T 4
/ e20¢t}/i_ dUt)\ 2 :|
0

t
/ 2V, _(Zs * dX) + dNy)

0 )
< e [( [ etz s ) s [T o))

by the BDG inequality. Since K is non-decreasing, we applying Young’s inequality with an
arbitrary € > 0 to deduce

BN < CZ’,E@A{ sup |ea’8y;\§{</0 0= 7 0 XA | N] )% (/0 (oo
iy, o S5 ( [tz 305 0] 359 [evarc)]
0

o 0<s<t
(C’)

2
< Ep (EQA[ sup ?
0<t<r

p T
2 +‘/ 62a5Y;_dK5
0

2
2

< G)

<

€ € ~npQ* e2(2a—a')s A 3
L S VIR g+ OB [(/0 aw],)’].

where the last inequality follows from (4.1). Plugging this estimate into (4.3), and using (4.2)
together with the fact that 2o — o/ < a, we obtain

6 C ,a,a’,LO”
(1 - p‘f)HUAHNQT(@M (4

p
2

< Upcp,w,,L(E@A[(/jeasfsofds) |+ (1+ (C§)2>”y”%i%(@)+%(C§,’+1)HKH - T(@*))’

3. We shall prove in Step 4 below that for § < §' < p:

_K s
K1y @ < Craoa (V1 o+ 120, oo +EX[( [ 1e20as) ). s

Plugging this inequality with 0 := 2o — @/ and ¢’ := « in (4.4), and using the left hand side
inequality of (4.2), we see that we may choose € > 0 conveniently such that

p
2

1215 @y < Crawrc(I¥I5, @ +EY(( /OTGQQS\fSIQdS) ). (4.6)

for some constant Cp oz, > 0. Plugging this inequality into (4.5) with (4,d") := (o, o') induces
the estimate

p
2

K% on < Cgaa/L<||Y||%Zl’T(QA)+EQA[(/OT€2a’s‘fSO‘2dS) ). (4.7)

for some constant C€ Combining with (4.4), and recalling that 2o — o/ < «, in turn, this

p,a,af JL*
U Hi]p @) which can be plugged into (4.1) to provide:

implies an estimate for !

INIEy @ < C aa’L(”Y”ﬁz,g@A)+E@A[(/0762“'8\103\%3)%]). (48)

Since the constants in (4.6), (4.7) and (4.8) do not depent on Q € Qp, the proof of the propo-
sition is completed by taking supremum over the family of measures Q € Qr.

12



4. We now prove (4.5). By Itd’s formula, we have
t t
ey, + / e (fMNYs, Zs) — 0Ys)ds = Y +/ e (Zy - dX2 + dUy).
0 0
As (Z,N) € HP’T(Q)‘) X NQT(QA) and K is nondecreasing, the process e‘StYH—fg e (f2(Ys, Zs) —

5Ys)ds, is a supermartingale under Q*. By [BPTZ16, Lemma A.1] and Assumption 3.1, we
obtain that

B [( /0 ' e5Ssz)p]

IN

cpE@*[ sup (65“Yu+ / ueJS(fQ(Y;,ZS)—ayg)ds)p} (4.9)
0

0<u<rt

IN

CparEY| sup |V, P+ ( / [ 10ds)"
0

0<u<rt
+(/ 65S\Y;|ds>p+ (/ e58|asTZS|ds)p]
0 0

Finally, for &’ € (4, p), we observe that

T P / T / p su - sy, [P
( / ifds) < sup eVl ( / o 0-0rgs)" < MPzeer ST ()
0 0<s<r 0 (6" —o)p

and by the Cauchy-Schwarz inequality

(/()Te‘sﬂfﬂds)p < (/OT‘65/8f2|2d8>§</(JT€—2(6’—6)sd8>§ < (f07|eé'sf£‘2cés)§’ (4.11)

(26" — 26)

and, similarly,
D
2

T T (5’8’\TZs 2d
(/ e5S|aSTZS\ds)p < Urle™a L 5)* (4.12)
0 (26" —20)2
The required inequality (4.5) follows from (4.9), (4.10), (4.11) and (4.12). O

4.3 Stability of reflected backward SDEs
Proof of Theorem 3.8 (ii). Clearly, the process (Y, 07, 6U) satisfies the following equation

T T

9s(8Ys,62Z4)ds — / (6Zs - dXs + doUs), (4.13)

tAT

5}€AT = 56_%4/

tAT
where g4(0Ys,075) := fL(Ys + 0Ys, Zs + 0Z5) — fo(Ys, Zs).

1. In this step, we prove that, for some constant C), ,,

/ 1ot ’ T 15

e[ sup U] < e[ IsEp +(/ IS f (Ve Z)lds) | (14)
0<t<r 0

It follows from Proposition 4.2 that

TV, | — e D) 5y | > / &% (1 |5Y, | — sen(8Ya)gs(Ys, 52,)) ds (4.15)

tAT

+ / e (sgn(0Y,)0Z, - dX, + sgn(3Y,_)dsUs).
t

AT

13



As f and f’ satisfy Assumption 3.1, we obtain that
sgn(0Y,)gs(6Ys, 625) < |0fs(Ys, Zs)| + LIGT 6 24| — pl6Yi|.

Considering the Doob-Meyer decomposition U = N — K and U’ = N’ — K’, and denoting § N
and K the corresponding differences, it follows from the Skorokhod condition that

0Ys-doK, = (Y - Y )(dK{ - dK,)
= (Ys,— - SS—)dK; - (Ys,— — S5 )dK — (Ys- — SS—)dK; + (Yoo — Ss-)dK;
= —(Y_ -8, )dKs— (Ys_ — Ss_)dK. < 0, (4.16)
so that
sgn(dY;-—)

sen(6Ys_ )dSK, = 15y, o) §Y,_dSK, < 0.

0Ys—
e N e Ga0Zs P =\ :
Then, denoting \s := Lsgn(0Ys) =577 1(5T52,20p and X = X — J5 FsAsds, it follows from

|85 JZS‘
inequality (4.15) and —p <’ that

T

enl(tm—)wY;ﬁ/\T‘ < ean‘5YT|+/ en/s‘éfs(Y;7Z5)‘dS

tAT

_/ en’s(sgn((gys)5zs . dX'SX + sgn((SYS_)déNg).
t

AT

As §Z e Hb - (P) and ON e NV -(P), we deduce from the BDG inequality that the last two terms
are Q*—uniformly integrable martingales. Then, with 7, ;== n A7 and n > t:

n

") |5Y;0, ] < lim EQ {e”'7"|5YTn|+/ e”/s\éfs(ﬁazs)\ds‘f;\f]
t

n— o0 AT

< EQX[GU/TMQ"’_/ e”/8|5f8(n,zs)‘d3‘f;\f}’
0

by the dominated convergence theorem and monotone convergence theorem, as ¢”*Y; and e”/th’
are uniformly integrable. By Lemma 4.1 , we deduce that for any p’ € (p, q):

/

el g lertonl] < GEoel(errwers [ eronom zojes)’

1o P
7

"

which induces the required inequality (4.14).

2. Let —u <n <n'. By Ito’s formula, we have

€277 (5Y,)2 — (5Yp)? = 2 /0 €25(5Y,)2ds — 2 /O €2055Y, . (8Y s, 0 Zs)ds
+2 / e*6Y, 67, - dXs + 2 / e*5Y,_dS N,
0 0
—2/ e2’785Y;_d5Ks+/ e (16T 07, *ds + dlou]; )
0 0

Again Assumption 3.1 implies that §Y,gs(6Y;,0Zs) < |0Ys||6fs(Ys, Zs)| + L|6Ys||cT6Z,| —
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p|dYs|?, and therefore, together with (4.16) and the fact that 7 + u > 0, we obtain that

/62”5(\0%2 \ ds + d[6U]s) < €*7(3Y;)? +2/e2"5|5m(|5f8(1g,28)\ + L|5T6Z|)ds
0 0

—2 / e*5Y,_(6Z, - dX + dON)
0

IN

62’77(51’7)24—2/ e |0Y;| (|65 (Ys, Zs)| + 2L|GT 6Z,|)ds
0

+2 sup
o<u<r

9

/ XY, 0 Z, - dX ) + / e*188Y,_do N,
0 0

where A = (A\s)o<s<r is an arbitrary process uniformly bounded by L. By Young’s inequality
and the fact that n </, we have

2 [ eIaY.16£.(., 20l ds
0

IN

2( sup e”5|(5Y8|>/ |0 fs(Ys, Zs)|ds
0

0<s<t

T 2
sup 62778|5Ys|2+ (/ e”s|5fs(Ys,Zs)|dS) ,
0

0<s<t

IN

and

1 T T
—/ 62778\53@|2ds+e/ 2 |5T67,| ds
€Jo 0

1 T , T
< —< sup 27|85V | )/ e 20 =M g 4 E/ 62778‘8;‘[‘5Z5|2d8
0<s<t 0 0

1 / T R
S sup o2 8|5Ys|2+5/ 62778‘03528|2d8,
e(n —n) o<s<r 0

2/T e*|6Y, |07 62| ds
0

IN

<

for an arbitrary € > 0. Therefore, by choosing an € > 0 conveniently, we obtain

HéZH]ﬁfh +H5UHN2 AQ) S Cpﬂm/(

o +EY K/;”S\éfs(Y;,Zs)\ds)p]) (4.17)

|

for some constant C),,, > 0. By the BDG inequality, Young’s inequality and the Cauchy-
Schwarz inequality, we obtain

ya
2

"‘010777,?7’@@A [ sup
o<u<r

/ e* (6Y,6Z, - X + 0Y,_doN,)
0

E@*[ sup / {25V, (07, - dX + d6N,) 5}
o<u<r 0

- . P
< d,EY [ / e2ﬂ85Y;_(5ZS-dX§+d5NS)}4]

L 0 T

- T ya
= d,E? (/ e4n8\5m_|2(|a§525\2ds+d[5N]8))4]

- 0
S dlEQ)\ '(/Te4778|5}/s|2‘6_\s’1‘528|2d8)4 n (/Te4ns|5}/s—|2d[5N]s)4:|

- 0 0

d’ d D D P

R = A e (Y SR A
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for some ¢’ > 0, where we used d[0N]s < 2(d[N]s + d[N']s). Plugging this estimate into (4.17),
and by the arbitrariness of A, we obtain

T s p
62|+ 160 5 < Ch{I¥ s, +[( [ et zias)

; e
iz (1IN, +1¥15,) }

Together with (4.14) from Step 1, and Proposition 4.3, this induces the first estimate in Theorem
3.8 (ii).

3. It remains to verify the announced estimate on fg e*¥doUs. Given the dynamics of Y in
(4.13), it follows from a direct application of 1t6’s formula and the use of Assumption 3.1 that:

u
|
0

sup
0<u<rt

< 2 sup 60‘5\5Y5|+(\a|+L)/ eo‘5|5Y8\ds+2L/ *5|5T52,|ds
0<s<rt 0
/ €67, - dX))|.
0

By the BDG inequality and the Cauchy-Schwarz inequality, we obtain for 8 € («, p):

/O”e ]

<G, (EQA[ sup |5V ] (laf + L)I"(/Ooo e_(ﬁ_a)sdsyEQA[ sup epﬁs\éYsﬂ
P
2

+/ |6 fs(Ys, Zs)|ds + sup
0

o<u<r

EQ [ sup
0<u<rt

0<s<t 0<s<t

ya
2

+E@AK/T (6 1.V, Z,)|ds)"| + B [(/T 62a8|33525\2ds)
0
< Coapr([0Y 13 (qn) + 1192I1% +E@AK/OTeas‘éfs(Ys,Zs)\dSY’D,

for some constant C), o 3,1.- O

)

4.4 Wellposedness of reflected backward SDEs

We start from the so-called Snell envelope defined by the dynamic optimal stopping problem:

Yinr == esssup EF 51{9>T} + 591{9<T} J:MT] with & :=e H7¢, )= e Mg,

0Tt~
where 7 ; denotes the set of all F*-F —stopping times # with t A7 < 6 < 7. Following the proof
of [EKPT97, Proposition 5.1] and the theory of optimal stopping, see e.g., [El 81], we deduce
that there exists an X —integrable process z, such that:

:/y\t/\T = g_ /Z\s ’ dXs - das; f/g\t > §t7 t> 07 P—as.

tA;A tAT
and EP[/ (1 A (Gp— — §t_))dﬂt} = 0, forall t >0,
0
where u is local supermartingale, starting from @y = 0, orthogonal to X, i.e., [X,u] = 0. In

other words, (¥, z,u) is a solution of the RBSDE with generator f = 0 and obstacle S. Then,
it follows by It6’s formula that the triple (y, z,u), defined by

t
t~ to> _— S -
Yt = el Yt, 2t = el 2ty Ut 1= / et du87 t > 07
0
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is a solution of the following RBSDE

T T T
Ytnr = 5 - :u/ yst _/ Rs dXs - dus’ Yt > Sta t> 07 P—as.
t t

AT AL AT tAT

and EP[/ (1 A (Y- — St_))dut} =0, forallt >0,

0

where u is local supermartingale, starting from ug = 0, orthogonal to X, i.e., [X,u] = 0.

Lemma 4.4. For all « € [—p,p) and p € (1,q), we have

p
I, + U, < Cnazan(lelt, +157N% )"
Proof. By the definition of 7/, we have

EP [e“”&‘}'f’P] < 7y < esssupEF [e7#71€| + e_“eS(ﬂ}'tJ“P].
0€Tt,+

Then, for a € [—pu, pl,
_EP [ear|£||f;r,1P’] < _e(a—i-u)tE]P’ [6_“T|5|‘E+’P} < e(a+,u)t/y\t _ eatyt

< esssup EF [eo7|¢] + 2?5 | FPT] < EF [e‘”m + sup e*S7
0€Ts,+ 0<s<t

]-"f’P] :

and therefore e™|y,| < EF[e®7[¢| + supg< <, € Sj‘.FtJ“P]. By Lemma 4.1, this implies that

5[ sup |eo‘sys|p} < Cpg[ sup EP[|e°‘T§|p—|— sup (ea“S;r)p‘fj’P”
0<s<rt 0<s<t 0<u<rt
' / £
< CILP'( KHZZI,T + HS—i_H;g”T) "

for all 1 < p < p’. By our assumption on & and ST, we see that we need to restrict to p’ < ¢
in order to ensure that the last bound is finite. Moreover, by Proposition 4.3, we have for some
o > a,

T D / / /
5[(/ eQO‘t|3;th|2dt) 2] < C’p@,a/’LS[ sup |e°‘,tyt|p} < Cp,p@a,a/,LSer‘lTE‘p + sup (eo‘ tS;r)p}
0 0<t<r 0<t<r

By our assumption on £ and S, we see that we need to restrict « to the interval [—pu, p) in
order to ensure that the last bound is finite. O

Now, we construct a sequence of approximating solutions to the RBSDE, using the finite
horizon RBSDE result in [BPTZ16] and on the optimal stopping problem above.
Let 7, := 7 An, and (Y™, Z™ U™) be the solution to the following RBSDE

Tn Tn
Y =y | (YR ZM)ds — / (20 dX, +dUT), Y72, > Spnms £20, P—as.
t

tATh NTn

tATn
and EP[/ (LAY - St_))de] =0, for all £ > 0.
0

We extend the definition of Y™ to [0, 7] by

}/;n:yta Ztn:'zta Utn:uh n StST7

I

p

~l



so that (Y™, Z",U") is a solution of the RBSDE with parameters (f", ¢, S):

Y =64 [ YD, Z0ds — / (Z2 - dXo +dUT), Y[i > Sipr, t >0, P—as. (4.18)
t

tAT AT

tAT
and EP[ / (1A - St_))dUt”} =0, for all £ > 0, (4.19)
0

where
ftn(yv Z) = fs(yy Z)l{sgn} - /Ly]-{s>n}7 t>0, (yy Z) e R x R?.
The following result justifies the existence statement in Theorem 3.7.

Proposition 4.5. For alln € [—p,p) and p € (1,q), the sequence {(Y", Z™,U") }nen converges
in Db+ x Hb - xUb - to some (Y, Z,U), which is a solution of the random horizon RBSDE with
the parameters (f,&,.9).

Proof. 1. We first show that {(Y",Z",U")},en is a Cauchy sequence in D) - x HE - x UY -,
which induces the convergence of (Y™, Z" U") towards some (Y, Z,U) in D} » x Hp - x UL ;.
By the stability result of Theorem 3.8 (ii), we have the following estimate for the differences
(0Y,0Z,0U) := (Y =Y™ Z" —Z™ U™ —U™), n > m,
P P P
16Y 2, + 1622, + 15012,

1 _ P P P
< 0{as+87 (2T FHIY 2, 1V, )} (420)

where, by the Lipschitz property of f in Assumption 3.1,
e[ ([ erlarvzmias)” ]

< Cy.1L (5[(/%@”’8“3‘(15)]),} +5[(/Tnen’s|ys|ds)pl] +5[(/Tnen’s‘83zs|ds)pl]>.

Tm Tm Tm

’

p’
p
Af

By the Cauchy-Schwartz inequality, we have

’
p

SK/T:;en/s fg‘ds)pl] < (%)%’SK/OTGQ,OSUBFdS)%’} < (%)?(Tﬁgﬁ)p/'

Similarly, for n < 7’ < n” < p, we obtain that

/
ya

ety (%)?Hézuip; <o(Z=)

m n'" T

p_

/
(el +15* 1 )
Py s

and
—(p=n")m

n /s p, e P p’ , e-(P-’?')m p' / /
e[( / lyslds)” | < () il < (=) lellzy, +11s iy )

Am

The last three estimates show that Ay — 0 as m,n — oo, so that the required Cauchy property

would follow from (4.20) once we establish that HY"HDP is bounded uniformly in n. To see
U
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this, notice that HY”HDP < HyHDp + HY” — yHDp , where HyHDp is finite by Lemma 4.4,
and thus it reduces our 75551{ to con%folling HY” — yﬂgp . To do thig,’ we use (4.14) to obtain
n',T
1L
] P
T s 0 ' T /g P’ T /¢ | ~T P’ 5
S Opvplvﬂng[(/ 677 ‘fs ‘d‘S) + (/ 677 |y5|d8> + (/ 677 |O-S Zs‘d(S) :| 5
0 0 0

and we argue as above to verify that the last bound is finite, using the integrability condition
on fY in Assumption 3.1, together with Lemma 4.4.

5[ sup ep”'les"—yslp] < Cpﬁp/gK/onen,ﬂfs(ys,zs)—uysldS)p

0<s<rt

2. We next prove that the limit process Uis af cadlag supermartingale with [U, X] = 0. Theorem
3.8 (ii) also implies that &[supyc;<, !U? = UT‘p] — 0, where U := J; €"dU?. Then, there
exists a limit process U € D&T(]P’). As U" is a cadlag Q—uniformly integrable supermartingale

for all Q € Qp, we may deduce that its limit U is also a cadlag Q—uniformly integrable
supermartingale for all Q € Q. Define U; := fg e dUs, t > 0. Clearly, U € D} -(P). As the
integrand e~ "* is positive, the process U is a supermartingale. By Kunita-Watanabe inequality
for semimartingales, we obtain

/ ' e*™* |d[U, X, |
0

IN

/ 2 |d[U — U™, X],| +/ e |d[U", X |
0 0

(/OT L U”]s)%</07 62778d[X]S)%.

Theorem 3.8 (ii) also states that the right-hand side converges a.s. to 0, at least along a subse-
quence, which implies that [U, X] = 0.

IN

3. Clearly, Y > S, P—a.s. In this step, we prove that the limit supermartingale U satisfies the
Skorokhod condition. To do this, denote ¢" :=1A (Y" —5), ¢ := 1A (Y —5), and let us show
that the convergence of (Y",U") to (Y,U) implies that

TAL TN
Qp 1= E[/ gof_dU,f”} — E[/ gpr_dUr} — 0, as n — oo, for all t > 0.
0 0

For e > 0, let 75 =0, 75,4 := inf{r > 750 |pp — 9075| = 5}7 and ¢ := Zizo ‘Pffl[ff,fﬁl)’ S0
that |¢ — ¢°| <e. We first decompose
TNt
+ (E[/ o d(U™ —U)T} .
0

<8 [ e —er-arz)|+ e[ [ om0

Since ¢° is piecewise constant, bounded by 1, and U™ — U in D} ,, we get

TNt
lim E[/O YS_d(UT — Us)] — 0. (4.21)

n—oo

For the second term, we have

o< e[ [t -t - )
< e[ [ o et ]|+ [ [ o - ot patiz - 1)

= ¢E [KTM + KEM] :
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By (4.7) and |f™9] < |f°] we obtain that
%

iKz) < (1Y g, +E[( [ eigropas)))

TAL a
< O(HYlHDg . + ||Y||Dg . + E[(/ e2p8|f£|2d8) 2:|) < Q.
’ ’ 0

Hence, we may control the second term by choosing e arbitrarily small. For the first term, we
have

o<le[ [ "~ eaz]| = | / "o = e

Al

Bl

<E[( sw PPVl A1) KR SE[ s - v P a1 TE[(K,))
0<s<TAt 0<s<TAt

Again we may show that E[(K’QM)Z’] is bounded by a constant, independent of n € N. As

Y™ =Y in Df ;, we have

sup Y —Ys[P — 0, a.s.
0<s<TAt

By dominated convergence, we have

lim E{ sup |V —Y;

S
n—=oo  Lo<s<TAL

p*/\l} =0.

Hence, we have

TAL
lim E[ /0 (o — gos_)dUg} —0.

n—oo
All together, we have
TAL TAL
lim E[ / o dUT — / gps_dUs} =0,
0 0

n— o0

and the assertion follows.

4. We finally verify that (Y, Z,U) satisfies the differential part of the RBSDE. The following
verification is reported for the convenience of the reader, and reproduces exactly the line of
argument in [DP97, Section 5.2, Step 3]. For any @ € R and ¢ > 0, we have by It6’s formula
and (4.18) that

ea(t/\T)yy/l\T = ¢ +/ eas{(fg(yzgn7 Z) — aY:g”)dS — (Zg -dXs + dUsn)}
t

AT

_ e / [ (Fo(Y, Z) — aYP)ds — (27 - dX, + dUT) )}
t

AT

[ ez + s
tVTh

We choose o < 77. Then, it is easily seen that eo‘(t/\T)Yt’KT — A1)y, and for all t > 0,

[l esdul — [7 _e**dUs, in LP. By the BDG inequality, it also follows that [ e*$Z7 .

dXs — [ e*Zs-dX,, in P, for all t > 0. Moreover, we have [, e*Yds — [/, e*Vds,
in ILP for all t > 0, due to the following estimate

T T
E[(/ e’y — Ys|ds)p} < E[ sup ePPlYr — Ys|p</ e_(”_a)sds)p]
0 0<s<t 0
1
< 7E[ sup ep”S\Y;"—XQ\p] — 0, asn — oo.
(n—a)P Lo<s<r
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From a similar argument, we also have f:n e (fs(Y, Z2) + pY)ds — 0, in LP, and by
Lipschitz continuity of f we see that [, _e®®|fs(Y, Z!") — fs(Ys, Zs)|ds —> 0, in LP for all
t > 0. Therefore, we have proved that

T

ea(t/\T)y*t/\T — 6067'5 +/ eas{(fs(yg7zs) — aY;)dS — (ZS . dXs + dUS)}?

tAT

thus completing the proof by It6’s formula. O

We now prove the comparison result. In particular, this justifies the uniqueness statement
in Theorem 3.7.

Proof of Theorem 3.8 (i). Denote by { (Y™, Z",U") }nEN and {(Y'", 2", U"™) }nEN the approx-
imating sequence of (Y, Z,U) and (Y',Z’,U’), using the triples (y, z,u) and (y/, 2’,u’), respec-
tively, as in the last proof. Since { < ¢ and S < ', we have y,, < y. . By standard comparison
argument of BSDEs, see e.g. [RS12, Proposition 3.2, this in turns implies that ¥? < Y"" for
all stopping time 79 < 7. The required result follows by sending n — oo. O

4.5 Special case: backward SDE

Proof of Theorem 3.3. By setting S = —oo, the existence and uniqueness results follow from
Theorem 3.7. In particular, the Skorokhod condition implies in the present setting that U = N
is a P—martingale orthogonal to X. It remains to verify the estimates (3.2).

Let n > —p, and observe that Assumption 3.1 implies that sgn(y) fs(y, 2) < —p|y| +L|8;rz‘ +
|f80| <nlyl+ L E;Pz| + ‘fg‘. Then, by Itd’s formula, together with Proposition 4.2, we have

e77(n/\7—) |Yn/\7—| o e?”](t/\T) |Y;t/\7—|

> /tw *(nlYalds — sen(Veo)(fu(Ye, Z0)ds — Z, - dX, — dN,))

AT

nAT
> / e”s(—L|3;rZs‘ds — | fd)ds + sgn(Ys) Zs - dX,s + sgn(Ys_)dNy).
t

AT

Introduce A, := Lsgn(Y) =157 7,20}, and recall that N remains a martingale under QA

IATZ |
by the orthogonality [X, N] = 0. Then, taking conditional expectation under Q)‘, we obtain

nAT
677(1&/\7—) ‘Y;f/\T‘

IN

|2 lds | 7T

n—oo

lim E [e”("AT |Yonrl +/
— E° [em|§\+/ | fO]ds |77,
0

by the uniform integrability of the process {€7*Y;}s>0. By Lemma 4.1, this provides

/o D

IY[5, < p_,pc‘,'[(e’?ﬂgl+/076ns|f£|ds)p]7 gcp,p/,n,n/{H&HiZJ + (Frs) b (422)

p/

for all p’ € (p,q) and —p < 1 <7’ < p with some constant C, 7. Next we can follow the
lines of the proof of Proposition 4.3 and Theorem 3.5 (i) to show that

—0
HZHig,,J(P) + HNHi/S//J(]P’) < Cotmn (Y )+ (Fapr)’),
for " < n. Combined with (4.22), this induces the required estimate. O
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For later use, we need a version of the stability result allowing for different horizons. This
requires to extend the generator and the solution of the BSDE beyond the terminal time by:

fth(y, Z) = 0, }/t\/q— = 5, Zt\/q— = 0, Nt\/T = 0, for all ¢ > 0.

Proposition 4.6. Suppose (f,&,7) and (f',&',7") safisfy Assumptions 3.1 with the same pa-
rameters L and p. Let 6Y =Y -Y', 6Z =Z—~Z',6N=N—-N",0f =f—f and 6§ =& —-¢.
Then, for all stopping time 19 < 7 AT', and all n € [—p,p), 1 < p < p' < q, we have

vt/
|e”T°5YTO‘ < ess supEQUe”T& — e”Tl§'| —I—/ e’78|5fs(Y;, Zs)|ds‘}';g’P].
QeQr, 70
Proof. By Proposition 4.2 and the Lipschitz and monotonicity conditions of Assumption 3.1,

vt/

|eT08Yz | < feTE— e + / € |6£5(Ys, Zy)|ds + €™ sgn(dY;)0Z, - (dX, — FsAsds)
70

TNT
- / e sgn(dYs_ )doNg,

0

with XS =1L sgn(éifs)%l{‘gsé 7,|#0}- Taking conditional expectation under QX € Qr induces

lo

the required inequality. O

5 Second order backward SDE: representation and uniqueness

We shall use the additional notation:

ENT = essméup essps,up EQ[|FF], forall t>0, Pec7P,.
P'ePy (t) QEQL(P)

Remark 5.1. Tt follows from Assumption 3.11 and Doob’s inequality that for any ¢’ < ¢

T 'd
sup  sup EQ[ sup €F’+ [(e’”|£|)q,]] + sup sup EQ[ sup 5F’+[(/ |epsf£‘2ds) 2“ < 0,
PPy QeQL(P)  -OSt<T FEPoQeor(®)  HOstsr ’

We also note that EF a [1{7271}] is a P-supermartingale. Then, by Doob’s martingale inequality,
we have EF {EF’JF [1{7271}]] < CE&Po [1{7’2n}] — 0, so that EP [limn_)oo EF’JF [1{7’2n}]] =0, by
dominated convergence theorem, and therefore

lim SF’JF[l{TZn}] = 0, P-as.

n—oo
(]

Similar to Soner, Touzi & Zhang [STZ12], the uniqueness follows from the representation
of the Y component of the 2BDSE (3.6) by means of the family of backward SDEs. For all
P € Py, we denote by Y¥[£y, 7o) the Y —component of the solution of the backward SDE:

70

0
Vo, = & +/ Fy (Vs 25.55)ds — / (25 -dX,+dN), t>0, Pas. (5.1)
tATo tATO

where &) is an F,, —measurable r.v. for some stopping time 79 < 7. Under our conditions on
(F,€), the wellposedness of these BSDEs for &y € L] - (P) follows from Theorem 3.3. Remark
that in the sequel we always consider the version of ¥ such that Vj,. € F;, by the result of
Lemma 6.3.

The following statement provides a representation for the 2BSDE, and justifies the compar-
ison (and uniqueness) result of Proposition 3.13.
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Proposition 5.2. Let Assumptions 3.1 and 3.11 hold true, and let (Y, Z) € D} ; (PO,IF”“PO) X
HE - (PO,IE‘PO) be a solution of the 2BSDE (3.6), for some p € (1,q) and n € [—u,p). Then,

P /
Yinr = esssup Vi o [Yioar,ta AT (5:2)
P'EPF (t1AT)

= ess]};up yE’M[g,T], P — a.s. for allP € Py, 0 <ty <to. (5.3)
]P"G’P];r(tl/\ﬂ')

In particular, the 2BSDE has at most one solution in D} ; (770, IE*‘J“PO) XHE + (770, IF‘PO), satisfying
the estimate (3.7), and the comparison result of Proposition 3.13 holds true.

Proof. The uniqueness of Y is an immediate consequence of (5.3), and implies the uniqueness
of Z, aydt ® Po-q.s. by the fact that (Y, X); = ([, Zs - X5, X)¢ = fg asZsds, P—a.s. This repre-
sentation also implies the comparison result as an immediate consequence of the corresponding
comparison result of the BSDEs V¥[¢, 7].

1. We first prove (5.2). Fix some arbitrary P € Py and P’ € Py (t1 A 7). By Definition 3.9 of
the solution of the 2BSDE (3.6), we see that Y is a supersolution of the BSDE on [t1 AT, ta A 7]
under P’ with terminal condition Y, A, at time ¢ A 7. By the comparison result of Theorem
3.5 (ii), see also Remerk 3.6, this implies that Y ar > )}E/AT [Ym/\ﬂtg A T] P'-a.s. As J/E/ is
.ETM-measurable and Y3, is J’-"t1 Ay -measurable, the inequality also holds P-a.s., by definition
of 77]; (t1) and the fact that measures extend uniquely to the completed o- algebras. Then, by
arbitrariness of P/,

P /
Yirne > ess sup )/EM [YQ/\T, to A T], P-a.s. for all P € Py.
PP (t1AT)

We next prove the reverse inequality. Denote §Y = Y — h% [YtMT,tQ A 7'], 0z = 7 —
zZV [YtQAT,tg A 7'] and 6U = UY — NV [YtQAT,tQ A 7'] Recall that U’ is a P-supermartingale
with decomposition U¥ = N¥' — K¥'. For a € [—u, 1], it follows by It6’s formula, together with

the Lipschitz property of I’ in Assumption 3.1 that there exist two bounded processes a¥ and
vF , uniformly bounded by the Lipschitz constant L of F', such that
Lo AT , , Lo AT
ea(tl/\ﬂ')(SYil/\T — / as (QIE §Y, + b]g’ . 6'\ST(5Z5)dS _ / Qs (6'\ST($Z5 AW + d(SUS)’
t1NAT t1 AT
which implies that
, to AT , , , to AT , ,
ea(tl/\T)(SYtl/\T = —E" [/ P]E easdéUE tl/\r} =E" [/ FE eadeE t1/\7’]7

t1INT tiINT

with TP 1= eJiunr (@0 =3B Pdut [ bW oG o 4B oo niformly bounded by L, it follows

from the Doob maximal inequality that

EY [ ( sup I‘Pl) =

tINT<s<to AT

Fitne]

AT ptl P2 p+1 to AT 4 p!
ftl/\-rzplb‘d"' tl/\'rb AWy

< IR [o

ff{m] < C, < o0,

23



where C), is a constant independent of P’. Then, it follows from the Holder inequality that

—‘Ol|t15Y < EP, FP, 1?% f+ Z_‘T'}EP, t2A7 OchK]PI pTH f+ #
€ AT = sup s t1NAT € s t1AT
UNATSs<taAT tiAT
R AP
P, &\ P s —+ p
< c(cpre)E| /t ] Fine]
1/\T
i/ P T (at1)V(atz) P! AT T
p—1 D00\ P aty)V(ata -+ p
< OP <0t1 ) € E [/ sz ‘Ftl/\T:| )
t1INT

where

vapva F— P EP/ LA OéSdK]PI p +
¢ = esssup t e s ) | Fonar|

P'EPS (t1AT) 1AT
As it follows from the minimality condition in Definition 3.9 that

P
P _ : P’ [ P’ +
Kinr = esilnf E [Ktz/\T“Ftl/\T]ﬂ
P'ePy (t1AT)

and CE’p’O‘ < oo (see (6.18)), we obtain that

P /
Yi ar — esssup yEM <0, P-as.
]P”G’P]PJ,r(tl AT)

thus providing the required equality.

2. Given (5.2), we now show (5.3) by proving that

lim essE;up |(5J/F,:’”| =0, P-as. where 6Y7 " := Y[ 7] — Y [Vorrsn AT]. (5.4)

!
"I prepdt (tar)

By the stability result of Proposition 4.6, we have

[TV < esssup E@“emf — MY+ / P (V6. 7), 23 [&T]ﬁs)\dS‘f;RT].
QeQr(P) nAT

Notice that !e”Tf—e”(”M)Yn,\T‘ = 1{72n}|e”75—e”(”A7)YnAT‘ < 2145 p1€" supgeg<, |Ys|. Then,

it follows from the Holder’s inequality that for some p’ < p,

5 P=p

£l = e Wan PIFR] < 280 | swp W] B L] T 0

T

as n — oo, due to the fact that Y € DI, (Py) and 5&: [1{7271}] — 0 by Remark 5.1. This
leads to

i sup |en 7557 | < timsup esdsup 52 [ |1, (08 le, 71, 22 I, 71,5 as| 7] (59)

n—ro0 n—o0 QEQL(P/) A

We next write V¥ = Y’ €, 7], zF .=zl [€, 7], and estimate that

/T ens‘Fs(ygblvzflaa-s)‘dS § /T ens‘fg‘dS—FL/T
n n "

AT AT A

< (o [ [ ool [omgrar

—(n'=n)n , ,
L<e/7) sup e’75|y§’
m—="n 7 o0<s<r

e”s‘yf,ws + L/T e”ﬂ&EZfﬂ
T n

AT

ds

2as)’]
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By the integrability condition on f° in Assumption 3.1, and the fact that (V*', 2F') € Dz, (P x
’Hg/ (") by the wellposedness result of backward SDEs in Theorem 3.3, this implies that P—a.s.

S&:[(fT e’78|Fs(y£Dl,ZgN,33)|ds)p] — 0, and therefore |e’7(“\7)5ygf‘ — 0, by (5.5).

nAT

3. We finally verify the estimate (3.7). By the representation (5.3) proved in the previous step,
and following the proof of Proposition 6.8, we may show that

gPo [Oi‘jgpfpm‘mp} < CPSPO [OSS%IS)TEF’—i_ Uenrﬂp_i_ (/OT 6778|fso|d8>p”,

: —0
By Remark 5.1 we obtain that ”Y”%’;,T(Po) < Cp(HEHigYT(%) + (F,,.)"). As, for each P € Py,

(Y, zZ,U P) is a solution of the RBSDE (6.17), the required estimate for the Z component follows
from Proposition 4.3. ]

6 Second order backward SDE: existence

In view of the representation (5.3) in Proposition 5.2, we follow the methodology of Soner, Touzi
& Zhang [STZ12, STZ13] by defining the dynamic version of this representation (which requires
the additional notations of the next section), and proving that the induced process defines a
solution of the 2BSDE. In order to bypass the strong regularity conditions of [STZ12, STZ13],
we adapt the approach of Possamai, Tan & Zhou [PTZ17] to ensure measurability of the process
of interest.

6.1 Shifted space

We recall the concatenation map of two paths w,w’ at the junction time ¢ defined by (w®iw’)s :=
wslig4)(8) + (Wi + Wi ) 1,00y (5), s > 0, and we define the (¢, w)—shifted random variable

(W) = ¢w W), forall w €.
By a standard monotone class argument, we see that £6% is F, whenever £ is F;, ;-measurable.
In particular, for an F-stopping time 7, t < 7, then 0 := 7% — t is still an F-stopping time.
Similarly, for any F-progressively measurable process Y, the shifted process

Y9 W) = Yes(w @ o), s>0,

is also F-progressively measurable. The above notations are naturally extended to (7, w)—shifting
for any finite F-stopping time 7.

Lemma 6.1. The mapping (w,t,w') € QxR xQ — w®w’ € Q is continuous. In particular,
if € is Foo-measurable function, then £ (+) is Foo @ B([0,00)) @ Foo-measurable.

Proof. We directly estimate that

lw @' =& @@ |0 < [|w = Floo + [l = @'[|oo + sup. (Ilws+- — Wlloo + flwgy. — w'lloo)-
s<lt—7|

25



For every probability measure P on €2 and F-stopping time 7, there exists a family of regular
conditional probability distribution (for short r.c.p.d.) (P7),cq, see Theorem 1.3.4 in [SV97].5
The r.c.p.d. P}, induces naturally a probability measure P™* on (2, F) such that

P™Y(A) =P (w®, A), A€eF, wherew®, A:={w®,w :u €A}

It is clear that EFS[¢] = BF™™[¢7¢], for every F-measurable random variable €.

6.2 Backward SDEs on the shifted spaces
For all P € P(t,w), we introduce a family of random horizon BSDEs

0

Vool = e 4 ; Fie (el ztel & ydr — Z09F X, — dNPOF s >0, P-as. (6.1)
SA

By Theorem 3.3, this BSDE admits a unique solution. Define the value function

Vilw):= sup Y*Fl¢ 7], with Y'F[¢ 7] :=EF [yg“’“”] . (6.2)
PeP(t,w)

In this section, we will prove the following measurability result, which is important for the
discussion of the dynamic programming.

Proposition 6.2. Under Assumptions 3.1, the mapping (t,w,P) s Yo F[£ 7] is B([O,oo)) ®
Fr @ B(My)-measurable.

We will first review in Section 6.2.1 the finite horizon argument of [PTZ17], and we next adapt
it to our random horizon setting in Section 6.2.2.

6.2.1 Measurability - finite horizon

Let 7 =T, where T is a finite deterministic time. For the convenience of the reader we repeat
the argument in [PTZ17] in order to prove the finite horizon version of Proposition 6.2. For
each P € P, we consider the following shifted BSDE

T—t
PheP — gt +/ Fiw (Yol zbol G dr — 289F . dX, —dNPF s € [0,T — 1], P-as. (6.3)

s

Lemma 6.3. Let 7 = T be a deterministic time. Then, there exists a version of Y"*'F such
that the mapping (t,w,s,w’,P) € [0,00) x 2 x [0,00) X Q x Py s YEF (W) € R is B([0,00)) x
Foo X B([0,00)) x Foo x B(My)-measurable.

Proof. We shall exploit the construction of the solution of the BSDE (6.3) by the Picard iter-
ation, thus proving that for each step of the iteration, the induced process Y"™*“F satisfies the
required measurability.

5By definition, an r.c.p.d. satisfies:
e For every w € Q, P, is a probability measure on (2, F);
e For every A € F, the mapping w — P, (A) is F--measurable;
e The family (P])weo is a version of P|x,, i.e. EF[€|F,|(w) = EF<[¢], P — a.s. for all £ € L'(P).
e For every w € Q, P (Q2Y) =1, where QY = {w € Q:Ws =ws, 0 < s < 7(w)}.
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1. We start from the first step of the Picard iteration. Take the initial value Y%*«F = 0 and
Z0twlP = Define for all t < T
~1,t,w,P =t
VT B[ [ B, 20007 5 a7
S
T—t

s
— EIP’ |:é~t,w +/0 Fﬁ,w(yg,t,w,P’ ZO,t,wIP’ -~ dr‘f—l-] /0 F;t,w (yg,t,w,]P”Zg,t,w P 6'\7«)(17“ (64)

for s € [0,T —t]. We extend the definition so that yl’t’” =&Y on {s>T—t}N{t<T}

and yl’t’” = {(wra.) for t > T. By Lemma 6.1, the mapping () : @ x [0,7] x @ — R is
Foo ® B( 00 ) ® Fso-measurable. Similarly, the mapping

(t,w, 7,0, P) = B (W, YR09F (W), 22098 (0), 6, (W)

is B([0,00)) @ Foo @ B([0,00)) ® Foo ® B(Pp)-measurable, and by the Fubini theorem,

T—t
(t,w, 0, P) — 1yeqy / FP (', YRR (W), 20098 (W), 6 (') ) dr
0

is B([0,00)) @ Foo ® Foo ® B(Pp)-measurable. It follows from Lemma 3.1 in [NN14] that there

lvtva l,t,w]P’
(')

exists a version, still noted by Y , such that the mapping (t,w,w’,P) — Y, is

B([0,00)) ® Foo ® F; ® B(P,)-measurable for each s.

. o=LtwP . . . NI
2. The function Y, “7 we just constructed is not necessarily P-a.s. cadlag in s. We next

construct a version YLHwP (i.e., ylvt"”’ = y“""P P-a.s. for all s) which is measurable and
P-a.s. cadlag in s. Let t' :=i27"(T —t), and set for s > 0:

ENIRZ ]P’
yl,t,w ]P’ = lim sup yl smyt,w,P where yl smyt,w, ]P’ Z y w tm ) ( ) + §t7w1[T—t,m)(8)’

m—00
Clearly, (t,w, 5,0, P) = V3™ F (W) is B([0,00)) @ Fao @ B([0, 00)) & Foo ® B(P})-measurable,

and so is (t,w,s,w’,P) — YT (). Since the filtration FHF satisfies the usual conditions

and the conditional expectation in (6.4) is an FF-martingale, one can prove by a standard

argument (see e.g. [KS12, Proposition I 3.14]) that Y%*“F is a P-a.s. cadlag version of J/l’t’w :

3. Recall the inverse of a nonnegative-definite matrix in Footnote 1. Define

zhtwlP . — G- imsupn ((J/l’t’w’P,X>8 — (yl’t’w’P,X>(5_1/n)V0) , (6.5)
n—oo
where the limsup is componentwise. Clearly, the mapping (¢,w,s,w’,P) Zl’t’wp( ") is

B([0,0)) @ Foo ® B([0,00)) ® Foo ® B(Pp)-measurable. Since Y11+F is cadlag, by the unique-
ness of the martingale representation (see e.g. [JS03, Lemma III 4.24]), there exists an F*F-
martingale A% orthogonal to X under P, such that for t < T and s € [0,7 — ],

T—t
Yyl = e 4 / Fle(YOter Z0tef G gy — ZMeP . ax, — dNPF Pas. (6.6)
S

4. By replacing (J/O’t"*”P, Zo’t’“”P) in Steps 1 - 3 by (y”’t’w’P, Z”’t"*”P), for an arbitrary n > 1,
we may define (YnthiwF ZntltwlF AfmtLtwlF) guch that the mappings

(t,w, s,w',]P’) — (yn—i—l,t,w,]l"(wl)’ Zn-{—l,t,w,P(w/))
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are B([0,00)) ® Foo @ B([0,00)) ® Foo @ B(Py)-measurable. By the contracting feature of the
Picard iteration, see e.g. El Karoui, Peng & Quenez [EPQ97], we have

Hyn,t,w,P _ yt’w’PHD%_t,a(P) — 0, as n — oc.

As before, we extend the definition so that Y2“F := ¢ on {s > T —t} N {t < T} and

Vi = €(wpp.) for t > T. Then it follows from [NN14, Lemma 3.2] that there exists an
increasing sequence {n]};}keN C N such that P +—— n]g is measurable for each k£ and
nE,t,w,lP’

lim sup | s —yg’“’ﬂ = 0, P—as.
k—00 0<s<T—t

Besides, there exist Zt<F ¢ H2T_t7 , and ' twlP ¢ N2T_t7 ., @s limits of the Picard sequence under
each (t,w,P) € [0,T] x Q x P,. We conclude that (V¥ ZHF N«F) is a solution to the
BSDE (6.3), and that (¢, w, s,w’,P) — V5P (') is B([0,00)) ® Foo ® B([0,00)) @ Foo @ B(Py)-
measurable. As P, € B(M;), the assertion follows. O

Remark 6.4. In the finite horizon case, Proposition 6.2 is a direct corollary of Lemma 6.3.

6.2.2 Measurability - random horizon

Let us return to our construction of the solution of the random horizon BSDE by means of a
sequence of finite horizon BSDEs on [0, 7,], n > 1, where 7,, := n A 7. For all (t,w) € [0, 7] and
P € Py, consider the approximating sequence (y”’t"“’P, ZmtwP NS ”’t"”’P) defined by:

n—t
yg,t,w,]P’ _ gn,t,w + / f;ﬁ,w (yg,t,w,P’Z?,t,w,]P’)dS o Z?’t’w’PdXs o dNSn,t,w,P’ s<mn— t, (67)
s

Pt —a.s., where 7@®X = (7nw®X _ p)+ recall the notation X from Section 2.1,

tw . P X [ e @i X enw@ X t, — pt 5t
gt =FE [e o grwdt }, and f¥(y, 2) == Fo“(y, 2,05 ) Lis<(rto—t)+}

satisfies Assumption 3.1. Then (Y™t«F, ZmbtwF AmtwF) js o well-defined in DJ - (P) x Hh - (P) x
ir(P) for all p € (1,9) and 1 € [~p, p).

Proof of Proposition 6.2. As (y”’t"“’P, Z”’t’w’P,J\/’”’t’w’P) is defined by the finite horizon BSDE,
we may apply the results of previous subsection, thus obtaining a version of Y™*“¥ such that
(t,w,s,w P) —s YoF ) is B([0,00)) ® Foo @ B([0, 00)) @ Foo @ B(Pp)-measurable. This in

Tt w, P

turn implies that the mapping (t,w,P) — Y =EF D/g’t’w’]?] is B([0,00)) @ Foo @ B(Ps)-
measurable.

By Proposition 4.5 (with S = —o0), it follows that lim, yher = YE@ e 7]. Then, the
mapping (t,w,P) — Y€ 7] is B([0,00)) @ Foo ® B(Py)-measurable. As P, € B(M;), the
mapping (¢,w,P) — YF[¢ 7] is B([0,00)) ® Foo @ B(M;)-measurable. O

6.3 Dynamic programming principle

The goal of this section is to prove that the dynamic value process V satisfies the dynamic
programming principle. We first focus on the underlying BSDEs for which the dynamic pro-
gramming principle reduces to the following tower property, where we denote by )[&o, 70] the
Y component of the solution of the BSDE with the terminal time 79 and value &.
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Lemma 6.5. Let Assumptions 3.1 and 3.2 hold true. Then, for all stopping time 19 < 7, and
PePy:

(i) EF[YE | Fr | (w) = YO B0 (€ 7] for P—ace. w € €.
(1) Vinr[6: 7] = Vi [V2o[6: 7] 70] = Vinr, [BF [V [, 7| Fr . 0] for all t >0

The proof is omitted as (i) is a direct consequence of the uniqueness of the solution to BSDE,
and (ii) is similar to [PTZ17, Lemma 2.7]. In order to apply the classic measurable selection
results, we need the following properties of the probability families {P(¢,w)}t w)ef0,7]-

Lemma 6.6. The graph [P] := {(t,w,P) : P € P(t,w)}, is Borel-measurable in Ry x Q x M.
Moreover for all (t,w) € [0,7] and all stopping time T valued in [t, ]|, denoting 7"’5’“ = 7'5’“ —t,
we have:

(i) P(t,w) = P(t,w.at), and for all P € P(t,w), the r.c.p.d. = P(19,w @ '), for
P-a.e. ' € Q.

(ii) For any f;é,w -measurable kernel v : Q@ — My with v(w') € P(19,w@w’) for P-a.e. w' € Q,
the map P := P ®Fé,w v defined by
P(A) = [[(14)0" (" )w(dw"; ' )P(dw'), A€ F,
is a probability measure in P(t,w).
Proof. This follows from [NvH13, Theorem 4.3], see also Remark ?7. O

Theorem 6.7 (Dynamic programming for V). Let Assumption 3.1 hold true. The mapping
w— Vo (w) is .FTUO-measumble. Moreover, for (t,w) € [0,7], and a stopping time 1y be an
F-stopping time with t AT < 70 < T, we have, denoting 7y = 70 —t,

—t,w

gPtw) He”TO (VTO)t’w|p] < 00, sup gPo He”TO(VTOﬂp] < oo, forallp e (1,q9), n € [—u,p),(6.8)

T0<T
Viw)= sup Y"*F[V, 7], (6.9)
PeP(t,w)
and Vy = essﬁgup EY [y}}"’ [VTO,TO] ‘]-'t}, P — a.s. for all P € Py. (6.10)
P/EPs(t)

Proof. Without loss of generality, we assume in the proof that (¢,w) = (0, 0).

1. It follows from Proposition 6.2 that (f,w,P) — Y*“F[¢ 7] is B([0,00)) ® Foo ® B(M;)-
measurable, and from Lemma 6.6 that [P] is analytic. By [BS96, Theorem 7.47], we know that
the mapping (t,w) = Vi(w) := suppep(tw) YE@F (¢, 7] is upper semi-analytic and thus universally
measurable, i.e., B([0,00)) ® FY-measurable. Finally, note that V;(w) = Vi(wia.). So, it follows
from Galmarino’s test that V, is ]-'% Ar--Ineasurable.

2. We next pove (6.8). By the measurable selection theorem (see, e.g., [BS96, Proposition
7.50]), for each & > 0, there exists an F{ -measurable kernel v° : w — 1¥(w) € P(79(w),w), such
that for all w € Q2

o)y

70

(w) < em@yner @ie o) 4. (6.11)
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By Lemma 6.5, we have Yo" (W [¢ 7] = EF®nr° [yf;(gmys!]:m](w), P—a.s. for all P € Py.
Therefore, for Q € Qr(P), we have

EQflemV,, ] < B[RO [em i | 4o
_ CP<EP®TQ [DQ\W 777'0);]}]@7'0 |]_|_€P)

omyEEn ] 4 o),

0

< ( sup EY [
QIE QL (P®TO VE)

Then, by the estimate (3.2), we obtain

0

sup sup EZ[|e™V, "] < Cpﬂ(”f“igﬁ(’po)—i_(FP#LT

)¥ ) + Cpel
PePo QeQr(P)

which induce the required estimate by sending ¢ — 0.

3. To prove (6.9), we start by observing that, by the tower property in Lemma 6.5, we have

Vo = sup EF[)5[¢,7]] = sup EF [yg[yg)[&v'],mﬂ = sup EP[J/P [Ep[yf; &7 Fro ] 7'0”

PePo PePy PePo

Note that, for all P € Py, we have by Lemma 6.5 that for P—a.e. w,

Vo) = sup Y76 7] = sup B 377 [e, )] > B [V e || (@)

By the comparison result of Theorem 3.5 (ii) for the BSDE (6.3), we deduce that

Vo < sup EF [yg‘;’ [VTO,T()]] = sup YOOF [V, 7. (6.12)
PePo PePo

To prove the reverse inequality, we use again the measurable selection theorem to deduce the
existence of an FY -measurable kernel v° : w — 1v(w) € P(79(w),w) such that (6.11) holds true
for n € [~p, p). Define the concatenated probability P := P ®,, v° and note that P| Fry = Pl7,,-
Then, by the stability result of Theorem 3.5 (i) and Lemma 6.5, we have

Vo = EF[Fle, 7] = BF [DE [EF [T 16, 71) mo) | = BF [VE [B O 3 Vle, ) o] .

By (6.11), the right hand side is larger than EF D/gp [VTO,T()H — Ce for some C' > 0 independent
of e. Therefore, Vo > YOOF [V, 7] — Ce, and we obtain by sending ¢ — 0 that

Vo > sup YOOF [V, 0] -
PePy

4. We finally prove (6.10). Due to the previous step, we know
Viw) > YF [V 5], forall P'eP(t,w).

Now fix a probability measure P € Py. It follows from Lemma 6.6 (i) that for all P € Pp(t) C Py
we have P € P(t,w). So Vi(w) > > yhw [Vz,70]. By Lemma 6.5, this provides

Vi > EP [)/? [VTO,To]‘ft], — a.s., and therefore V; > ess sup EP [J/t [V s 0] ‘]—}] P-a.s.
PE?@()
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To prove the reverse inequality, we apply the measurable selection theorem on the optimization
problem (6.9), to find an F-measurable kernel v¢ : w — vf(w) € P(t,w) such that Vi(w) <
Yhwr(w) Vi, T0] + €. By Lemma 6.6, P° := P ®, v° € Py, and thus P € Pp(t). Together with
Lemma 6.5, this provides

Vi < EF* {yt [V, T0) ‘.7-}] +e < esssupE [yt [V, T0] ‘]:t}
PePp(t)

The required inequality now follows by sending € — 0. U

6.4 A cadlag version of the value function

By [PTZ17, Lemma 3.2|, the right limit

v = lim V,
¢ (W) i r(w)
exists Po-g.s. and the process V' is cadlag Po-q.s. with V€ Lj -(Q) for all Q € Upep, QL(P),
neE[—u,p), pe€(l,q), and all stopping times 79 < 7.

Proposition 6.8 (Dynamic programming for V). Under Assumption 3.1, V't € Dh -(Py) for
any n € [—u, p), p € (1,q), and for all F*-stopping times 0 < 79 < 11 < 7, and P € Py, we have

P
VTf)r = ess sup yTO [ n ,7‘1], P —as.
P’EP]P (To)

Proof. 1. For an F™—stopping time 7 < 7, we introduce the approximating sequence of stopping

times 7" := LTEJH and we now verify that

V> e L) (Py) and lim E]P)He”TVJr e”?nV;nm = 0, forall PePy.

n—oo

Indeed, for all P € Py, and Q € Qr(P):

EQ[(e’ﬁV;)p] = lim EQHe”T Van[P] < sup 57)0“6’77

n— o0 /<7,

] = v, < oo,
by (6.8) in Theorem 6.7, implying that £70 He”?V;‘p] < vp. Then 0, := |e”?V7.+ — " Ven
satisfies for an arbitrary m > 1:

r
I

£ 18] < € (B rmmy) + E7 [ pramy] < 207 € [Lrmy] ™7 + O (B ()7,
which implies the required convergence.

2. We now prove that V7 > V¥ [V 7], P—as. for all P € Py, where the right hand is well
defined by the mtegrablhty of VT obtained in the previous step. Recall from Theorem 6.7 that

Vi > EP[yE’ Vis, 70 (f ] P-as.,

where 73" and 71* are defined from 79 and 7 as in the previous step. By the stability result of
BSDESs in Proposition 4.6, and the result of Step 1 of the present proof, we have

= 0.

p
En,‘rg” (P)

< lim

szﬂ'g” (P) n—00

lim
n—o0

ry Vep 1 = Vo [Vid 7]

o Ve ] = Vi [Vt |
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Then, Vim > limy, o0 EP [yE;m [VT{L,T{L]‘.FT(;R] EF [)/P o ‘]—" ] P—a.s., and therefore

VTj)r = lim Vim > lim EP[)}P Tl,Tl ‘.7: ] = IEP[J)P V+ ‘-7:7-0}

m—ro0 m—r0o0
where the last equality is due to Y [V7, 7] € D} -, (P).

3. We next prove the reverse inequality. By the comparison result together with the last step
of the present proof, we have

P P / / P /
ess sup yTO [V, m] > esssup yE; [VE[E 7], 7] = esssup yE; €, 7] (6.13)
P'eP; (10) PP (10) P'eP (10)

So it remains to prove that

Vi < ess]};up yfg[ﬁm]. (6.14)
P'ePy (10)

In the remainder of Step 3, we omit the parameter [¢, 7] without causing confusion. For any
n € [—u, p), we obtain by the dominated convergence theorem together with the estimate (6.8)
of Theorem 6.7 that

+]

2

e™VE = lim E[e"0 Von|FE] = lim E[emél esssup EF' [yfgw

n—o0 n—o0 P/EP]P’ (T(')rz)

Frs)
Fry]

P 0E 2 4] )] 7] (615

. n P /
< lim E[emﬂ ess sup E D/E:?

o P'eP; (10)

. P / n !
= lim esssup EF [6”70 yE(’?
"0 prepit(rp)

/ [T
= lim essE;up {emoy}f; + EF { /
)

n—oo P’EP];— (7_0 T0

By the Lipschitz property of F' in Assumption 3.1, we estimate that

EP/{/TTé’ ens(fs(yf/,zlf')+77y£>/)ds‘}"jg] < CQ—"(HfHLg,T(PO) + (Fg,qﬁ)),

0

which provides (6.14) in view of (6.15).
4. Tt remains to prove that V' inherits the integrability property of V. By Proposition 6.8,

epnt ‘V;f—i_ ‘P — epnt

7 p 7
ess]Péup W [{,T]‘ = eSSE;uP 6pnt|yf [fﬂ'Hp'
PeP (t) P eP (t)

As in the proof of Theorem 3.3, we may find for each P’ a measure Q¥ € Qp, such that
e |V (€, )| < BY [emmle] + [T en|f0|ds|F;t]. Then,

epnt“/t-i-‘p < Cp ess]Péup eSSPS/llp EQ |:6p777"§|l’ + (/ ens‘f£|d8>p“,t‘t+} '
P'ePy (1) QEQL(P') ’

and therefore,

o, 1) < 7 i [ <

0<t<r

which induces the required result by Remark 5.1. U
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6.5 Proof of Theorem 3.12: existence

Proof. 1. We first prove the existence of a process Z and a family (U P)]}Depo such that for all
p € (L,q) and n € [—pu,p),

(Z,U%) e Hh (P, FHF) x Ul - (P,FTF), U" is cadlag P-supermartingale, [U", X] = 0,

and V,j = ¢ +/ F,(V;h, Z2,5,)ds —/ (Z5 - dX, +dUY), t >0, P-as.,
tAT tAT

(6.16)
Fix P Py. Asforanyp<p <q, V' € Df;:f (Po), by Proposition 6.8, it follows from Theorem
3.7 that there exists an unique solution (Y¥,Z¥ U¥) € D} -(P) x Hh (P) x U} -(P) to the
RBSDE:

YE =+ | f.(¥E Z5)ds — (Z2F - dX,+aUF), YE> VT P —as.

AT tAT (617)
and EP[/ (1AE - V,i))dUr} — 0, for all ¢ > 0.
0

Following the same argument as in [STZ12], see also [PTZ17, Lemma 3.6], we now verify that
YP = V+, P-as. Indeed, assume to the contrary that 2e := YOP — V0+ > 0 (without loss of
generality), so that 7. := inf {t >0: ey < e’7tVtJr + E} > (0, P—a.s. Notice that 7. < 7, as
the two processes are equal to ¢ at time 7. From the Skorokhod condition, it follows that UF
is a martingale on [0, 7], thus reducing the RBSDE to a BSDE on this time interval. Denoting
as usual by JF [VT—!,TE], we obtain by standard BSDE techniques that, for some probability
measure Q € 9y (P),

YE)P = yg[VTj’Tg] + EQ[enTE(YTE_VTj)} < y(I)P[VTjaTE] +e = ‘/0++€7

where the last inequality follows from the crucial dynamic programming principle of Proposition
6.8. By the definition of ¢, the last inequality cannot happen.

Consequently YF = V*. In particular, V¥ is a cadlag semimartingale which would satisfy
(6.16) once we prove that the family {ZF}pep, may be aggregated. By Karandikar [Kar95],
the quadratic covariation process (V, X) may be defined on Ry x Q. Moreover, (VT, X) is
Po-q.s. continuous and hence is FHPo-predictable, or equivalently FPo-predictable. Similar to
the proof of [Nutl5, Theorem 2.4], we can define a universal FPo_predictable process Z by
Zydt := @, 'd(Vt, X);, and by comparing to the corresponding covariation under each P € Py,
we see that Z = ZF, P—a.s. for all P € Py. This completes the proof of (6.16).

2. It remains to prove that the family of supermartingales {U P}P ePo satisfies the minimality
condition. Let 0 < s <t, P e Py, P € 771;(8 AT), and denote by (J/P/, ZP/,NP/) the solution of
the BSDE with parameters (F,£). Define 0Y 1=Vt — Y 67 := Z— 2" and 6U := U” —NT".
By It6’s formula, we have for a € [—p, p),

NV = / NN (B (Vi Z0,6,) — B (VF, 28.6,) — adYy)dr — e (52, - dX, + 5U,)

AT

= / (aF'sY, +0F -5¥62,)dr — (687, - dW, + doU, ),

AT

for some bounded processes a¥ and bP,, by Assumption 3.1. This provides that

tAT
Fi@/’wea(t/\ﬂ—)an/w _ FP’ eaz(s/\T) §Yapr = / Ff/eo”{ (5Y}bfl + b\'TT(SZr) . dW,«) + d(SUT}

SAT
AT
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where I‘fl = elinr(au =3 bF )t [ 7AW .Recall that §Y > 0, and U”" is a P’ —supermartingale
with decomposition U = N¥ — K¥'_ for some P'— martingale N P and nondecreasing process

K. Then, taking conditional expectatlon EF L] = EPI[ ‘ anr], we obtain
tAT , , P tAT , , ,
‘a|t5Y st 2 Es/\7|:/ FED dKF} > E]g/\ﬂ- |:/Yst/ del? ]7 with ’YEt = inf FIvE“D ’
SAT AT SAT<r<tAT

and we then obtain by the Cauchy-Schwarz and the Holder inequality:

tAT tAT AT 1 555
o | ] e o) <25 o o iy o

SAT SAT SAT

N

< Ceslel (CTP) > (5Y,,)7,

where p € (1,¢q), p~ ' +p ' =1, and

P/
C’Ej’f ‘= esssup ES,\TK/
S

]P’/EP+ (sAT)

w dK}F”)p] . (6.18)

AT

Now, the minimality condition in Definition 3.9 follows immediately from Proposition 6.8, pro-
vided that C’Ef < 00, P—a.s. which we now prove.

The family {EPI[ AT dK, PP | ], P e 771; (tA 7')} is directed upward.” Then, it follows

5/\7’
from [Nev75, Proposition V-1-1] that the esssup in (6.18) is attained as an increasing limit

along some sequence {P, }nen C PI[T (s AT). By the monotone convergence theorem, we see that

ey = Jm e[ [ an)]] < el <

SAT

by Proposition 4.3 together with the fact that ||V ]| < oo by the wellposedness of the

DY (Po)
RBSDE. Hence, ij’tp < 00, P-a.s. O
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