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ABSTRACT

A number of surrogate-assisted evolutionary algorithms are be-
ing developed for tackling expensive multiobjective optimization
problems. On the one hand, a relatively broad range of techniques
from both machine learning and multiobjective optimization can
be combined for this purpose. Diferent taxonomies exist in order
to better delimit the design choices, advantages and drawbacks
of existing approaches. On the other hand, assessing the relative
performance of a given approach is a diicult task, since it depends
on the characteristics of the problem at hand. In this paper, we focus
on surrogate-assisted approaches using objective space decomposi-
tion as a core component. We propose a reined and ine-grained
classiication, ranging from EGO-like approaches to iltering or
pre-screening. More importantly, we provide a comprehensive com-
parative study of a representative selection of state-of-the-art meth-
ods, together with simple baseline algorithms. We rely on selected
benchmark functions taken from the bbob-biobj benchmarking test
suite, that provides a variable range of objective function diiculties.
Our empirical analysis highlights the efect of the available budget
on the relative performance of each approach, and the impact of
the training set and of the machine learning model construction on
both solution quality and runtime eiciency.
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1 INTRODUCTION AND BACKGROUND

General Context. Multiobjective optimization problems (MOPs)
[22, 28] aims at simultaneously optimizing two or more objectives.
Given that these objectives are typically in conlict, there exist a
whole set of optimal solutions that provide diferent quality trade-
ofs. The challenging task of computing a high-quality approxima-
tion set can be tackled using multiobjective optimization evolution-
ary algorithms (MOEAs). MOEAs were proved to be well-suited
for blackbox problems, for which a mathematical formulation of
the objective functions might not be available. In this paper, we are
motivated by the challenges underlying the high cost of computing
the objective values, e.g., when running a heavy simulation process
[3]. More speciically, we are interested in an expensive optimization
scenario [23], where the cost of computing the objective value(s)
impose drastic restrictions on the number function evaluations.
Depending on the CPU time that can be aforded, an algorithm
designer must accommodate to a relatively short budget, typically
few hundreds to few thousands evaluations. As a consequence, us-
ing standard evolutionary operators, which are supposed to serve
the search in a non-expensive setting, become problematic because
of the diiculty of inely controlling their stochastic behavior. In
this context, adapting conventional MOEAs so that they can oper-
ate in a combined manner with well-established machine-learning
techniques have attracted much attention in recent years [5, 7].

Related work overview. On the one hand, a general idea that
was extensively explored so far is to build one (or multiple) surro-
gate model(s) from which some information about the (unknown
blackbox) objective functions can be extracted and injected to the
search process in order to help reaching the most interesting re-
gions more eiciently [14]. A broad range of investigations can be
found on using surrogates to assist MOEAs, such as those based
on support vector regression [16], regression trees [20], radial ba-
sis functions [25], or Gaussian processes [27]. Depending on the
nature of the considered surrogates, several design options might
be adopted. This ranges from standard approaches where cheap
surrogates are used in lieu of the expensive objective functions,
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to those using the surrogates for pre-screening solutions gener-
ated by the evolution engine. Other options from single-objective
Bayesian global optimization and reinforcement learning consist
in a criterion to inely tune the exploitation-exploration trade-of
when sampling new points. A number of merit functions and inill
criteria were already investigated and combined with MOEAs for
selecting the most beneicial solutions to be evaluated [10, 19].

On the other hand, despite the substantial progress achieved
in the last decade, there are relatively few systematic investiga-
tions aiming at providing a better understanding of what makes a
particular approach distinguishable from others, and under which
optimization scenario, in terms of budget and problem diiculty, it
is recommended. We can cite [5] which provides a coarse-grained
taxonomy of surrogate-assisted MOEAs with a particular focus
on constrained MOPs. In [7], one can also ind a complementary
taxonomy, and a discussion on extending existing approaches to
support the production of a batch of multiple points that can be eval-
uated in parallel. Besides considering a simple parallel extension
of ParEGO [12], using a set of weight vectors, the most advanced
MOEAs studied therein fall into the class of dominance-based and
indicator-based algorithms such as SMS-EGO [18]. This taxonomy
came with an interesting empirical analysis of the diferent consid-
ered extensions with a focus on the potential gain in terms of paral-
lelism. Nonetheless, a class of state-of-the-art EMO approaches was
only considered at a small extent, namely, surrogate-assisted vari-
ants of the so-called MOEA based on Decomposition (MOEAD) [26].

The MOEAD (multiobjective evolutionary algorithm based on
decomposition) framework belongs to the class of aggregation-
based approaches. The original MOP is transformed into a number
of (single-objective) sub-problems, deined using a scalarizing func-
tion, that are solved cooperatively. Due to its eiciency and lexi-
bility in integrating existing single-objective optimizers into the
multiobjective setting, MOEAD has become one of the most studied
approaches. Nonetheless, when dealing with an expensive setting,
we are not aware of any systematic analysis of what makes decom-
position beneicial and how to efectively integrate surrogates in
the original cooperative solving process of MOEAD. Interestingly,
the most recent surrogate-assisted approaches are based on lever-
aging concepts from multiobjective decomposition [4, 9, 16, 25, 27].
This is precisely where the contribution of this paper lies.

Methodology and contributions overview. This paper can be viewed
as the continuation of previous works on understanding and delim-
iting the core concepts of surrogate-assisted MOEAs [5, 7], with a
particular focus on decomposition techniques. We thereby propose
to discuss a ine-grained classiication of existing approaches in
light of the taxonomy provided in [7]. This is in an attempt to grasp
the speciicity of existing decomposition-basedMOEAs, and to high-
light the common algorithmic components that can be integrated
interchangeably in diferent approaches. We also include simple
archetype algorithms serving as baseline and which are barely con-
sidered in previous works. In fact, besides reviewing a number of
distinguishable surrogate-assisted MOEAs within the framework of
existing taxonomies, our goal is to shed the light on the strengths
and weaknesses of existing approaches through an extensive bench-
marking efort. Indeed, unfortunately, despite a skillful design, exist-
ing algorithms are often validated on diferent benchmark functions

and under diferent, sometimes incomparable, settings. In our work,
we aim at providing a comprehensive feedback on the relative per-
formance of advanced approaches from the literature, especially
when compared to a priori simple design choices. We rely on a
number of problems taken from the bi-objective black-box opti-
mization benchmarking test suite (bbob-biobj), and providing a
representative sample of single-objective function combinations
with well-known facets of diiculty [15]. Our empirical indings
are to be considered as a step towards providing a uniied view of
surrogate-assisted MOEAs based on decomposition, and their rela-
tive performance under diferent scenarios. In particular, we study
the impact of clustering when training the surrogate models, both
on running time and on quality, as well as the impact of problem
characteristics on convergence and running time.

Outline. In Section 2, we provide a classiication of some distin-
guishable surrogate-assisted MOEAs. In Section 3, we report our
experimental indings. In Section 4, we conclude the paper.

2 SURROGATE-ASSISTED MOEA BASED ON
DECOMPOSITION (S-MOEAD)

In this section, we provide a ine-grained classiication of existing
surrogate-assisted MOEAs based on decomposition (S-MOEAD) in
light of the taxonomy introduced in [7]. Our goal is to capture the
design choices to be made when combining surrogate models with
decomposition, hence eventually leveraging existing frameworks.
We shall then provide a more focused description of some repre-
sentative and state-of-art S-MOEAD algorithms from the literature,
illustrating how the ine-grained classiication captures them. The
discussed algorithms will also serve to conduct our benchmarking
analysis, which is the core contribution of the paper. Before going
in a more detailed discussion, let us irst deine the multiobjective
decomposition framework in the context of our work.

2.1 Decomposition-based MOEA in a Nutshell

Solving a MOP using decomposition implies to deine a number
of a priori smaller single- (or multiobjective) sub-problems. In our
work, we assume a sub-problem is simply deined by aggregating
the original objectives using a scalarizing function. We consider
an objective function vector F : IRd 7→ IRm to be minimized, such
that IRd is the (continuous) variable space and IRm is the objective
space. For two solutions x ,x ′ ∈ IRd , x is dominated by x ′ if, for
all i ∈ {1, . . . ,m}, fi (x) ⩽ fi (x

′), and there is a j ∈ {1, . . . ,m}

such that fj (x) < fj (x
′). A solution x⋆ ∈ IRd is Pareto optimal

if it there does not exist x ∈ IRd s.t. x⋆ is dominated by x . The
set of all Pareto optimal solutions is the Pareto set; its mapping in
the objective space is the Pareto front. Let w ∈ IRm be a weight
vector, and д(·|w) be a scalarizing function that, given a solution,
transforms its objective vector F (x) into a scalar real value. For
instance, one might want to use the Chebyshev function, deined by
д(x |w) = maxi {wi · | fi (x)−z

∗
i |}, where z

∗ is a reference point. Other
scalarizing functions can be found in the MOEA literature [26].

To identify a good Pareto set approximation, a standard decom-
position approach considers to solve a number of sub-problems,
deined using diferent weight vectors for coniguring the scalariz-
ing function. The output is hence made up with diferent solutions,
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Figure 1: A reined taxonomy inspired from [7] and targeting a ine-grained classiication of S-MOEAD. The text in colour

correspond to algorithm components tailored to decomposition-based MOEAs.

corresponding to the deined sub-problems. Sub-problems may be
solved independently [8] or cooperatively [26]. Besides, diferent
evolutionary mechanisms can be adopted to evolve the solution
set [24]. In an expensive setting, and looking at how surrogates
can be combined with decomposition, most approaches share the
use of a scalarizing function. However, diferent components and
strategies are adopted to ind good solutions w.r.t. the scalarized
sub-problems in a restricted amount of evaluations. This makes it
relatively diicult to diferentiate between existing approaches and
to identify their key components at irst sight. In the next section,
we describe a simple ine-grained classiication of S-MOEAD in an
attempt to capture their algorithmic gestalt.

2.2 A Fine-grained Classiication of S-MOEAD

2.2.1 General outlook. The considered classiication is summarized
in Fig. 1. It is closely related to the taxonomy provided in [5], and
is to be viewed as a ine-grained reinement targeting a better un-
derstanding of S-MOEAD. In fact, most surrogate-assisted MOEAs
are following seemingly the same general template with basically
four a priori interdependent layers, in addition to the initialization
step. Initialization is particularly important in an expensive setting,
since every single evaluation counts. Like all surrogate-assisted
approaches, an S-MOEAD algorithm has to specify the set of initial
points. This is not only of crucial importance for the search process,
but also for the learning process, as the population serves as a pool
from which the training set is constructed. Most algorithms use
a Latin Hypercube Sampling (LHS), bare of any problem-speciic
heuristic. The general idea captured by the other layers is then
as follows. Given a set of points from which the actual objective
values are known, a pre-processing mechanism is used to prepare
the data for training. Having built the training set, one or several
models are itted for a well-deined model response. These models
are intended to help the search process by guiding the sampling and
evaluation of new solutions in the subsequent layers. It is important
to understand that the generation of new candidate solutions and
the selection of solutions for evaluation are two diferent aspects
that should be distinguished. In fact, a critically-important step

is to generate a set of candidate solutions explicitly based on the
surrogate models, or on the contrary implicitly by allowing the
surrogate models to interfere with the conventional evolutionary
search process. This is inally followed with a selection step that
decides which subset of solutions is to be evaluated using the actual
expensive objectives. We argue that the speciication of these lay-
ers and the setting of their components allows one to diferentiate
a particular approach form another. It is worth noticing that the
initial taxonomy provided in [7] does not include the training set
construction phase, which will be shown to be a key ingredient
in diferent S-MOEAD approaches. In the following, we further
discuss the diferent layers in a more ine-grained manner, before
turning to a more focused discussion of existing techniques.

2.2.2 Defining the model training set. This phase can take diverse
forms, as almost each existing algorithm adopts a diferent approach.
It is crucially important since the input data can highly bias the
accuracy of the constructed model and/or inluence the interpreta-
tion of any information extracted. A straightforward strategy, not
necessarily speciic to S-MOEAD, is simply to include all solutions
evaluated so far as input for the model training/itting and for the
subsequent model-speciic treatments. However, this might lead to
the construction of a global surrogate at a high computational cost,
eventually dominate the evaluation cost itself. A common alterna-
tive is to use only recently-evaluated points, that can be selected,
e.g., over a predeined time window, or also based on the quality
of the observed objective or scalar values. Another alternative is
to construct the training set using a clustering procedure. This is
a natural outcome in S-MOEAD approaches, since dealing with
diferent sub-problems suggests to focus on speciic target search
regions directed by the value of the weight vector, and hence to
clusterize the data accordingly. Interestingly, this could imply the
use of a structured ensemble of surrogates used in the other layers
to assist the optimization process. As such, we can ind a number
of data clustering techniques, ranging from the ones operating in
the variable space, to those centered on the objective values of the
points sampled so far, or even on the aggregated values deined with
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respect to the scalarizing function and/or its weight vector. From a
pure machine learning perspective, choosing/clustering the eval-
uated solutions is both related to the degree of locality expressed
by the trained model and to the possibility of obtaining diferent
trade-ofs between the model quality and the computational cost
of the itting phase [21].

2.2.3 Model fiting and response. At this stage, one is concerned
with the output prediction provided by the surrogate model, i.e. the
response variable. A number of variants can be considered, depend-
ing on the type of training data and on the surrogate model by itself.
The most straightforward approach is to it the objective values,
meaning that one model is itted w.r.t. each objective. The scalar-
izing function can then be used to aggregate the predicted values.
The other common approach is to it the aggregated values, and an
ensemble of models is hence constructed w.r.t. the weight vectors of
the scalarizing functions. This might then be tightly coupled with
a speciic choice of the training set, eventually leading to a com-
plex design. Besides, since diferent regression models and diferent
hyper-parameters can be considered, diferent models can actually
be trained concurrently and their responses exploited afterwards.

2.2.4 Candidate solution(s) generation. This phase consists in com-
puting a set of solutions that are expected to be the most beneicial
at the current state of the search process. This is critically impor-
tant, since it speciically informs about the most promising regions
that should be efectively searched. We identify three main aspects
to this phase. First, one can target candidate solutions optimizing
explicitly the model response, i.e. the objective values or their ag-
gregation as predicted by the surrogate model(s). In this case, a
standard evolutionary algorithm (EA) can for instance be carried
out, while using the model response as a substitute for the real
objective or scalarizing functions.Moreover, we diferentiate be-
tween approaches running the EA for multiple iterations, e.g., run
a whole MOEAD up to some predeined number of generations, or
those running a single EA iteration before resuming, e.g., gener-
ate multiple ofspring using standard variation operators and then
choose a subset as candidate solutions. The former approach is
usually termed as substitute approach [16], whether the latter is
usually termed as iltering or pre-screening approach [14]. Second,
one can target candidate solutions optimizing other criteria that
are intrinsically linked with the surrogate model. This is typically
the case of Gaussian processes, where a number of inill criteria
are well established, e.g., Expected Improvement (EI), Probability
of Improvement (PI), or Lower Conidence Bound (LCB) [1, 6, 11].
However, since we are dealing with a MOP, one could for instance
search for a single solution optimizing the inill criteria with re-
spect to one or multiple weight vectors, or run a standard MOEA
where the objectives are deined as the inill criteria corresponding
to each original objective. Finally, these diferent design choices
can be guided by whether a single candidate solution is to be evalu-
ated, or if a batch of solutions can be evaluated in parallel. Further
considerations on this aspect are discussed in [5], not necessarily
within the context of decomposition.

2.2.5 Selection for evaluation. When multiple candidate solutions
are generated, a (multiobjective) subset selection mechanism is
to be designed in order to prepare a batch of a desired size on

which the true objective values is to be supplied. In the context of S-
MOEAD, this can be done on the basis of the scalar values retrieved
or computed from the model response, or based on the inill criteria,
in addition to other options available from the literature. On the
contrary, when a single candidate solution is generated while a
batch of solutions is expected, one has to iterate over the previous
phase, eventually injecting some knowledge about the solutions
that are already contained in the batch. Once the batch is ready, the
selected solutions are evaluated, and the whole process is repeated
until some termination condition is satisied. A maximum number
of evaluations is typically adopted as a stopping condition.

2.3 Considered S-MOEAD Algorithms

Based on the previous discussion, we are able to classify a number
of existing S-MOEAD techniques from the literature, and to difer-
entiate them in a more systematic manner, as depicted in Table 1.
Apart from the four irst approaches, which follow a self-designed
simple iltering archetype framework, the remaining one are based
on more sophisticated components. Notice that all these approaches
can be correctly classiied according to the diferent layers provided
in Fig. 1. As one can see, the considered approaches provide a
representative combinations of the possible design choices. In the
following, we shall describe them in more details and clarify any
important hidden technical detail, since we also aim at conducting
a comparative analysis of their behaviors in the next section.

2.3.1 S-MOEAD based on filtering. The approaches based on il-
tering are conceptually among the most basic S-MOEADs; see,
e.g., [13]. Instead of generating one single solution by means of
variation operators, a pool of λ > 1 solutions are generated. This
pool constitutes the set of candidate solutions from which a batch
has to be selected for evaluation. Once the evaluation is carried out,
the training set is updated, the model is re-trained, and the next
iteration of the original MOEAD can be executed. It should be clear
that, even for this very simple archetype, diferent variants could
be designed on the basis of the previously-discussed taxonomy. In-
terestingly, this archetype allows us to freely investigate the impact
of setting the components from other layers, such as the impact of
clustering or the response variable of the surrogate. We thereby con-
sider four simple ilter-based variants, based on the conventional
MOEAD, as depicted in Table 1. The two irst variants employ one
surrogate model per objective, whereas the third and fourth ones
train one surrogate model for each sub-problem deined by the
weight vectors. The irst and fourth variants use the whole set of
solutions evaluated so far for training, whereas the second and third
ones use two diferent clustering techniques for constructing the
training set. The second variant performs a fuzzy clustering w.r.t.
the position of solutions in the variable space, and train one model
per cluster and per objective. In MOEAD-ilter2, the estimation is
based on the model linked to the cluster with the closest center to
the considered solution. On the contrary, MOEAD-ilter3 performs
a clustering w.r.t. the aggregated values, each cluster being used
for a given weight vector. Taken separately, these two clustering
approaches are not our own proposal, since they are inspired by key
components used in more advanced (state-of-the-art) non-iltering
based S-MOEAD [9, 27]. The detailed description of these clustering
techniques will be presented in more details below.
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Table 1: S-MOEAD techniques as instances of the general framework.

algorithm II ś model training set III ś model itting and response IV ś candidate solution(s) V ś selec. for evaluation

MOEAD-ilter1 full dataset (1) 1 model per objective (1.1) 1 MOEAD iteration (2.1.1) single, w.r.t. cur weight (1.2.1)
MOEAD-ilter2 fuzzy clustering [27] (3.1) 1model per cluster and objective (1.1) 1 MOEAD iteration (2.1.1) single, w.r.t. cur weight (1.2.1)
MOEAD-ilter3 weight-centered clustering [9] (3.3) 1 model per weight (1.2) 1 MOEAD iteration (2.1.1) single, w.r.t. cur weight (1.2.1)
MOEAD-ilter4 full dataset (1) 1 model per weight (1.2) 1 MOEAD iteration (2.1.1) single, w.r.t. cur weight (1.2.1)
MOEAD-RBF [25] best per weight (3.2) 3 models (kernels) per objective (2.1) 1 full MOEAD onmodel response (2.1.2) batch, w.r.t. cur weights (2.2.2)
MOEAD-EGO [27] fuzzy clustering (3.1) 1model per cluster and objective (1.1) 1 full MOEAD on EI (2.2.2) batch, w.r.t. cur weights (2.2.2)
M-EGO [9] weight-centered clustering [9] (3.3) 1 model per weight (2.2) 1 full scalar EA on EI (1.2.1) single, w.r.t. cur weight (1.2.1)
ParEGO [12] best sol. for considered weight (3.3) 1 model for 1 weight (1.2) 1 full scalar EA on EI (1.2.1) single, w.r.t. cur weight (1.2.1)

2.3.2 S-MOEAD based on substitution. A second class of S-MOEAD
archetypes is based on using the surrogate as a substitute, by tem-
porarily relying on its response for searching improving solutions.
In [16], a conventional MOEAD optimizing the model response is
executed repeatedly for a number of generations before a batch
of evolved solutions is evaluated using the expensive objective
functions. However, at each MOEAD iteration, i.e., when looping
over weight vectors, a iltering approach selects the solution con-
sidered for the replacement phase among a number of ofspring
generated by variation. Another conceptually more sophisticated
variant based on substitution is described in [25]. The so-called
MOEAD-RBF constructs the training set using the best subset of
evaluated solutions w.r.t. the weight vectors. Next, not one, but
three radial basis function (RBF) surrogate models per objective
are trained using diferent kernels. After training, the objective
values from solutions evaluated so far are compared against the
corresponding predicted values given by each of the so-constructed
RBF model. The observed error is used to rank the accuracy of each
model; see [25] for details. Then, a standard MOEAD is run for a
number of generations using the RBF models as a substitute, but
where the predicted values are weighted by a linear combination
of the previously-computed model weights. The approximation set
returned by MOEAD is then used as the set of candidate solutions
from which a batch of solutions is to be selected. This is performed
by considering a number of weight vectors from which a desired
fraction is considered in a round-robin fashion. The candidate so-
lutions having the best model-weighted aggregated values for the
selected weight vectors is considered for the expensive evaluation.

2.3.3 S-MOEAD based on Gaussian processes. Many surrogate-
assisted MOEAs are based on the extension and adaptation of
the popular EGO (Expensive Global Optimization) procedure from
single-objective optimization [10]. Existing S-MOEADs stand for no
exception. EGO builds a Gaussian Process (GP) model of a function,
where typically each point of the search space is viewed as a ran-
dom variable that is assumed to follow a normal distribution. The
generation of promising candidate solutions is fully guided by the
knowledge that can be extracted from the model response surface.
Diferentmerit functions and inill criteria can be designed for scalar
(single-objective) functions, such that the widely acknowledged
Expected Improvement (EI) [10]. In the following, we review three
reference EGO-like S-MOEADs and discuss their speciic design
components, in light of our classiication.

ParEGO [12] is among the very irst extensions of EGO for MOPs.
It is based on the aggregation of the objectives using an augmented
Chebyshev scalarizing function. At each iteration, one weigh vec-
tor is thrown randomly, and a single-objective EGO is considered

for the so-deined scalar sub-problem. A speciic design choice is
to train the corresponding model using only the n (user deined)
best-ranked solutions w.r.t. their aggregation values. It should be
clear that generating weight vectors at random may be problem-
atic, which in our opinion is the major reason motivating several
subsequent S-MOEAD algorithms.

A sophisticated extension of EGO in combination with MOEAD
can be found in [27]. The so-called MOEAD-EGO uses a fuzzy clus-
tering procedure to build multiple clusters of solutions evaluated
so far. The size of each cluster is set to a user-deined value k . Each
cluster is used to build one surrogate model w.r.t. to each objective,
i.e., (k ·m) models are built at each iteration. A set of candidate
solutions are then generated by means of an MOEAD execution
to optimize simultaneously the EIs w.r.t. objective. However, it is
shown that, when considering a single target weighted scalarizing
function, a local surrogate model can be inferred analytically from
the initial (non-aggregated) models. The aggregated EIs can then be
inferred as well, which makes the optimization process more efec-
tive. More speciically, once the aggregated EI values of a candidate
solution is required by the MOEAD inner optimizer, the surrogate
model corresponding to the cluster with the closest center in the
variable space is considered.

More recently, a seemingly diferent and high-performing EGO-
like S-MOEAD was proposed [9]. Contrary to ParEGO, M-EGO
considers a pre-deined set of weight vectors, corresponding to
diferent sub-problems. It iterates over the weight vectors follow-
ing a well-deined sequence. At a given iteration, considering a
reference weight vector, the training set is chosen as the n closest
points to that weight vector, using the projected euclidean distance
of all solutions evaluated so far. A local surrogate for the target
search direction is then built accordingly, and the optimization of
the inill (EI) criteria is performed by means of a scalar EA.

3 EXPERIMENTAL ANALYSIS

3.1 Experimental Setup and Methodology

Apart from the 8 surrogate-assisted approaches listed in Table 1, we
consider 3 surrogate-less algorithms, namely a standard MOEAD, a
random search (RS), and a simple Latin Hypercube Sampling (LHS).
In all MOEAs, the population size is set to 50, and is initialized
by means of LHS. The scalarizing function is Chebyshev, whose
reference point is updated with the best objective values seen so
far. For iltering algorithms, we use the same parameters as in the
MOEAD. At each iltering step, 8 ofsprings are generated the one
with the best aggregated predicted value for the current weight
is evaluated. We measure the performance of the competing algo-
rithms under diferent scenarios in terms of budget, measured as
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Table 2: 12 considered bi-objective benchmark functions.

objective 1 objective 2

f1 f8 f14 f15 f20

f1 Sphere separable ✓ ✓ ✓ ✓ ✓

f8 Rosenbrock moderate ✓ ✓ ✓ ✓

f14 Sum of powers ill-conditioned ✓

f15 Rastrigin multi-modal ✓

f20 Schwefel weakly-structured ✓

a number of function evaluations: ranging from a tight budget of
500 evaluations to a larger budget of 2 500. For MOEAD-RBF and
MOEAD-EGO, the number of evaluations per generation is 10. All
algorithms are implemented in Python, and the experiments are
conducted on a Intel(R) Core(TM) i5-5200U CPU with 2.20 GHz
and 8 GB of RAM. We rely on the scikit-learn library [17]. while
matching the coniguration described in the original paper of each
algorithm. For iltering approaches, we use a support vector regres-
sion (SVR) with a radial basis function (RBF) kernel. The size of the
training set is bounded by 100 when clustering is applicable. It is
made of all solutions evaluated so far otherwise.

In terms of problems, we consider a number of numerical func-
tions extracted from the bi-objective black-box optimization bench-
marking test suite (bbob-biobj) [15]. More particularly, we selected
12 functions with diferent properties in terms of separability, con-
ditioning, multimodality, and global structure. They are listed in Ta-
ble 2. In order to measure the ability of the considered approaches to
cope with the problem dimensionality, we experimented functions
with d ∈ {2, 3, 5, 10} decision variables. We perform 10 independent
runs for each problem and algorithm (5 280 experiment).

The algorithms are compared in terms of the hypervolume rela-
tive deviation to the best-found approximation set for the consid-
ered function. The hypervolume [2] measures the area covered by
an approximation set and enclosed by a reference point. Due to
the target of our experimental analysis, we consider two diferent
settings for the reference point: a "global" reference point that maps
to the worst objective value observed on a given instance once
the algorithm starts at 50 evaluations, and a "local" reference point
that maps to the worst objective value observed on all Pareto set
approximations found for a given budget. that for Table 3, the rank
obtained are the same for the 2 hypervolume considered.

3.2 Overall Approximation Quality

We irst summarize our indings using two scenarios in terms of the
global budget: a particularly tight setting of 500 evaluations, and a
moderate setting of 2 500 evaluations. Table 3 reports the rank of
every algorithm for each pair of functions and problem dimension.
Given that 10 algorithms are compared, ranks range from 0 to 9,
a lower value being better. The average rank of a given algorithm
over all problems and dimensions is reported in the last row. A local
hypervolume reference point is used, but we could check that this
remains consistent when using a global reference point.

The strategies based on random search (RS) and latin hypercube
sampling (LHS) never obtain a better rank than any other approach.
Regarding the conventional (surrogate-less) MOEAD, it is almost
always outperformed by the other S-MOEAD for a tight budget.

However, when the budget is larger, its performance increases, espe-
cially when problem dimension is small. It obtains better rank than
MOEAD-ilter1, M-EGO and ParEGO when the number of evalua-
tions is 2 500. When comparing the diferent S-MOEAD algorithms,
the EGO approaches outperform iltering for a low budget, whereas
the opposite holds for a larger budget. Hence, EGO approaches
perform better at the early stages of the search process, while il-
tering approaches seem to slightly more time to converge. More
about the convergence proile will be discussed later. Therefore,
depending on the budget that can be aforded for the optimization
process, one class of algorithms shall be preferred over the other.
This highlights the critical importance of the optimization scenario
and the careful considerations that must be taken into account
while considering the expensive nature of the problem to be solved.
It is also interesting to notice that the relative performance of EGO
approaches is particularly good for large dimensional problems. For
instance, ParEGO is never outperformed by any other approach
apart from MOEAD-RBF for d = 10, which is still to be conirmed
with even higher budgets. At last, we can highlight the superiority
of MOEAD-RBF for both budget scenarios. Indeed, it signiicantly
outperforms all other approaches on most instances, with an aver-
age rank of 0.4 and 0.2 respectively for 500 and 2 500 evaluations,
and is never outperformed by more than two algorithms.

3.3 Impact of Clustering

In this section, we investigate the impact of clustering on the perfor-
mance of S-MOEAD approaches. We recall that clustering enables
to select solutions for constructing the training set. An obvious
reason for using clustering is to reduce the computational overhead
induced by model training, i.e., the larger the training set, the longer
the training phase [12]. On the other side, it is often argued that a
larger training set improves the overall model accuracy. However,
it remains unclear how clustering actually impacts approximation
quality which motivates our further investigations.

Let us focus on iltering approaches, by comparing irst MOEAD-
ilter1, where no clustering is performed and where the models
learn the objective functions, to MOEAD-ilter2, also learning the
objective functions but performing a fuzzy clustering. Similarly,
we compare MOEAD-ilter4, where no clustering is performed
and where the models are learning scalarized values, to MOEAD-
ilter3, where the model also learns from scalarized values, but
where a weight-centered clustering is performed. Bear in mind, that
beside the clustering step, MEOAD-ilter1 (resp. MOEAD-ilter4)
is identical to MOEAD-ilter2 (resp. MOEAD-ilter3). We should
also note that the training set for MOEAD-ilter1/4 is made of the
entire set of solutions evaluated so far, whereas the cardinality of
the training set in MOEAD-ilter2/3 is bounded by 100.

As reported in Table 3, the relative rank of the four algorithms
is almost the same for 500 evaluations. We attribute this to the fact
that the diference in the training set size is still relatively small at
the early stages of the search process. However, for a larger budget
of 2 500 evaluations, the diference starts to show, and MOEAD-
ilter1 (resp. MOEAD-ilter4) is clearly outperformed by MOEAD-
ilter2 (resp. MOEAD-ilter3). In both cases, the algorithms using
clustering manage to outperform their respective counterpart. This
means that not only clustering allows for a faster computational
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Table 3: Comparison of the competing algorithms with respect to the hypervolume relative deviation under a local reference

point for 500 (left) and 2 500 (right) calls to the evaluation function. The rank stands for the number of algorithms that statis-

tically outperform the one under consideration w.r.t a Mann-Whitney test with a p-value of 0.05 and a Bonferroni correction

(lower is better). Bold values correspond to the best-performing algorithm for the problem under consideration.
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#eval = 500 #eval = 2500

d
=
2

f1-f1 4 6 4 4 4 1 4 0 1 1 1 8 8 3 3 0 0 1 0 3 3 4
f1-f8 6 4 2 3 1 2 0 0 0 1 4 7 7 0 2 0 0 0 0 0 5 7
f1-f14 5 7 3 3 3 0 3 0 0 0 3 8 8 1 5 0 0 0 1 0 1 6
f1-f15 4 4 3 3 0 1 0 1 0 0 1 7 7 0 1 1 0 0 1 0 3 4
f1-f20 6 4 3 0 3 0 1 0 0 1 0 8 7 0 0 0 0 0 0 0 5 5
f8-f8 7 8 4 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 6
f8-f14 6 7 1 0 1 0 1 0 0 1 1 6 6 0 0 2 0 0 0 0 3 4
f8-f15 7 7 4 0 0 0 0 0 0 0 0 9 7 0 0 0 0 0 0 0 0 0
f8-f20 7 5 3 0 0 0 0 0 0 0 1 8 7 0 0 0 0 0 0 0 4 6
f14-f14 6 9 4 3 3 0 0 0 0 0 0 8 8 2 2 0 0 0 2 4 2 4
f15-f15 6 5 3 3 1 1 0 2 0 0 0 9 9 2 2 2 0 0 2 0 2 7
f20-f20 7 4 4 0 1 0 0 0 0 0 1 9 9 2 1 0 0 0 2 1 5 6

d
=
3

f1-f1 6 5 4 3 4 3 3 0 0 0 2 8 8 3 4 0 0 1 2 3 3 6
f1-f8 6 5 1 0 1 1 1 0 0 1 1 9 5 1 0 2 0 2 0 0 2 3
f1-f14 4 5 3 3 1 1 1 0 0 1 1 8 8 1 5 1 0 0 1 1 2 5
f1-f15 7 8 3 1 2 2 2 0 0 0 1 7 7 1 1 0 0 0 1 3 3 6
f1-f20 6 9 4 1 3 3 2 0 0 1 3 8 8 1 2 1 0 0 0 0 5 7
f8-f8 6 8 3 1 3 3 2 0 0 0 0 9 9 1 1 0 0 0 1 3 1 3
f8-f14 9 9 2 3 1 3 3 0 0 0 0 8 8 1 4 1 1 1 0 0 1 3
f8-f15 6 8 5 3 3 0 3 0 0 0 0 9 9 1 0 0 0 0 1 2 1 4
f8-f20 4 9 3 2 1 2 1 0 0 0 0 9 9 2 4 0 0 1 0 0 3 4
f14-f14 8 8 3 1 1 2 2 0 0 0 1 8 8 1 1 1 0 1 1 1 2 6
f15-f15 4 4 4 4 4 4 4 0 0 0 0 9 8 2 4 0 0 0 0 0 0 5
f20-f20 8 8 4 4 3 3 3 0 0 0 0 9 9 3 2 0 0 0 2 3 2 5

d
=
5

f1-f1 7 7 6 4 4 4 4 0 1 1 2 9 9 4 4 1 0 1 1 4 4 6
f1-f8 9 8 4 4 4 4 4 0 0 0 2 9 9 1 1 3 1 1 0 1 1 5
f1-f14 9 8 5 3 3 3 3 0 0 0 2 9 9 0 5 0 0 0 0 0 0 4
f1-f15 5 6 5 3 4 4 3 0 0 0 1 8 8 1 5 1 0 1 0 0 1 1
f1-f20 9 9 5 3 3 3 3 0 0 1 2 9 9 1 1 1 1 1 0 1 2 5
f8-f8 8 8 8 4 4 4 4 1 1 0 0 9 9 1 1 0 0 0 0 1 0 0
f8-f14 9 9 4 3 3 3 3 0 0 0 0 9 8 1 0 2 1 1 0 0 1 1
f8-f15 8 8 8 3 3 3 3 0 0 0 0 9 9 4 4 0 0 0 0 0 1 3
f8-f20 8 8 4 3 3 3 3 0 0 0 0 8 8 2 1 0 0 0 0 2 1 4
f14-f14 9 9 3 3 3 3 3 0 3 0 0 8 9 1 6 2 0 1 0 7 1 2
f15-f15 8 8 3 3 3 3 3 0 0 0 0 8 8 2 3 0 0 0 0 0 2 2
f20-f20 8 9 8 3 3 3 3 0 2 0 1 9 9 1 7 0 0 0 1 3 1 4

d
=
1
0

f1-f1 9 9 7 4 4 4 4 0 2 1 1 9 9 4 7 4 2 2 0 2 2 1
f1-f8 9 9 7 4 4 4 4 0 1 1 1 9 9 3 3 3 3 3 0 1 1 1
f1-f14 9 9 3 3 3 3 3 0 1 1 1 9 9 3 4 4 4 2 0 1 2 1
f1-f15 8 8 5 3 3 3 3 0 1 1 1 9 9 3 6 3 3 3 0 1 2 1
f1-f20 9 9 6 4 4 4 4 0 1 1 1 9 9 4 8 1 4 4 0 1 2 1
f8-f8 9 9 8 4 4 4 4 1 2 1 0 9 9 5 7 4 3 1 0 1 2 1
f8-f14 9 9 7 3 3 3 3 0 0 0 0 9 9 3 5 3 3 3 0 1 1 1
f8-f15 9 9 7 3 3 3 3 0 0 0 0 9 9 3 3 3 3 3 0 1 1 1
f8-f20 9 9 8 3 3 3 3 2 2 1 0 9 9 3 5 3 3 3 0 2 2 1
f14-f14 9 9 4 3 3 3 3 2 0 0 0 9 9 3 3 3 3 3 0 1 1 0
f15-f15 6 7 3 3 3 3 3 2 1 0 0 9 9 3 6 3 3 3 0 2 1 0
f20-f20 9 9 7 4 4 4 4 0 2 2 0 9 9 4 8 4 2 4 0 2 2 1

avg 7.2 7.5 4.4 2.6 2.6 2.4 2.4 0.2 0.4 0.4 0.8 8.5 8.3 1.8 3.1 1.2 0.8 1 0.4 1.2 1.9 3.4

time, as wewill emphasize later, but it also helps to improve solution
quality.

3.4 Convergence Proile

Convergence is a critical issue, especially in regards of the expen-
sive setting we are interested in. Fig. 2 reports the evolution of the
hypervolume relative deviation as the number of evaluations grows
(for dimension d = 5). A close look at the relative convergence
proile allows us to emphasize how much diferent are iltering
approaches from EGO approaches. While the former seem to con-
vergence almost log-log linearly in many cases, the latter reach a
particularly good approximation quality just after about 250-500
evaluations, before getting stuck to a convergence point fromwhich
only minor improvements, if any, can be observed. Interestingly, the
convergence proile of MOEAD-ilter3 and MOEAD-ilter4 seem to
follow the same trend than the surrogate-less MOEAD, but with

better hypervolume values all the way through. Ultimately, iltering
approaches typically end up outperforming EGO approaches, after
about 2 000 evaluations. Regarding MOEAD-RBF, it seems to concil-
iate the best of both worlds. In a similar way than EGO approaches,
it converges particularly quickly at the early stages. However, it
does not get stuck, and is able to continue improving at a slower
convergence rate. In fact, its convergence proile dominates all oth-
ers for all problems whose irst objective is a Sphere function (f1-⋆),
and for the most diicult considered problem (f20-f20).

Although we have no certainty as to why EGO approaches tend
to get stuck at an early stage of the search process, a possible
explanation might be the use of the expected improvement (EI) as
inill criterion. Indeed, EI is used to discriminate solutions, with
the aim of guiding the search process to the most interesting areas
while enabling a good balance between solution quality and model
reinement. Fig. 3 shows the EI value of the candidate solution
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Figure 2: Convergence proile of the hypervolume relative deviation under a global reference point with respect to the number

of expensive evaluations performed, for all problems of dimension d = 5. Notice the log scale on both axes.

Figure 3: EI values of evaluated solutions and convergence

plot for a typical run of ParEGO on f1-f1 with d = 2.

selected for evaluation at each step of a typical ParEGO run on
the Sphere-Sphere problem for d = 2. Note that a similar trend is
observed for other EGO approaches. We remind that EI values are
positive, and the solution with the largest EI value is to be selected.
Besides, once the model indicates that no improvement is expected,
EI makes no diference between a descent and a poor solution, they
will both have an EI value of 0. At the initial steps, the maximum EI
value increases to a value close to 800 during the irst 350 iterations,
before abruptly dropping to values close to 0, apart from small
peaks observed at isolated iterations. This means that, after some
time, a lot of solutions actually have an EI of 0. By comparing this
trend to the hypervolume relative deviation obtained over time, also
reported in the igure, we clearly see the impact of EI values on the
search progress. This seems to be a law of the EI inill criterion. As
noted in [7], the performance of ParEGO could be improved using
other inill criteria. This suggests that the EI measure can indeed
be the source of the observed issue for EGO approaches. Further
research on alternative inill criterion or some work-around for the
observed issue, might lead to an improvement of EGO approaches.

4 OUTLOOK AND OPEN ISSUES

In this paper, we investigated surrogate-assisted MOEAs based on
decomposition for expensive optimization. Based on a reined clas-
siication, we were able to instantiate existing approaches as well
as new alternatives under a common framework, then highlighting

their key design choices and components in a more systematic man-
ner. A comparative analysis was conducted on a comprehensive
benchmark of bi-objective black-box numerical optimization prob-
lems from the bbob-biobj test suite. Ourmain indings are as follows.
Firstly, it appears clearly that carefully selecting solutions for train-
ing the model is of high importance, not only to reduce the amount
of data for accelerating the training phase, but also to improve
solution quality. Secondly, training multiple models implies to have
an ensemble of surrogates. Combined with the design where the
training set is clustered around weight vectors, surrogates are then
likely to specialize to speciic regions of the objective space, then
matching the rationale of decomposition. As such, we argue that
a more systematic investigation of this design choice would allow
for explicit ways of designing and training specialized local surro-
gates. This is perfectly in line with the overall good performance
of MOEAD-RBF, which also has the particularity of producing a
whole batch of solutions to be evaluated. This is certainly of high
importance in terms of computational complexity: not only this
reduces the number of computationally-demanding model training
tasks, this also enables the evaluation of multiple solutions at once
in a parallel computing environment. The selection of the batch of
solutions to be evaluated by the expensive objective functions shall
then carefully cope with the multiobjective nature of the problem
at hand by targeting diverse regions of the Pareto front. At last,
the behavior of approaches based on Gaussian processes makes
them very attractive for an extremely expensive optimization sce-
nario, where the number of evaluations is reduced to the minimum.
Notice that basic iltering approaches can be preferred when the ap-
plication context can accommodate with a restricted but relatively
moderate budget. Besides, the use of EI to select solutions seems to
quickly inhibit the search progress, so that alternative inill criteria
combined with adaptive and hybrid design choices of candidate
solutions generation seems to be a promising future research line.
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