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Goal: multi-objective optimization (1)

In general there are many (even an infinite number of) trade-off
solutions to

min
x∈X⊂Rd

(f1(x), . . . , fm(x))

called the Pareto set (in X ) or front (in Y).
It is composed of Non-Dominated points,
{x ∈ X : @x′ 6= x ∈ X , ∀i fi(x′) ≤ fi(x) & ∃ j fj(x′) < fj(x)}.

C is dominated,
A and B non-
dominated

Notation:
A ≺ C, B ≺ C
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Goal: multi-objective optimization (2)

True Pareto front vs. empirical Pareto front.

Examples from the metaNACA test bed [6], x :=

m = 2 objectives

The Pareto fronts can have holes.

m = 3 objectives
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Curse of dimensionality: number of variables

At a given budget, optimization performance degrades with the
number of variables:

d = 3 d = 22

(optimization algorithm: EHI – Emmerich et al. [3] – with GPareto – Binois and Picheny [1])
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Curse of dimensionality: number of objectives (1)
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Curse of dimensionality: number of objectives (2)
As the number of objectives increases, a larger part of X becomes Pareto optimal:

m = 2 m = 3

Ex: sphere functions centered on C1, C2, C3. Pareto sets (in red) are all convex combinations
of the C’s. Blue triangles: points sampled by MO Bayesian algorithm (GPareto). With 4
objectives at the corners of X , every point could be a Pareto solution.

As the Pareto set becomes larger, the optimization algorithm degenerates in a
space filling algorithm. Give up the utopian search for all of the Pareto set.
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Restricting ambitions in MOO of costly functions

Metamodels of costly functions do not completely solve the cost issue as

they still need to be learned. Recently, we have explored ways to

proportionate ambitions to search budget (about 100 functions

evaluations):

Today’s talk: how to focus on specific regions of the Pareto
front. The R-mEI algorithm explained step by step:

1 Finding one Pareto optimal point
2 Widening the search
3 A q-points batch version

Details and proofs in [6, 7].
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MOO: related work (1)

Evolutionary Multi-objective Optimization (EMO): a field in
itself (10 EMO international conferences, Deb’s book [12]),
expensive without model of the function.

Model-based multi-objective optimization:

gradient on Gaussian Process (GP) mean (Zerbinati et al. [18]),
the family of Bayesian MOO (EHI, SMS, SUR, EMI – GPareto
[1], Wagner et al. [16] –), constrained EHI (Feliot et al. [4]).
They target the entire front, cheaper than EMO but still
expensive for us (curse of criteria dimensionality, see earlier).
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MOO: related work (2)

User preference: scalarize the
MOO by minimizing a
distance to a user given goal,
minx∈X dist(f(x), goal)
(Miettinen [15]). But choice
of the metric, choice of the
goal.

f
1

f
2

L
∞

 metric

L
1
 metric

L
2
 metric

goal

f(X)

User preference in Bayesian optimization: weighted EHI (Feliot et

al. [5]), truncated EHI (Yang et al. [17]). But: need to specify
the weight or the truncation region.

⇒ we now propose a Bayesian MOO with or without user
preference (reference point and its default), R/C-mEI.
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MO Bayesian optimization with reference point

1. FINDING ONE PARETO-OPTIMAL POINT
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Bayesian multi-objective optimization (1)

Equipped with observations of the true functions and GPs, we can
simulate possible Pareto fronts at given x’s:
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Simulations points for the Pareto front (1)

The choice of the x’s where the simulations are performed matters.
Below, blue points are random, red points selected proportionally to
their probability of being non dominated by the empirical front P̂Y :

(d = 22)
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Simulations points for the Pareto front (2)

Choose x’s with a probability proportional to P
(
P̂Y � Y(x)

)
.

In the quadratic case, d = 2, m = 3, after 20 iterations

DoE & & , Non Dominated , selected point , sampled Y ND

Simulation points are uniformly distributed near the Pareto set.
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Bayesian multi-objective optimization (1)
Where to put the next point, xn+1, where to call the costly f? At the
point that maximizes, on the average of the Y(x) samples, the

Hypervolume Improvement (over the empirical Pareto front P̂Y):

H(A; R) =

∫
A�z�R

dz

IH(Y; R) = H(P̂Y ∪ {Y}; R)− H(P̂Y ; R)

EHI(x; R) = E (IH(Y(x); R))

max EHI favors Y(x) dominating
the empirical Pareto front and far
from already observed f(xi)s.
Notice: the omnipresence of R;
∀R � P̂Y , EHI generalizes the EI
criterion of EGO (Jones [10]).EHI implementation from [14]
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Bayesian multi-objective optimization (2)

Algorithm 1 Multi-objective EHI Bayesian optimizer

Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, R, nmax

1: while n < nmax do
2: Build m independent GPs, Y() = (Y1(), . . . ,Ym()), from cur-

rent DoE
3: Find next iterate by solving xn+1 = arg maxx∈X EHI(x; R)

{internal optimization problem, no call to f()}
4: Calculate f(xn+1)
5: n← n + 1
6: end while
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Targeting improvement regions with EHI

To find the entire Pareto front, R must be dominated by the Nadir
point, N: R1 is the default in the litterature.

But the entire Pareto front
is i) too large to be de-
scribed ii) not interesting
in general (e.g., extreme
solutions).
⇒ move R and control the
improvement region,

IR := {y ∈ Y : y � R}

(keeps the Pareto rank for
non comparable functions)

R1

N

I
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Example: targeted EHI versus EHI

Violet: mEI convergence with R at .
Green: EHI convergence with R at .
Note the more local and accurate convergence with mEI. (d = 8)
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mEI, a computationally efficient proxy to EHI

Once R is freed from P̂Y , a new acquisition criterion is possible.
Definition:

mEI(x; R) :=
∏m

j=1 EIj(x;Rj)
Y ’s indep.

= E
∏m

j=1 max(0 , Rj − Yj(x))
Property:

If P̂Y � R, EHI(·; R) = mEI(·; R).

mEI(x; R) is analytical in mi (x) and Ci (x, x), computationally much more efficient
than EHI which involves Monte Carlo simulations when m > 2 (ms vs min).
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Illustration: mEI versus EHI

EHI top row, mEI botton row
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Reference point updating: principle

R̂ too ambitious (e.g.,
near Ideal): the algorithm
degenerates into a space
filling (variance driven).

R̂ easy to reach: favors
already known high
achievers.

⇒ R̂ near the Empirical Pareto front as
the right amount of ambitions (explo-
ration vs intensification).
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No user preference (R)? Default with the Pareto front center (next).
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The Pareto front center

Which point should be targeted through R? By default, the point
where objectives are “balanced”.
Definition: The center C is the point of the Ideal-Nadir line the
closest in Euclidean distance to the Pareto front.
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Properties of the Pareto front center

The Pareto front center is equivalent, in game theory, to the
Kalai-Smordinsky solution with a disagreement point at the
Nadir [11] if the Pareto set is convex.
The Pareto front center is invariant w.r.t. a linear scaling of the
objectives either when the Pareto front intersects the Ideal-Nadir
line, or when m = 2 (not true in general though).
The Pareto front center is stable w.r.t. perturbations in Ideal
and Nadir: ‖∆C‖2 < ‖∆N‖2 and ‖∆C‖2 < ‖∆I‖2.
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Estimating the Pareto front center

Crude estimators:

Î = ( min
y∈DoE

(y1), . . . , min
y∈DoE

(ym)),

N̂ = (max
y∈P̂Y

(y1), . . . , max
y∈P̂Y

(ym)),

but they may be misleading early in the search. Take advantage of
the GPs uncertainties ⇒ estimate them from Pareto front simulations
(at carefully selected x’s, see next slides) and take their median.
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Simulation points for the Ideal and the Nadir (1)

(For the Pareto front, choose x’s with a probability proportional to

P
(
P̂Y � Y(x)

)
.) ← see earlier

For the Ideal, choose x’s with a probability proportional to

P
(
Yi (x) ≤ minj f

j
i

)
, j = 1, n, i = 1,m (analytical).

For the Nadir, choose x’s with a probability proportional to

P
(
Yi (x) > N̂i , Y(x) non dominated

)
+ P

(
Y(x) � arg N̂i

)
, i = 1,m

More details in [6]
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Simulation points for the Ideal and the Nadir (2)

In the quadratic case, d = 2, m = 3, after 20 iterations

DoE & & , Non Dominated , selected point , sampled Y ND

Simulation points are grouped around the centers which make the Ideal and
Nadir.
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First phase of R estimations

Require: DoE =
{(x1, f(x1)), . . . , (xn, f(xn))},
nmax

1: Build the m independent
GPs;

2: repeat
3: if no R then
4: estimate Nadir N̂;

R← N̂;

5: end if
6: estimate Ideal Î;
7: R̂← Project on ÎR the

closest point of P̂Y to ÎR;
8: xn+1 = arg max

x∈X
mEI(x; R̂);

9: evaluate f(xn+1) and
update the GPs;

10: n ← n+1;
11: until n > nmax

Often R̂ is at the true Pareto front before the end. Cannot be further
improved. Waste of computation.
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Example of convergence to one Pareto-optimal

point

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
−

1.
5

−
1.

0
−

0.
5

0.
0

f1
f 2

I

R

Pareto Front
Provided reference point
Reference points used by mEI
Last reference point used by mEI

Need a stopping criterion.
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Uncertainty in center location (1)

Need a stopping criterion. mEI and EHI are too unstable: depend on
fi ’s scales and R.

Define the domination probability,

p(y) := P (∃x ∈ X : Y(x) � y)

Estimation: simulate nsim Pareto fronts (at well-chosen x’s), P̃Y
(i)

,
and

p̂(y) =
1

nsim

nsim∑
i=1

1(P̃Y
(i)
� y)
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Uncertainty in center location (2)

If p̂(y) is near 1 or 0, we are quite sure that y is dominated or not.
The uncertainty is p(y)(1− p(y)), the variance of the Bernouilli
variable D(y) = 1(PY() � y).

Define the uncertainty in
center location as U(L̂) :=

1

|L̂|

∫
L̂
p(y)(1− p(y))dy .

(d = 8)
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Finding one Pareto-optimal point

Algorithm 2 First phase of the R/C-mEI algorithm

Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, ε1, nmax

1: Build the m independent GPs;
2: repeat
3: estimate R̂ (i.e., Î, and N̂ if no user reference);

4: xn+1 = arg max
x∈X

mEI(x; R̂);

5: evaluate f(xn+1) and update the GPs;

6: compute U (̂IR);
7: n ← n+1;
8: until U(L̂) ≤ ε1 or n > nmax

(If no R, R defaults to N̂ and R̂ is Ĉ)
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Example of targeted MO Bayesian opt. vs EHI

MetaNACA, nmax = 40

(Statistically significant results and analytical fcts in [7]) (d = 8)
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MO Bayesian optimization with reference point

2. WIDENING THE SEARCH
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Remaining budget: second phase

What if convergence to the Pareto front occurs before nmax?
⇒ widen the search around the last R̂ (or Ĉ) by moving R̂ along ÎR
away from the Ideal by a distance that is compatible with the
remaining budget, nmax − n.
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Optimal final search region

For a given R̂, anticipate the future space filling of the algorithm
by virtual iterates (Kriging Believer, [8]) ⇒ YKB(x) built from
{(x1, f(x1)), . . . , (xn, f(xn))}

⋃
{(xn+1,µ(xn+1)), . . . , (xnmax

,µ(xnmax
))}

Measure the remaining uncertainty in Pareto domination

U(R̂,Y) :=
1

Vol (̂I, R̂)

∫
Î�y�R̂

p(y)(1− p(y))dy .

Second phase optimal reference point defined through

R∗ = arg max
R̂∈̂IR
‖R̂− Î‖ such that U(R̂; YKB) ≤ ε2 (1)

by enumeration.
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Optimal final search region: illustration

The remaining uncertainty in Pareto domination can be seen by the sampled

fronts roaming (in grey). It is small enough on the left, too large on the right.

R∗ is in blue. d = 8.
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Budgeted and Targeted MO Bayesian Optimization

Algorithm 3 The R-mEI algorithm
Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, ε1, ε2, nmax

1: Build the m independent GPs;
2: repeat
3: estimate R̂ (i.e., Î, and N̂ if no user reference);

4: xn+1 = arg max
x∈X

mEI(x; R̂);

5: evaluate f(xn+1) and update the GPs;

6: compute U (̂IR);
7: n ← n+1;
8: until U (̂IR) ≤ ε1 or n > nmax

9: if n < nmax then
10: Calculate R∗ solution of Eq. (1); # needs ε2

11: end if
12: while n < nmax do
13: xn+1 = arg max

x∈X
EHI(x; R∗);

14: evaluate fi (x(t+1)) and update the GPs;
15: n = n + 1;
16: end while
17: return final DoE, final GPs, and approximation front P̂Y

Gaudrie, Le Riche, Picheny Sequential and parallel R/C-mEI 36/54 FGS 2019 36 / 54



C-mEI: illustration of the 2nd phase

(video demo)

The objective values added during the 2nd phase are circled in red. Compared to

the initial front obtained when searching for the center, the last approximation

front is expanded as highlighted by the blue hypervolumes. d = 8.
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C-mEI vs. EHI:

illustration m = 2
C-mEI (left) vs. EHI (right),

top after 20 iterations, bot-

tom after 40 iterations. C-mEI

local convergence has occured

at 22 iterations, a wider op-

timal improvement region (un-

der the red square) is targeted

for the 18 remaining iterations.

Compared to the standard EHI,

C-mEI searches in a smaller

balanced part of the objective

space, at the advantage of a

better convergence. d = 8
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C-mEI vs. EHI: illustration m = 3

(d = 8)

green, C-mEI; blue, EHI; black, initial front; red, true front, , true center.
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C-mEI vs. EHI: tests

Hypervolumes of the
C-mEI (continuous
line) and EHI (dashed)
averaged over 10 runs.
Initial DoE of size 20,
80 iterations. Blue, red and green correspond
to the improvement regions I0.1, I0.2 and
I0.3, respectively. d = 8.

m = 2

m = 3 m = 4

C-mEI > EHI, except when m = 4 and R0.3 because it is a large region.
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MO Bayesian optimization with reference point

3. A q-POINTS BATCH VERSION
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Parallel MOO: related work

Three existing ways to obtain a batch of q points to parallelize the
function evaluations in MOO (Horn et al. [9]):

parallel execution of q searches with q different goals (Deb and

Sundar [2]),

select q points from an approximation to the Pareto front set,

perform q sequential steps of a Bayesian MOO with a Kriging
Believer strategy.

But it is not theoretically clear in which way these strategies are
optimal ⇒ a batch criterion for MOO (details in [7]).
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Batch mEI is q-mEI

In the same spirit as the q-EI criterion for single objective, we
introduce a batch version of the mEI for MOO.

1 objective

EI(x) = E (fmin − Y (x))+ (·)+:=max(0,·)

q-EI(x1, . . . , xq) = E max
i=1,...,q

(
fmin − Y (xi)

)
+

m objectives

mEI(x; R) = E
m∏
j=1

(Rj − Yj(x))+

q-mEI(x1, . . . , xq; R) = E max
i=1,...,q

m∏
j=1

(Rj − Yj(xi))+

average the max of the hyper-rectangles areas
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q-mEI but not m-qEI (1)

The correct batch mEI is

q-mEI(x1, . . . , xq; R) = E max
i=1,...,q

m∏
j=1

(Rj − Yj(xi))+

but the product of qEI’s is not correct

m-qEI(x1, . . . , xq; R) =
m∏
j=1

E max
i=1,...,q

(Rj − Yj(xi))+

because when q ≥ m the maximum is obtained for each xi

maximizing one of the EIj ’s independently from the other objectives
⇒ no longer solves the MO problem.
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q-mEI but not m-qEI (2)

q-mEI (left) vs m-qEI (right) for d = 1, m = 2, q = 2.

The targeted region IR is attained inside the gray squares.
The purple square is an example of training point where q-mEI is null
but m-qEI is not.
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2-mEI vs mEI, example on MetaNACA

In all tests, q-mEI estimated with 10,000 Monte Carlo samples.
10 iterations of 2-mEI (left) vs 20 iterations of mEI (center) vs 10
iterations of mEI (right) for d = 8, m = 2.

The performance of 2-mEI is barely degraded wrt mEI at the same
number of function evaluations, but the wall-clock time is half. At
constant wall-clock time (iterations), 2-mEI outperforms mEI.
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4-mEI vs mEI, example on MetaNACA

Constant wall-clock time comparison: 5 iterations of 4-mEI (left) vs 5
iterations of mEI (right) for d = 8, m = 2.

The performance of 4-mEI is degraded wrt mEI at the same number
of function evaluations, but it outperforms mEI at the same
wall-clock time.
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q-mEI tests on MetaNACA

10 independent runs, average (std. dev.) of hypervolumes in I0.3

after 20 and 50 additional evaluations in d = 8, 22, respectively.

Criterion 2-mEI mEI mEI, half budget
d = 8 0.234 (0.022) 0.265 (0.035) 0.209 (0.067)
d = 22 0.327 (0.045) 0.353 (0.048) 0.318 (0.048)

⇒ q-mEI slightly less efficient than its sequential counterpart at the
same number of evaluations, but better (and more stable) at same
number of iterations (same wall-clock time).

(more results, some on analytical functions, in [7])
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Conclusions

Summary The R-mEI algorithm

allows to tackle multi-objective problems without
assumptions on the functions beyond a bounded
Pareto front when the budget is very small,
has no arbitrary user settings (metrics, goals) and
preserves objectives incommensurability,
targets a specific region of improvement (as a
default the center of the front),
searches for a part of the Pareto front adapted to
the budget.

Perspectives Account for couplings between the objectives.
Calculate the gradient of q-mEI because
optimization in increased dimension, q × d (cf.
Marmin et al. [13]).
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Comparisons of estimations for the Pareto front

center

Example, d = 8:
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