Jean-Christophe Mensonides

Sébastien Harispe

Jacky Montmain

Véronique Thireau
email: veronique.thireau@unimes.fr

Automatic Detection and Classification of Argument Components using Multi-task Deep Neural Network

In this article we propose a novel method for automatically extracting and classifying argument components from raw texts. We introduce a multi-task deep learning framework exploiting weight parameters trained on auxiliary simple tasks, such as Part-Of-Speech tagging or chunking, in order to solve more complex tasks that require a fine-grained understanding of natural language. Interestingly, our results show that the use of advanced deep learning techniques framed in a multi-task setting enables competing with state-of-the-art systems that depend on handcrafted features.

Introduction

Argumentation consists in a set of methods aiming at making an interlocutor adhere to an introduced point of view or conclusion -or at least to increase its adherence to the latter. In its simplest form, argumentation is a reasoning process selecting and structuring premises to attack or defend a given conclusion. Although the study of argumentation is well established in fields such as Logic, Philosophy, or Linguistics, automatic extraction and analysis of arguments from natural language, commonly referred as Argument Mining, is a relatively new research area. Advances in Argument Mining are of major importance for Natural Language Understanding and Processing, in particular due to their several direct applications and relationships with other tasks, e.g. fake news detection, knowledge base enrichment and population, source trustworthiness estimation. To date, most advanced argument mining systems aims at generating argument-based graphs identifying and structuring premises, claims and conclusion from raw texts [START_REF] Cabrio | Five years of argument mining: a data-driven analysis[END_REF]. They can usually be split into sequences of subtasks including argument detection and argument linking [START_REF] Lippi | Argumentation mining: State of the art and emerging trends[END_REF]. This article focuses on analyzing argumentative micro-structure, i.e., how different argumentative components interact with each other within a single text.

Three types of argument components are often used in the annotation scheme considered in Argument mining: (i) major claims, reflecting the author's standpoint on the debated topic, (ii) claims, which are statements needing further justifications to be accepted, and (iii) premises, which are justifications used in order to make a claim stand [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF]. Those components are further structured into a directly acyclic graph in which nodes account for argumentative components and edges account for oriented links between them. Directed edges in the graph are labeled either as a support or attack relationship, and are only allowed a) from a premise to another premise, b) from a premise to a (major) claim, and c) from a claim to a (major) claim. Such an annotation schema is adopted by [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF] in the Argument Annotated Essays corpus (version 2) composed of 402 manually annotated student essays taken from essayforum.com.

A pipeline of treatments is generally applied to automatically obtain the graph reflecting the underlying argumentative structure of an essay. The following intuitive decomposition involving four subtasks is moreover often considered in practice [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF]: (1) argument components identification, (2) argument components classification, (3) assessment of the existence of directed edges between argument components, and (4) tagging of the existing directed edges either as a support or as an attack relation-ship. This article will focus on solving subtasks (1) and (2). It presents a novel multi-task approach to argument mining that does not require handcrafted features as input. We are in particular interested by evaluating if recent deep learning techniques, such as recurrent neural network mixed with multi-task learning, can compete with traditional approaches based on handcrafted features.

The paper is organized as follows. Section 2 introduces an overview of related work proposed on tasks similar to (1) and (2). Section 3 introduces our approach to solve those two tasks. Section 4 describes the training details of the proposed model. Section 5 describes our experiments and results. Section 6 provides directions and perspectives for future works.

Related work

Argument components detection consists in determining the boundaries separating the textual units carrying arguments from the rest of the text. This task is generally considered as a supervised text segmentation problem at word level. Models exploiting the sequential aspect of texts, inherent in the construction of a convincing argumentation, seem particularly adapted and are often used. [START_REF] Madnani | Identifying high-level organizational elements in argumentative discourse[END_REF] used a CRF (Conditional Random Field) to identify non-argumentative segments within dissertations. [START_REF] Levy | Context dependent claim detection[END_REF] identified the boundaries of textual units detailing conclusions which were supporting or attacking topics discussed in threads from Wikipedia. [START_REF] Ajjour | Unit segmentation of argumentative texts[END_REF] used LSTM (Long shortterm memory, recurrent neural network) to extract arguments from essays, editorials, and from user-generated comments. [START_REF] Goudas | Argument extraction from news, blogs, and social media[END_REF] first identified sentences containing arguments and then detected their boundaries within social media using a CRF. [START_REF] Sardianos | Argument extraction from news[END_REF] determined argument components boundaries in news articles using also using a CRF. Similarly, [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF]) used a CRF to extract argument components in essays. [START_REF] Eger | Neural end-to-end learning for computational argumentation mining[END_REF] leveraged deep learning techniques to extract arguments from raw texts.

Determining the type of argument components (premise, conclusion, etc.) has often been treated as a supervised text classification problem. [START_REF] Eckle-Kohler | On the role of discourse markers for discriminating claims and premises in argumentative discourse[END_REF] distinguished premises and conclusions in news articles using Naive Bayes, Random Forest and SVM (Support Vector Machine). [START_REF] Park | Identifying appropriate support for propositions in online user comments[END_REF]) also used a SVM to determine the extent to which claims are justified in citizen's comments related to possible new legislation projects. [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF] classified argumentative components into premises, claims and major claims in essays using a SVM. [START_REF] Persing | End-to-end argumentation mining in student essays[END_REF] used maximum entropy classification to determine the type of argument components. [START_REF] Potash | Here's my point: Joint pointer architecture for argument mining[END_REF] used sequence-to-sequence recurrent neural networks to infer the type of argument components.

Multi-tasks models are able to handle several different problems by sharing a subset of shared parameters. They have been subject to recent interest within the Natural Language Processing community [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF][START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF][START_REF] Eger | Neural end-to-end learning for computational argumentation mining[END_REF][START_REF] Yang | Multi-task cross-lingual sequence tagging from scratch[END_REF]. This type of models is bio-inspired: human beings are able to carry out a multitude of different tasks and can exploit, when necessary, knowledge related to different types of problems, making the learning of new tasks faster and easier. [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF] states the reasons why this type of model is effective from a machine learning point of view: the use of several different corpora induces an implicit increase in the number of examples available during the training phase. In addition, the model has to look for characteristics which may be useful for all the tasks to be processed, which limits the noise modeling and thus, leads to a better generalization. [START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF] showed that inducing a priori knowledge in a multi-task model, by ordering the tasks to be learned, leads to better performance. [START_REF] Yang | Multi-task cross-lingual sequence tagging from scratch[END_REF] have shown that driving a multi-task and multi-language model can improve performance on problems where data is only partially annotated. [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF] obtained competitive results on several different tasks with a single model. However, we should note that there is no guarantee on the benefits of using multi-task models, and that their success depends on the data distribution related to the various problems treated [START_REF] Mou | How transferable are neural networks in nlp applications[END_REF][START_REF] Martínez | When is multitask learning effective? semantic sequence prediction under varying data conditions[END_REF][START_REF] Bingel | Identifying beneficial task relations for multi-task learning in deep neural networks[END_REF]. [START_REF] Schulz | Multitask learning for argumentation mining in lowresource settings[END_REF] proposed a multi-task framework to perform end-to-end argument mining. The result they obtained are very promising. In this paper, we are interested in leveraging auxiliary informa-

Proposed approach

We propose a model which aims at 1) determining argument components boundaries within a set of essays and 2) determining the type of each argument component within the latter essays. We draw inspiration from the work of [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF] and opt for a multi-task model without the definition of handcrafted features. Specifically, we use deep learning techniques and develop a model that performs Part-Of-Speech (POS) tagging, chunking, argument components boundaries detection, and argument components classification. An overview of the model architecture is given in Figure 1. The different layers used in the architecture are described below.

Word embeddings

We first use a word embedding layer, assigning a vector representation e t to each word w t given in input to the system. We use GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] to obtain a set of pre-trained embeddings in an unsupervised fashion 1 . Note that, word embeddings are continually optimized while training the model on the different tasks described below. Out-of-vocabulary words are mapped to a special <UNK> token. 1 We used pre-trained embeddings from https://nlp. stanford.edu/projects/glove/.

POS tagging

The second layer of the model corresponds to a POS tagging task, consisting in assigning a POS tag (noun, verb, adjective, etc.) to each word w t given in input to the system. We use a bi-directional Gated Recurrent Unit (GRU) [START_REF] Cho | Learning phrase representations using rnn encoder-decoder for statistical machine translation[END_REF] to encode input word sequences.

GRU is a recurrent neural network using a gating mechanism and avoiding the use of a separate memory cell. At each time step t, GRU computes the hidden state h t as follows:

h t = (1 -z t) * n t + z t * h (t-1)
with

n t = tanh(W n x t + b n + r t * (W hn h (t-1) + b hn)) r t = σ(W r x t + b r + W hr h (t-1) + b hr) z t = σ(W z x t + b z + W hz h (t-1) + b hz)
where x t is the input at time step t, r t , z t and n t are respectively the reset, update and new gates, σ is the sigmoid function, and W and b are matrice and vector parameters.

In order to exploit the past and future contexts of an element from a sequence of N inputs [x 1 , x 1 , ..., x N], we construct a bi-directional encoding by concatenating the hidden states obtained with a forward encoding (e.g, at time step t = 1, the input is x 1 , at time step t = 2, the input is x 2 , etc.) and a backward encoding (e.g, at time step t = 1, the input is x N , at time step t = 2, the input is x N -1 , etc.):

- → h t = ---→ GRU (x t), t ∈ [1, N] ← - h t = ← --- GRU (x t), t ∈ [N, 1] h t = [- → h t ; ← - h t]
We use word embeddings as input of the POS tagging layer:

--→ h (1) t = ---→ GRU (e t) ← -- h (1) t = ← --- GRU (e t) h (1) t = [--→ h (1) t ; ← -- h (1) t]
Then for each time step t we compute the probability of assigning the label k to the word w t as follows:

p(y (1) t = k|h (1) t) = exp(W sm (1) f c (1) t + b sm (1)) c 1 exp(W sm (1) f c (1) t + b sm (1)) (1) f c (1) t = relu(W f c (1) h (1) t + b f c (1)) (2)
where W and b are parameter matrices and vectors, ReLU is the Rectified Linear Unit function [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF], and c 1 is the set of possible POS tags.

Chunking

Chunking is a task aiming at assigning a chunk tag (noun phrase, verb phrase, etc.) to each word. We compute hidden chunking states by exploiting what the model has learned for the POS tagging task:

--→ h

(2)

t = ---→ GRU ([e t ; h (1)
t ; y

(P OS) t]) ← -- h (2) t = ← --- GRU ([e t ; h (1)
t ; y

(P OS) t]) h (2) t = [--→ h (2) t ; ← -- h (2) t]
where h

(1) t

is the hidden state obtained at time step t on the POS tagging task and y (P OS) t is the weighted POS label embedding. Following [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF], y (P OS) t is defined as follows:

y (P OS) t = card(c 1) j=1 p(y (1) t = j|h (1) t)l(j) (3)
where l(j) is an embedding of the j-th POS tag. POS tag embeddings are pre-trained using GloVe.

The probability to assign a chunk tag to each word is then computed in a similar way to the one for POS tags (eq. (1) and (2)), but with a set of parameters specific to the chunking layer.

Argument Components Detection (ACD)

Argument components detection aims at delimiting the boundaries of each argument component within essays at the word level. We follow [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF] and treat this task as a supervised text segmentation problem, where labels follow an IOB-tagset (Ramshaw and Marcus, 1999): the first word of each argument component carries an "Arg-B" label, remaining words of said argument component bear an "Arg-I" tag, and the words not belonging to any argument component bear an "O" tag.

Each essay is considered as a single word sequence which we encode as follows:

--→ h (3) t = ---→ GRU ([e t ; h (1) t ; y (P OS) t ; h (2) t ; y (chunk) t]) ← -- h (3) t = ← --- GRU ([e t ; h (1) t ; y (P OS) t ; h (2) t ; y (chunk) t]) h (3) t = [--→ h (3) t ; ← -- h (3) t]
where y (chunk) t is the weighted chunk label embedding, computed in a similar way as the one for POS labels (eq. (3)).

The probability to assign a chunk tag to a word is then computed in a similar way as the one for POS labels, but with a set of parameters specific the ACD layer.

Argument Components Classification (ACC)

Argument components classification aims at determining the type of each argument component between premise, claim and major claim. We treat this task as a segment labeling problem. We consider that a segment can be the sequence of words belonging to a same argument component or can be the sequence of words belonging to a same portion of continuous text whose words do not belong to an argument component. The notion of segment is illustrated in Figure 2. We encode each segment s i , i ∈ [1, L] as follows:

-→ h it = ---→ GRU ([e it ; h (1)
it ; y

(P OS) it ; h (2) it ; y (chunk) it]) ← - h it = ← --- GRU ([e it ; h (1)
it ; y

(P OS) it ; h (2) it ; y (chunk) it]) h it = [-→ h it ; ← - h it]
where it is the time step t for the segment s i .

[S1] The greater our goal is, the more competition we need. [S2] Take Olympic games which is a form of competition for instance, it is hard to imagine how an athlete could win the game without the training of his or her coach, and the help of other professional staffs such as the people who take care of his diet, and those who are in charge of the medical care.

[S3] The winner is the athlete but the success belongs to the whole team. Therefore [S4] without the cooperation, there would be no victory of competition [S5] . Consequently, no matter from the view of individual development or the relationship between competition and cooperation we can receive the same conclusion that [S6] a more cooperative attitudes towards life is more profitable in one's success. In order to help the model focusing on the most important markers (such as "I firmly believe that" or "we can receive the same conclusion that") we use an attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF], which in addition allows us to synthesize the information carried by segments hidden states into fixed size vectors:

u it = tanh(W att h it + b att) α it = exp(u it u att) t exp(u it u att) sh i = t α it h it
where W att , b att and u att are respectively parameter matrices, bias and vectors.

Then we encode each essay using the synthetic segments hidden states sh i :

--→ h (4) j = ---→ GRU (sh i), i ∈ [1, L] ← -- h (4) j = ← --- GRU (sh i), i ∈ [L, 1] h (4) j = [--→ h (4) j ; ← -- h (4) j]
The probability of assigning a label to each segment is then computed similarly to that for POS tags, but with a set of parameters specific to the ACC layer.

Model Training

For each epoch of training, we optimized the model's parameters for each layer. That is, at each epoch we trained the layers in the following order: POS tagging, chunking, ACD and ACC. In order to assess the relevance of implementing a multi-task model, we trained two versions of the model: a version where we trained every layer (referred as "w/ POS & chunking"), and a version for which we voluntary omitted to train the POS tagging and chunking layers (referred as "w/o POS & chunking"). The training details of each layer are described below.

POS tagging layer

Following [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF], we denote θ P OS = (W P OS , b P OS , θ e) the set of parameters involved in the POS tagging layer. W P OS represents the set of parameter matrices for the POS tagging layer, b P OS the set of biases of the POS tagging layer, and θ e the set of parameters of the words embedding layer. The cost function is defined as:

J (1) = - s t log p(y (1) t = k|h (1) t) +λ W P OS 2 + δ θ e -θ e 2
where p(y

(1) t = k|h (1)
t) is the probability of assigning the right label k to the word w t of the word sequence s, λ W P OS 2 is the L2 regularization term and δ θ e -θ e 2 is a secondary regularization term. λ and δ are hyperparameters. The secondary regularization term aims at stabilizing the training by preventing θ e from being too specifically optimized to fit the POS tagging task. Indeed, since θ e is shared across all layers of the model, excessive modifications of its parameters would prevent the model from learning efficiently. θ e is the set of parameters involved in the word embedding layer at last epoch.

Chunking layer

We denote θ chunk = (W chunk , b chunk , E P OS , θ e) the set of parameters involved in the chunking layer. W chunk et b chunk are respectively parameter matrices and bias of the chunking layer, including those of θ P OS . E P OS is the set of parameters characterizing the POS label embeddings. The cost function is defined as follows:

J (2) = - s t log p(y (2)
t = k|h (2) t) +λ W chunking 2 + δ θ P OS -θ P OS 2 with p(y (2) t = k|h (2)
t) the probability of assigning the right label k to the word w t of the word sequence s. θ P OS is the set of parameters of the POS tagging layer right before the training of the chunking layer for the current epoch.

ACD layer

We denote θ ACD the set of parameters involved in the ACD layer, with θ ACD = (W ACD , b ACD , E P OS , E chunk , θ e). W ACD and b ACD are respectively parameter matrices and bias of the ACD layer, including those of the chunking and POS tagging layers. E chunk is the set of parameters characterizing the chunk label embeddings. The cost is defined as follows:

J (3) = - d t log p(y (3) t = k|h (3) t) +λ W ACD 2 + δ θ chunk -θ chunk 2 with p(y (3) t
= k|h

(3) t) the probability of assigning the right label k to the word w t of the essay d. θ chunk is the set of parameters of the chunking layer right before the training of the ACD layer for the current epoch.

ACC layer

We denote θ ACC the set of parameters involved in the ACC layer, with θ ACC = (W ACC , b ACC , E P OS , E chunk , θ e). W ACC and b ACC are respectively parameter matrices and bias of the ACC layer, including those of the chunking and POS tagging layers. The cost function is defined as follows:

J (4) = - d i log p(y (4) i = k|sh (4) i) +λ W ACC 2 + δ θ chunk -θ chunk 2 with p(y (4) i = k|sh (4) i)
is the probability of assigning the right label k to the segment s i of the essay d.

Experiments and discussion

Hyperparameters and training corpora

Optimization

We trained the model alternating, for each epoch, the layers to be trained in the following order: POS tagging, chunking, ACD and ACC. We used Adam (Kingma and Ba, 2014) as learning algorithm, with β 1 = 0.9, β 2 = 0.999 and = 10 -8 . The learning rate was shared across all layers and was fixed to 10 -3 at the beginning of the training, and then multiplied by 0.75 every 10 epochs. In order to limit the gradient exploding problem, we used a gradient clipping strategy [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF]. We followed [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF] and used a clipping value of min(3.0, depth), where depth stands for the number of bi-GRU involved in the trained layer.

Parameters initialization

In order to smooth the backpropagation of the gradient during the training phase, we used random orthogonal matrices as initial weights for parameter matrices of every GRU, as suggested by [START_REF] Andrew M Saxe | Exact solutions to the nonlinear dynamics of learning in deep linear neural networks[END_REF]. The remaining parameter matrices were initialized with values drawn from a gaussian N (0, 2 n in), with n in being the number of input neurons in the layer, as proposed by [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF]. Bias vectors were initialized as zero vectors.

Vector dimensions used

We used 50 dimensional vectors for the words and labels embeddings. We used 100 dimensional vectors for the hidden states of every GRU in the model.

Regularization

Following [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF], we used λ = 10 -6 for the parameter matrices of every GRU and λ = 10 -5 for the remaining parameter matrices. The secondary regularization term rate δ was set to 10 -2 for each layer. We also used Dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] on every layer, with a probability to affect neurons set to 0.2.

POS tagging and chunking corpora

We used the corpora from the shared task CoNLL-2000 (Sang and[START_REF] Erik | Introduction to the conll-2000 shared task: Chunking[END_REF] and the associated labels to train the POS tagging and chunking layers.

ACD and ACC corpora

We used the Argument Annotated Essays (version 2) corpora released by [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF] following the train/test split given to train the ACD and ACC layers.

Training termination criteria

For a mono-task model, a common practice is to stop the training right before overfitting. However, it is not clear to determine when to stop the training when dealing with multi-task models since it is possible that the model overfits only on a subset of the target tasks. Thus, we decided to stop the training when the model overfitted both on the ACD and the ACC tasks on a held-out validation set2 . The reported results are the best we obtained for each task on the test set, before overfitting on the validation set. Note that hyperparameters can be chosen so that the model overfits roughly at the same time on the ACD and ACC tasks.

Simple ACC

We denote Simple ACC the ACC task with the following modification: every segment corresponding to an argument component was treated as a single special token <EMPTY>. We hypothesize that this transformation will prevent the model from focusing on words inside argument components, but rather on its context, thus allowing a better generalization process.

Results and discussion

We report the obtained results on the test data for the tasks ACC, ACD and Simple ACC in Table 1.

The column "w/o POS & chunking" refers to the model version for which we omitted the training of the POS tagging and chunking layers, while the column "w/ POS & chunking" refers to the model version optimized for every tasks. As a baseline, we use the human performances3 and the results reported by [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF], shown in Table 2.

General performance discussion

We obtained a macro f1-score of 0.8870 on ACD with the "w/ POS & chunking" model version, reaching human performance. This result was obtained without using handcrafted features, and is comparable to the one reported in [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF]. Regarding the ACC task, we obtained a macro f1-score of 0.7980 with Simple ACC for the "w/ POS & chunking" version, representing 96.6 % of the performance obtained in [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF] and 91.9% of the human performance.

Simple ACC assessment

We consider that the words composing argument components are not really relevant to determine if they are major claims, claims or premises. Hence, we hypothesize that focusing on those words will lead to model noise. Conversely, the context surrounding argument components should be a good indicator: sequences such as "we can receive the same conclusion that" seem to be strong indicators that the upcoming argument component is not a premise. This could explain the gap in performance obtained between ACC and Simple ACC, more particularly for the "w/ POS & chunking" version, with respective f1-scores of 0.7257 and 0.7980 (9.96% performance increase).

Multi-task framework assessment

Regarding the tasks ACD and Simple ACC, we obtained f1-scores of 0.5922 and 0.7670 for the "w/o POS & chunking" version and of 0.8870 and 0.7980 for the "w/ POS & chunking", representing respectively a 49.78% and a 4.1% performance gain. Those results show the benefits of using a multi-task framework and suggests that more subtasks could be added to the model.

Upcoming work and perspectives

The results we got are encouraging and could probably be improved, particularly by analyzing optimal hyperparameters in a deeper way. The performance difference between the "w/ POS & chunking" and "w/o POS & chunking" models tends to show that implementing more auxiliary tasks could be beneficial. One exploration way could be to insert a dependency parsing layer on top of the chunking layer, as done in [START_REF] Hashimoto | A joint many-task model: Growing a neural network for multiple nlp tasks[END_REF].

In order to implement a complete argument mining system, as introduced by [START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF], we plan to implement layers which enable to automatically generate argument graphs. Therefore, it is necessary to determine if a directed edge exists between each ordered pair of argument components, and also to label those edges either as support or as attack relationships.

Conclusion

This article introduced the use of a novel model based on a multi-task framework for automatically extracting and classifying argument components from raw texts. Interestingly, our results show that the use of advanced deep learning techniques enables competing with state-of-the-art systems that depend on handcrafted features. The variation of performance between the model exploiting auxiliary tasks (POS tagging and chunking) and a version skipping those tasks clearly promotes the added-value of a multi-task framework.

Figure 1 :

 1 Figure 1: Overview of the model architecture (Layerwise). POS, ACD and ACC are respectively acronyms for Part-Of-Speech, Argument Components Detection and Argument Components Classification.

Figure 2 :

 2 Figure 2: Excerpt from an essay of the corpus illustrating the notion of segments. Text regions underlined by a solid line are premises, those underlined by a dashed line are claims, and the bold regions are major claims.Segment numbers [S #] were added as indications. The first segment is the region from the beginning of the text to the first premise. The second segment corresponds to the first premise. The third segment is the not underlined region between the first premise and the first claim, and so on.

Table 1 :

 1 Macros f1-scores obtained on the ACC, ACD and Simple ACC tasks.

	Task		w/o POS &	w/ POS &
			chunking	chunking
	ACD	0.5922	0.8870
	ACC	0.6950	0.7257
	Simple	0.7670	0.7980
	ACC	
	Table 2: F1-scores reported on the ACD and ACC tasks
	by Stab and Gurevych (Stab and Gurevych, 2017) and
	human agents.	
	Task	F1-score from (Stab	Human
	and Gurevych, 2017)	f1-score
	ACD		0.867	0.886
	ACC		0.826	0.868

We randomly sampled 10% essays from the training data to build the validation set.

Human performance corresponds the average performances reached by human agents, as presented in[START_REF] Stab | Parsing argumentation structures in persuasive essays[END_REF].