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Abstract: In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines
mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune
defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge
about the function of avian leptin and TNF is limited and they are absent or lowly expressed in
adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and
its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC)
region. This mapping position suggests that avian TNF has a role in regulating immune response.
To test its possible interaction with leptin within the immune system and beyond, we compared
the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of
GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the
brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and
LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry
staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals,
in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique
to mammals.

Keywords: radiation-hybrid mapping; FISH-TSA; chicken; TNF; immune system; leptin; digestive
tract; duodenum
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1. Introduction

In mammals, leptin is a key adipokine that works in concert with other adipokines such as TNF
(also known as TNFα) to regulate energy homeostasis [1,2]. TNF has a critical role in obesity-induced
insulin resistance [3], in addition to its other functions [4]. The amount of leptin produced by the
adipose tissue signals the amount of fat stores to the hypothalamus and peripheral tissues [1,2]. With
respect to the immune response, various studies have shown that leptin modulates innate and adaptive
immunity [5]. Leptin stimulates neutrophil chemotaxis and promotes macrophage phagocytosis and
production of pro-inflammatory cytokines including TNF [6,7]. It is thought that leptin’s primary
role in the immune system is adjusting the intensity of the immune response to the availability of
energy stores [6]. TNF has a broader function in the immune system, which includes immune cell
development and functional regulation. This is in addition to TNF’s general role in the control of
survival, proliferation, differentiation and death of cells [8]. Taken together, leptin and TNF work in
concert and stimulate each other’s expression both in the adipose tissue and in immune cells [9,10].

The identification of both TNF and leptin in birds has been hampered for decades, despite intensive
efforts to find them [11,12] and they were suggested to be missing prior to recent discoveries [13,14].
For both TNF and leptin, erroneous sequences/annotations submitted to GenBank (accession nos.
HQ739087 and AF012727, respectively) led to erroneous publications. This was much more pronounced
for leptin (as summarized by Seroussi et al., [15]), but also true for TNF as denoted by Elleder and
Kaspers [16], also resulting in misleading publications (see for example Rozenboim et al. [17]).

The motivation to keep searching for avian TNF and leptin was encouraged by the finding of their
cognate receptors, including the chicken orthologs of the two mammalian TNF receptor genes (TNFR1
and 2 [18,19], respectively) and the chicken leptin receptor (LEPR also known as OBR; [20–22]). Both
the TNF and leptin receptors belong to the family of the cytokine type I receptors and were found to
share functional motifs and consensus sequences with their mammalian orthologs. These include their
corresponding ligand-binding domains, death domains of TNFR1 [23], and other consensus sequences
implicated in their respective signal transduction pathways [18–21].

TNF and leptin were recently identified in several avian species including chickens [13,24–28].
In retrospect, it appears that the difficulty to identify these genes was due to the following characteristics:
extreme GC-content (~70%), their location in genomic regions with low complexity repetitive and
palindromic sequence elements, relatively low sequence conservation and low levels of expression.
So far, characterization of the avian TNF and leptin has surprisingly revealed a very low or absent
mRNA expression in adipose tissue as characterized under a variety of physiological conditions related
to obesity, body growth, reproduction efficiency and feeding regimen [29].

Two similar versions of genuine chicken TNF and leptin genes were published. The first publication
of both genes [13,15] lacked the 5′ regions, which were identified soon after [14,28]. For the TNF,
an additional difference between the two versions is the length of a glycine stretch close the C’-terminal
end, which is hard to resolve due to the low coverage with RNA-seq data from this GC-rich part of the
gene. These difficult regions were characterized by optimized PCR amplification methods and Sanger
sequencing [16]. The 5′ extended sequence of the original TNF is of high importance since it includes
its predicted transmembrane domain of TNF. The 5′ extended sequence of leptin includes the expected
signal peptide. However, this sequence is longer than that of orthologous leptins.

The human TNF gene maps to chromosome 6p21.3, contains four exons and spans about 3 Kilobases.
The last exon shares similarity with lymphotoxin alpha (LTA, previously known also as TNF-β) [30].
These genes are linked to the major histocompatibility complex, class I, B (HLA-B) locus, analogous to
their murine chromosomal position between the complement (class III) region and H-2D [31]. Except
the ribosomal RNA genes cluster (also known as the nucleolus organizer region, NOR), which map
near the centromere of chicken chromosome 16 (GGA16), nearly all protein coding genes presently
mapped have been implicated in the immune responses [32,33]. These include the polymorphic
major histocompatibility complex-B (MHC-B) and MHC-Y, both consisting of gene orthologs of the
mammalian class I and II MHC genes [34,35]. In mammals, TNF maps within the MHC locus between
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lymphotoxin α and β genes. These three genes share some redundant activities, in addition to their
unique functions [36]. Lymphotoxin α and β have not been found in chickens [11,12].

We have previously shown that the chicken TNF is expressed primarily in embryonic and adult
spleens, as well as in monocytes and macrophages [13,14]. In these lymphocytes, TNF is induced by
lipopolysaccharide (LPS) as a model for gram negative infections [14]. The avian leptin mRNA was
primarily reported in brain tissues and, in some cases, also in gonads and adrenal regions [15,25,27,28],
as well as a sporadic high expression in the liver [15]. Unlike the expression profile of chicken leptin,
the chicken TNF profile of mRNA expression resembles that in mammals, except for low abundance
in the adipose tissue [15]. Chromosomal mapping of TNF onto the chicken genome is crucial proof
for its correct identification. This proof is especially important due to the difference between the
avian and mammalian expression in the adipose tissue; the relatively low sequence similarity between
chicken TNF and its mammalian and reptilian orthologs (~34% amino acid identity to human and ~39%
amino acid identity to American alligator); and the erroneous annotation of chicken TNF sequence in
GenBank. Thus, the primary aims of this work were to map and compare the chromosomal position of
avian TNF with that of the mammalian TNF and to test if its mRNA expression profiling supports its
possible interaction with leptin within the immune system and beyond.

2. Results

2.1. Mapping Chicken TNF onto Chicken GGA16 Using Radiation-Hybrid (RH) Panel

As a first indication for the location of chicken TNF within the chicken genome, we employed
the well-established RH panel in Wg3hCl2 cells, prepared by fusing chicken embryonic diploid
fibroblasts with hypoxanthine-guanine phosphoribosyl transferase (HPRT)-deficient hamster cells [37].
The analysis shown in Figure 1 located the chicken TNF close to CSNK2B, between SEQ0111 and
GCT2022 markers of the MHC cluster Y on the q arm of microchromosome GGA16 [33]. This location
was confirmed also by using PCR primers for TRIM7.2, BRD2, TAP2 and ABHD16A, which are located
within the MHC cluster on GGA16 in the current genome assembly (Table 1). The CSNK2B and
ABHD16A genes are mapped onto a TNF genomic contig, also in crow (Corvus cornix) [14].

Table 1. Summary of mapping positions.

Gene Name
Position

RH-Mapping
(CentiRay)

Linkage by
FISH Position GGA16 Position HSA6

TRIM 7.2 Tripartite motif
containing 7 200–240 CSNK2B, TNF 2,482,253..2,492,415

BRD2 Bromodomain
containing 2 294.6 ABHD16A 2,574,363..2,583,216 32968594..32981505

TAP2 Transporter 2,
ATP-binding cassette 220–300 2,601,162..2,604,724 32821833..32838823

C4A Complement 4 2,610,038..2,624,392 31982057..32002680

TNF Tumor Necrosis
Factor 189.1 Unknown 31575565..31578336

CSNK2B Casein kinase II
subunit beta 197.3 Unknown 31665880..31670070

ABHD16A Abhydrolase domain
containing 16A 256 Unknown 31686949..31703360
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Figure 1. RH mapping of TNF to the q arm of GGA16. Positions of markers included in the
comprehensive map are indicated with error bars on the right. Putative assignments [5,6] of nucleolus
organizer regions (NOR; blue), major histocompatibility complex (MHC-Y; pink), and MHC-B (green)
are indicated.

2.2. Mapping the Chicken TNF and its Syntenic Genes Using Fluorescent in Situ Hybridization with Tyramide
Signal Amplification (FISH-TSA)

To further confirm the localization of TNF on chicken GGA16, we used FISH-TSA on metaphase
spreads of mitotic chromosomes. cDNA probes were prepared for TNF and for BRD2, TRIM7.2,
CSNK2B and ABHD16A genes. Using dual-color labeling technique, the analysis showed that the
three chicken genes, TNF, ABHD16A and CSNK2B were co-localized with either BRD2 or TRIM7.2 on
a single microchromosome (Figure 2), thus, confirming the result of the RH mapping.

This mapping characterization summarized in Table 1 suggested the presence in chickens of
an inflammatory region (MHC class III, between MHC class I and II), which is a homologous region
between teleost fish and mammals [38]. In chicken, it is represented by the complement gene (C4).
C4 is closely associated with TRIM 7.2, BRD2 and TAP2 in the current GGA16 assembly.



Int. J. Mol. Sci. 2019, 20, 4489 5 of 15
Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 15 

 

 

Figure 2. Detection of single-copy sequences in metaphase chromosomes by double color FISH-TSA. 

Somatic chromosomes prepared from a primary line of chicken embryo fibroblast (CEF) were used 

for hybridization with the indicated probes. Panels C, F, and I were generated by merging of panels 

A and B; D and E; and G and H, respectively, using red-green-blue color mode. For better 

visualization of the microchromosomes stained by 4’ 6-diamidino-2-phenylindole (DAPI), contrast-

enhanced monochromatic images of A, D and G are shown in A’, D’, and G’, respectively. Arrows 

indicate the two genes that were analyzed in each panel. Each gene locus was indicated in two copies 

on homologous chromosome pairs. Scale bar represents 10 µm. 

This mapping characterization summarized in Table 1 suggested the presence in chickens of an 

inflammatory region (MHC class III, between MHC class I and II), which is a homologous region 

between teleost fish and mammals [38]. In chicken, it is represented by the complement gene (C4). C4 

is closely associated with TRIM 7.2, BRD2 and TAP2 in the current GGA16 assembly. 

Table 1. Summary of mapping positions. 

Gene Name 
Position RH-Mapping 

(CentiRay) 

Linkage by 

FISH 

Position 

GGA16 

Position 

HSA6 

TRIM 

7.2 

Tripartite motif 

containing 7 
200–240 

CSNK2B, 

TNF 

2,482,253..2,4

92,415 
 

BRD2 
Bromodomain 

containing 2 
294.6 ABHD16A 

2,574,363..2,5

83,216 

32968594..32

981505 

TAP2 
Transporter 2, ATP-

binding cassette  
220–300  2,601,162..2,6

04,724 

32821833..32

838823 

C4A Complement 4   2,610,038..2,6

24,392 

31982057..32

002680 

TNF Tumor Necrosis Factor 189.1  Unknown 
31575565..31

578336 

CSNK

2B 

Casein kinase II subunit 

beta 
197.3  Unknown 

31665880..31

670070 

Figure 2. Detection of single-copy sequences in metaphase chromosomes by double color FISH-TSA.
Somatic chromosomes prepared from a primary line of chicken embryo fibroblast (CEF) were used for
hybridization with the indicated probes. Panels C,F,I were generated by merging of panels A,B,D,E,G,H,
respectively, using red-green-blue color mode. For better visualization of the microchromosomes
stained by 4’ 6-diamidino-2-phenylindole (DAPI), contrast-enhanced monochromatic images of A,D,G
are shown in A’,D’,G’, respectively. Arrows indicate the two genes that were analyzed in each panel.
Each gene locus was indicated in two copies on homologous chromosome pairs. Scale bar represents
10 µm.

2.3. Expression Profiling of mRNAs of TNF, Leptin and Their Cognate Receptors in Immune Cells

In mammals, TNF and leptin interact with each other to control immune functions and endocrine
activities of the adipose tissue [39–42]. To test if a similar interaction exists also in chicken, we compared
the mRNA expression patterns of leptin, TNF and their cognate receptors in tissues and immune cell
lines by meta-analyzing the available RNA-seq data in the Sequence Read Archive (SRA) in NCBI.
Sequence reads were counted using the SRA BLAST tool and sequences of chicken leptin, LEPR, TNF,
TNFR1 and TNFR2 as baits (Figure 3).

Analysis of RNA-seq dataset from spleens of chickens four days after intranasal infection with
bursal disease virus (IBDV) showed a significant induction of TNF and TNFR1 (p ≤ 0.05); no induction
of TNFR2; and no or low expression of leptin and LEPR (<1 RPKM), respectively (Figure 3A). Another
analysis of spleens from white-leghorn strains is shown in Figure 3B. These strains were bidirectionally
selected for high susceptibly and resistance to infection by Marek’s disease virus (MDV) [43,44].
Spleens of both the resistant and sensitive lines did not express leptin mRNA and lowly expressed
LEPR mRNA, regardless of infection by MDV, while mRNAs of TNF and TNFR1 were induced in the
spleens of both sensitive and resistant lines (TNF, 10- and 3-fold; TNFR1, 2- and 1.5-fold, respectively).
Since the data was obtained from pools of RNA samples from three birds of each treated group [43],
statistical significance was not estimated. Nevertheless, analyzing this dataset suggested that leptin
and LEPR are neither important for immune response nor to the degree of sensitivity of chicken spleens
to viral infection. On the other hand, these results supported a role for TNF and TNFR1 mRNAs in
the infected spleens. Yet, an additional BLASTN search was performed on a dataset from primary
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cell lines of macrophages and dendritic cells derived from bone marrow and from heterophil cells
isolated from blood (Figure 3C). The cell cultures were challenged with LPS for 24 h. TNF mRNA was
induced 59, 60 and 2 folds in the cultured macrophages, dendritic and heterophil cells, respectively.
TNFR1 and TNFR2 were slightly affected at the mRNA levels. Whereas in the immune cell lines,
like in spleens, leptin and LEPR were undetectable and lowly expressed (below 0.4 RPKM in all of
the samples), respectively. For chicken TNF, this analysis confirmed previous indications suggesting
TNF implication in the immune response [13,14]. For the chicken leptin, this search suggested that in
contrast to the prominent role of mammalian leptins in regulation of both innate and adaptive immune
responses [42], the chicken leptin does not modulate an immune response.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 15 

 

ABHD

16A 

Abhydrolase domain 

containing 16A 
256  Unknown 

31686949..31

703360 

2.3. Expression Profiling of mRNAs of TNF, Leptin and Their Cognate Receptors in Immune Cells 

In mammals, TNF and leptin interact with each other to control immune functions and endocrine 

activities of the adipose tissue [39–42]. To test if a similar interaction exists also in chicken, we 

compared the mRNA expression patterns of leptin, TNF and their cognate receptors in tissues and 

immune cell lines by meta-analyzing the available RNA-seq data in the Sequence Read Archive (SRA) 

in NCBI. Sequence reads were counted using the SRA BLAST tool and sequences of chicken leptin, 

LEPR, TNF, TNFR1 and TNFR2 as baits (Figure 3). 

Analysis of RNA-seq dataset from spleens of chickens four days after intranasal infection with 

bursal disease virus (IBDV) showed a significant induction of TNF and TNFR1 (p ≤ 0.05); no induction 

of TNFR2; and no or low expression of leptin and LEPR (<1 RPKM), respectively (Figure. 3A). Another 

analysis of spleens from white-leghorn strains is shown in Figure 3B. These strains were 

bidirectionally selected for high susceptibly and resistance to infection by Marek’s disease virus 

(MDV) [43,44]. Spleens of both the resistant and sensitive lines did not express leptin mRNA and 

lowly expressed LEPR mRNA, regardless of infection by MDV, while mRNAs of TNF and TNFR1 

were induced in the spleens of both sensitive and resistant lines (TNF, 10- and 3-fold; TNFR1, 2- and 

1.5-fold, respectively). Since the data was obtained from pools of RNA samples from three birds of 

each treated group [43], statistical significance was not estimated. Nevertheless, analyzing this 

dataset suggested that leptin and LEPR are neither important for immune response nor to the degree 

of sensitivity of chicken spleens to viral infection. On the other hand, these results supported a role 

for TNF and TNFR1 mRNAs in the infected spleens. Yet, an additional BLASTN search was 

performed on a dataset from primary cell lines of macrophages and dendritic cells derived from bone 

marrow and from heterophil cells isolated from blood (Figure 3C). The cell cultures were challenged 

with LPS for 24 h. TNF mRNA was induced 59, 60 and 2 folds in the cultured macrophages, dendritic 

and heterophil cells, respectively. TNFR1 and TNFR2 were slightly affected at the mRNA levels. 

Whereas in the immune cell lines, like in spleens, leptin and LEPR were undetectable and lowly 

expressed (below 0.4 RPKM in all of the samples), respectively. For chicken TNF, this analysis 

confirmed previous indications suggesting TNF implication in the immune response [13,14]. For the 

chicken leptin, this search suggested that in contrast to the prominent role of mammalian leptins in 

regulation of both innate and adaptive immune responses [42], the chicken leptin does not modulate 

an immune response. 

 

Figure 3. Meta-analysis of mRNA expression of chicken leptin, TNF and their cognate receptors in 

RNA-seq datasets from: A. Spleens of chickens intra-nasally administrated with PBS (Co) or very 

virulent infectious bursal disease virus (In); BioProject accession no. PRJEB7219 (n = 3 for each 

treatment). B. Spleens from 10 days old Leghorn lines susceptible (S line) or resistant (R line) to 

infection by Marek’s disease virus, five days after challenge with highly virulent Marek’s disease virus 

(In), or not challenged (Co) ([43]; BioProject accession no. PRJNA344896). C. Bone marrow-derived 

macrophages (M) and dendritic cells (D) from six-week-old broiler chickens and heterophils (H) 

Figure 3. Meta-analysis of mRNA expression of chicken leptin, TNF and their cognate receptors in
RNA-seq datasets from: A. * p < 0.05. Spleens of chickens intra-nasally administrated with PBS (Co)
or very virulent infectious bursal disease virus (In); BioProject accession no. PRJEB7219 (n = 3 for
each treatment). B. Spleens from 10 days old Leghorn lines susceptible (S line) or resistant (R line) to
infection by Marek’s disease virus, five days after challenge with highly virulent Marek’s disease virus
(In), or not challenged (Co) ([43]; BioProject accession no. PRJNA344896). C. Bone marrow-derived
macrophages (M) and dendritic cells (D) from six-week-old broiler chickens and heterophils (H) isolated
from blood of day-old broiler chicks (Ross), at the absence (M, D, H) or presence of lipopolysaccharide
(+L) ([45]; BioProject accession no. PRJEB7475).

2.4. Expression Profiling of Leptin, TNF and Their Cognate Receptors in Variety of Chicken Tissues

We extended our previous profiling of leptin, TNF and their cognate receptor expression
patterns [13,15,28], using a meta-analysis of RNA-seq studies available in the SRA (Figure 4). Among
the various tissues of adult J-Line and red junglefowl chickens, TNF was prominently expressed
only in the bursa (above 20 RPKM), and it was also detected at a low level (<1 RPKM) in the spleen,
adrenal, heart and lung. Similarly-low TNF mRNA levels were also observed in caecal tonsil, ileum
and duodenum, which likely represent the high activity of these tissues in innate immune response
through recruitment of immune cells [46,47]. Interestingly, the TNF receptors, TNFR 1 and 2 seem to be
ubiquitously expressed. This pattern confirmed the primary role of TNF in the immune system and
suggested that, like in mammals, avian TNF affects survival of most cell types.

In addition to the known expression of the chicken leptin and LEPR in brain tissues of red
junglefowl (cerebellum, hypothalamus and cerebrum; [15,28]), expression of these genes along the
digestive system (duodenum, caecal tonsil, ileum, and pancreas) is reported in this study for the first
time in chicken. This finding was based on querying the same datasets using the chicken leptin and
LEPR sequences as baits. In J-line chickens, expression of leptin mRNA was observed in duodenum
and caecal tonsil at rather low levels (0.28 and 0.20 RPKM, respectively) and at lower levels also in
the ileum and pancreas (0.1 and 0.07 RPKM, respectively). This expression pattern suggests a role for
chicken leptin in the digestive tract.
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In mammals, expression of leptin in the stomach is well known. Therefore, our finding suggested
that this site of leptin expression represents an important role.
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Figure 4. Meta-analysis of the expression patterns of TNF, leptin and their cognate receptors in
adult J-Line and Red junglefowl chickens. A. Chicken TNF, TNFR1 and TNFR2 full-length sequences
(accessions MF000729, NM_204439, and NM_001030779, respectively) were used as baits for BLASTN
searching the SRA databases of 9 female 16 to 17 weeks of age J-line chickens (BioProject accession no.
PRJEB12891) and two-year-old female and male red junglefowls (BioProject accession no. PRJNA204941).
B. Chicken leptin and LEPR full-length sequences (accessions: LN794246 and NM_204323, respectively),
were used as baits for BLASTN searching the same databases as in A. Results are presented as RPKM.

2.5. Immunohistochemistry Analysis of Leptin in Chicken Duodenum

The surprising finding of chicken leptin mRNA in tissues belonging to the digestive tissue indicates
a possible role of leptin in chickens. To estimate if, like in mammals [48–50], chicken leptin is expressed
in the gastric mucosa, we characterized duodenal leptin expression in mature female chickens by
immunohistochemistry analysis (IHC) using chicken leptin-specific antibodies (Figure 5). Leptin
was observed in the mucosa facing the lumen in both enterocytes and goblet cells fading gradually
towards the crypts, where cells are less differentiated. Leptin was undetectable in cells below the crypts
including Paneth cells, which represent the main epithelial cell type that secrete antimicrobial peptides
and mucosal production of IgA. Paneth cells are the only cells in the small intestine of mammals
normally expressing TNF mRNA [46]. The specificity of the antibody was demonstrated by western
blotting (Figure 5C) applied with conditioned media (CM) of cells exogenously expressing human,
duck and chicken leptins [15]. While leptin activity was similar in all three samples (bottom panel),
only CM of chicken leptin-producing cells showed a signal of the expected size specific to leptin
(top panel).
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Figure 5. Immunohistochemistry analysis of leptin in chicken duodenum. A. Low power
microphotographs of parallel non retrieved duodenum sections from mature leghorn chickens incubated
with leptin antibody diluted from 1:1600 or processed without the primary antibody (no AB). Staining
is observed in the mucosa in both enterocytes (absorbing cells) and goblet cells (mucosa secreting
cells, distinctive by the presence of vacuoles). Crypts are indicated by arrow heads. U&PC are
undifferentiated cells and Paneth cells. BG stands for Brunner’s gland. B. Higher magnification of
a microvillus from B showing more clearly the absence of staining in the lamina propria (LP). C. The
specificity of the leptin antibody was demonstrated by western analysis (top), using conditioned
medium from 293 cells expressing exogenously administrated leptin minigenes of human, duck and
chicken or mock transfected (hL, dL, and cL and MT, respectively) as described in details by Seroussi
et al. [15]. Staining the same blot with tubulin antibody (middle panel) demonstrated that similar
amounts of protein were loaded onto the gel wells, and the graph at the bottom indicated that a similar
level of leptin activity was present in the three samples of conditioned medium (detected using LEPR
based bioassay [15]).

3. Discussion

We have mapped the chicken TNF gene together with additional four syntenic genes in mammals
(BRD2, TAP2, CSNK2B and ABHD16A) to chicken chromosome 16q, within the MHC locus and
demonstrated that these genes form a syntenic block also in chickens consistent with their co-localization
in mammals and several other vertebrates [51]. This mapping position may define an MHC Class III
inflammatory region in the chicken genome, which is a region of inflammation-related genes within the
MHC cluster. The inflammatory region found to be similar in fish and mammals, but was represented
in chicken and quail genomes only by the C4 gene [38].

The use of two different approaches for the mapping: FISH and RH-mapping strongly confirmed
the genomic allocation of TNF. Interestingly, this position seems to be part of the GC-rich region
observed within the GGA16 chromosome by a low DAPI staining [52]. Thus, the high GC-rich content
(~70%) of the chicken TNF gene is likely to be shared by its neighboring genes and their intragenic
sequences. Therefore, it is possible that the two closest neighboring genes of TNF in other vertebrates
(lymphotoxin A and B), missing in chickens, would also be found; as happened in similar scenarios
e.g., the leptin and RBM28 genes in the centromeric GC-rich region of GGA1 [53].

Our meta-analysis of TNF, TNFR1 and TNFR2 mRNA expression in RNA-seq datasets in the
SRA extended a previous study of TNF [13,14], indicating its implication in the immune response by
showing that mRNAs of both TNF and TNFR1 are induced in spleen and in immune cells upon virus
infection and LPS treatment. The comparative mRNA expression analysis of TNF and its receptors
shown here also suggested that TNF in the spleen and in immune cells has paracrine/autocrine mode
of action in addition to its well established endocrine action. Unlike TNFR2, TNFR1 has a death
domain, for executing TNF’s cytotoxicity and has high affinity to both the soluble and membrane bound
TNF [54]. Our finding that TNFR1 mRNA levels were more responsive to viral and LPS treatments than
those of TNFR2 is compatible with TNFR1 functions. Strikingly, in the same datasets, leptin mRNA
was absent in the spleen and in immune cells under all of the experimental conditions. LEPR mRNA
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was lowly expressed and did not respond to treatments or to selective breeding toward resistance or
sensitivity to infection. Since the role of the mammalian leptin is to communicate energy status to the
immune system [40], this observation fits previous indications that chicken leptin is not a circulating
signal of energy availability [15,27–29].

Profiling TNFR1 and 2 mRNA expression in a variety of chicken tissues showed a wide range of
expression of both receptors but with more abundant expression of TNFR1 in most of the tissues. This
characterization suggested a further role of chicken TNF not only in the immune system, but also in
general cell survival, which is among its classical roles in mammals [4]. Since in mammals TNFR2 is
predominately expressed in cells of the immune system and endothelial cells [55], it is likely that in
some of the chicken tissues low expression is contributed by endothelial and immune cells within the
examined tissues.

The most surprising result in the current study was our finding of leptin and LEPR mRNA
in the digestive system, opening a new frontier for chicken leptin research. In mammals, gastric
leptin was discovered in 1998 by Bado et al. [48] and has been shown to be produced by the gastric
chief cells in the stomach and by enterocytes and goblet cells in the duodenum [56]. The primary
role of leptin in the digestive system is thought to be in gastric emptying and nutrient absorption
activities [56,57]. In addition, gastric leptin also interacts with other gastric regulatory peptides such as
ghrelin, cholecystokinin (CCK) and peptide transporter 1 (PepT1) [50] and affects CCK activation of
vagus nerve afferents in the duodenum [58]. The possibility that gastric leptin serves as a short-term
signal in the regulation of food intake, has also been suggested in mammals [57], complementing
the long-term regulation of appetite by leptin secreted from the adipose tissue [2]. In mammals,
expression of leptin in the stomach is well known. Therefore, our finding suggested that this site of
leptin expression represents a role for leptin that is common among many species.

The immunostaining of leptin in the duodenum and the finding of its presence in mucosal
cells (enterocytes and goblet cells), provided a critical proof that the low expression of leptin mRNA
(0.3 RPKM) in J-line duodenum is significant. Our finding of leptin in the digestive system raised the
possibility that chicken leptin may operate in short term regulation of appetite based on the digestive
activity. This may take place either via the afferent vagus nerve or through the blood circulation or
both. However, more work is needed to evaluate this possibility.

4. Materials and Methods

4.1. RH-Mapping

PCR amplifications were carried out for each marker (Table S1) in 15 µL solution containing 25 ng
DNA from the RH panel [37], 0.4 µM of each primer, 0.25 units Taq polymerase (GoTaq, Promega
Madison, WI, USA), 2 mM MgCl2, 0.2 mM dNTP, using the Applied Biosystems 2720 thermal cycler.
The first 5 min denaturation step was followed by 35 cycles, of denaturation at 94 ◦C for 30 s, annealing
at Tm (see Table S1) for 30 s and elongation at 72 ◦C for 30 s. Each marker was genotyped twice and
a third genotyping was performed in case of discrepancy between the first two determinations. The
RH map was built as previously described [59] using the Carthagene software [60] and drawn with
MapChart 2.0 [61].

4.2. FISH-TSA Analysis

4.2.1. Chromosome Preparation and Cell Culture

Primary line of chicken CEF cells, were prepared from 10-day old pooled chick embryos (males
and females) of an inbred White Leghorn strain [62] as previously described [63]. Cells were maintained
at 37 ◦C and 5% CO2 in a mixture of two parts Dulbecco’s modified Eagle’s medium and one part
F-12 medium, supplemented with 8% fetal calf serum, 2% chicken serum, and antibiotic-antimycotic
solution (Sigma-Aldrich, St. Louis, MO, USA). Chromosome metaphase spreads obtained from the
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CEF cell culture (passage 5) were prepared according to Courtet et al. [64]. Cell suspension was spread
onto a clean glass microscopic-slide one day before use for FISH-TSA and stored overnight at −20 ◦C.

4.2.2. cDNA Probe Preparation and Labelling

Total RNA was isolated from chicken DF-1 cells [65] using TRI reagent (Sigma-Aldrich) and
converted to cDNA with the SMART RACE protocol (Clontech, Palo Alto, CA, USA). The probes
for the chicken genes were prepared by PCR amplification from the cDNA using the primers listed
in Table S2, (see also Sequence S1 and Figure S1 describing our genuine ABHD16A sequence) and
conditions previously described [14]. The PCR products were separated by agarose electrophoresis
and purified using the Qiaex II gel extraction kit (Qiagen, Valencia, CA, USA). The cDNA probes (1 µg
each) were labeled by random primed method using the DecaLabel DNA Labeling Kit (Thermo Fisher
Scientific, Waltham, MA, USA) according to manufacturer’s instructions.

4.2.3. FISH-TSA

Double color FISH-TSA protocol was adapted from Krylov et al. [66] with minor modifications
described in Knytl et al. [67]. ABHD16A, CSNK2B, and TNF probes were labeled by Digoxigenin-11-dUTP
(Roche, Mannheim, Germany) and hybridized to chromosomal DNA overnight at 37 ◦C. Signals were
detected by anti-digoxigenin antibody conjugated to horseradish peroxidase (Anti-Digoxigenin-POD,
Fab fragments, Roche), and amplified by tetramethylrhodamine (TMR) with TSA Plus Fluorescein
and TMR System Kit (PerkinElmer, Inc., Waltham, MA, USA). BRD2 and TRIM7.2 probes labeled by
Biotin-16-dUTP (Roche) were detected by streptavidin-POD, conjugate (Roche), and signal was amplified
by fluorescein (TSA Plus Fluorescein and TMR System Kit, PerkinElmer Inc., Waltham, MA, USA).
Hybridization mixture containing both hapten-labeled probes was applied on chromosome slide as
previously described [68]. Targeted single-copy gene fragments were visualized in sequential rounds
of incubations as detailed before [69] in the following order: (1) streptavidin-POD, TSA fluorescein;
(2) anti-digoxigenin-POD, TSA TMR. Between the sequential steps 1 and 2, slides were incubated in 1%
hydrogen peroxide (H2O2/PBS) for 30 min at room temperature, then three washes in PBS for 5 min at
room temperature, and a final wash in TNT buffer (0.1 M Tris-HCl, 0.15 M NaCl, 0.05% Tween-20, pH 7.5)
for 5 min at room temperature. Chromosomes were counterstained by DAPI with antifade (Cytocell,
Cambridge, UK).

4.2.4. Microscopy and Processing of FISH-TSA Images

FISH-TSA images were captured with camera DFC 7000T (equipped with a black-and-white
CCD-Chip (Leica, Wetzlar, Germany)) coupled to an epifluorescence microscope Leica DM6B equipped
with a set of three narrowband fluorescent filters. Digital pseudocolored images (blue for DAPI,
green for biotinylated probe, red for digoxigenated probe (described in Section 4.2.2), were merged in
red-green-blue channel mode and processed by Adaptive Contrast Control Scientific Image Analyzer
software (Sofo ACC 6.2, Brno, Czech Republic). and Adobe Photoshop (CS7), Adobe Systems, San Jose,
CA, USA.

4.3. Bioinformatic Analysis

Deducing the sequence of the chicken ortholog of AHBD16A was performed using the human
AHBD16A sequence for BLAST searches using RNA-seq datasets (study PRJEB7620). Sequence reads
were assembled with CLC genomics workbench, Qiagen, Bustehrad, Czech republic and with Lasergene
SeqMan (DNASTAR, Madison, WI, USA).

4.4. Animals and Tissue Sampling

Commercial females of the Leghorn breed (layers) were purchased from commercial husbandries
(Hasolelim, Israel) at the age of 1 d and grown at the Volcani Center according to recommended
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husbandry and feeding conditions (NRC 1994) with free access to food and water. Maintenance
conditions and feeding formulas were according to the Lohmann guideline (http://www.hylinena.com/

userdocs/products/lohmann_brown_lite_commercials_2011.pdf), as detailed previously [29]. At the
age of first egg, lay (about four months of age) tissue samples were snap-frozen in liquid nitrogen, after
neck dislocation. All animal procedures were carried out in accordance with the National Institutes of
Health Guidelines on the Care and Use of Animals and Protocol IL732/17 (1.11.17), obtained by the
Animal Experimentation Ethics Committee of the Agricultural Research Organization, Volcani Center.

4.5. Antibodies and Western Analysis

A custom-made antibody directed against chicken leptin-peptide (amino acid sequence:
PPRAEKLRADARSLSRTLSARLGD) was prepared in rabbits and affinity purified by HY Laboratories
LTD, Rehovot Israel. Anti alpha tubulin antibody was purchased from ABCAM (ab89984, Zotal,
Tel-Aviv, Israel).

Protein concentration was measured by Bradford assay (Sigma, Yavne, Israel). Total proteins
(20 mg) were subjected to 12% SDS-PAGE and transferred to a nitrocellulose membrane.

4.6. IHC Analysis

Chicken duodenum was fixed in buffered formalin for ~48 h. Fixed specimens were dehydrated
through graded ethanol concentrations, cleared in xylene and embedded into paraffin. Five micrometers
longitudinal sections were prepared and mounted onto positively charged glass slides. For
immunohistochemical staining sections were deparaffinized in xylene and rehydrated through
descending ethanol concentrations. Rehydrated sections were incubated with rabbit polyclonal
antibodies to chicken leptin diluted 1:600 in TBST (10mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20,
pH 7.5) for 1 h at room temperature. After washing in TBST (5 times for 2 min) sections were incubated
with anti-rabbit ZytoChem Plus HRP-Polymer (Zytomed Biotest, Kfar Saba, Israel) for 30 min. Then
sections were washed in TBST and peroxidase activity was revealed by incubation in a mixture of 0.05%
diaminobenzidine hydrochloride (Sigma-Aldrich, Rehobot, Israel) with 0.03% hydrogen peroxide in
0.1 M Tris-HCl, 10 mM imidazole (pH 7.5). Sections were slightly stained with Gill’s hematoxylin,
dehydrated, cleared in xylene and mounted in DPX (Sigma-Aldrich). Digital microphotographs were
prepared using SPOT InSight CMOS camera attached to BX51 microscope (Olympus, Japan). This
analysis was conducted by Smart Assays, Ness Ziona, Israel.

4.7. Statistical Analyses

Statistical analyses of the qRT-PCR analysis and leptin bioassay were performed by one-way
ANOVA and Tukey-Kramer honestly significant difference test (p ≤ 0.05); means ± SEs are reported.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4489/s1.
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28. Farkasova, H.; Hron, T.; Pačes, J.; Pajer, P.; Elleder, D. Identification of a GC-rich leptin gene in chicken.
Agri Gene 2016, 1, 88–92. [CrossRef]

29. Bornelov, S.; Seroussi, E.; Yosefi, S.; Benjamini, S.; Miyara, S.; Ruzal, M.; Grabherr, M.; Rafati, N.; Molin, A.M.;
Pendavis, K.; et al. Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine
role of visceral fat towards reproduction. BMC Genom. 2018, 19, 295. [CrossRef]

30. Nedwin, G.E.; Naylor, S.L.; Sakaguchi, A.Y.; Smith, D.; Jarrett-Nedwin, J.; Pennica, D.; Goeddel, D.V.;
Gray, P.W. Human lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal
localization. Nucleic Acids Res. 1985, 13, 6361–6373. [CrossRef]

31. Inoko, H.; Trowsdale, J. Linkage of TNF genes to the HLA-B locus. Nucleic Acids Res. 1987, 15, 8957–8962.
[CrossRef] [PubMed]

32. Kaufman, J.; Milne, S.; Gobel, T.W.; Walker, B.A.; Jacob, J.P.; Auffray, C.; Zoorob, R.; Beck, S. The chicken
B locus is a minimal essential major histocompatibility complex. Nature 1999, 401, 923–925. [CrossRef]
[PubMed]

33. Solinhac, R.; Leroux, S.; Galkina, S.; Chazara, O.; Feve, K.; Vignoles, F.; Morisson, M.; Derjusheva, S.;
Bed’hom, B.; Vignal, A.; et al. Integrative mapping analysis of chicken microchromosome 16 organization.
BMC Genom. 2010, 11, 616. [CrossRef] [PubMed]

34. Kaufman, J. Generalists and specialists: A new view of how MHC Class I molecules fight infectious pathogens.
Trends Immunol. 2018, 39, 367–379. [CrossRef] [PubMed]

35. Warren, W.C.; Hillier, L.W.; Tomlinson, C.; Minx, P.; Kremitzki, M.; Graves, T.; Markovic, C.; Bouk, N.;
Pruitt, K.D.; Thibaud-Nissen, F.; et al. A New Chicken Genome Assembly Provides Insight into Avian
Genome Structure. G3 Genes Genomes Genet. 2017, 7, 109–117. [CrossRef] [PubMed]

36. Kuprash, D.V.; Alimzhanov, M.B.; Tumanov, A.V.; Grivennikov, S.I.; Shakhov, A.N.; Drutskaya, L.N.;
Marino, M.W.; Turetskaya, R.L.; Anderson, A.O.; Rajewsky, K.; et al. Redundancy in tumor necrosis factor
(TNF) and lymphotoxin (LT) signaling in vivo: Mice with inactivation of the entire TNF/LT locus versus
single-knockout mice. Mol. Cell. Biol. 2002, 22, 8626–8634. [CrossRef]

37. Morisson, M.; Lemiere, A.; Bosc, S.; Galan, M.; Plisson-Petit, F.; Pinton, P.; Delcros, C.; Feve, K.; Pitel, F.;
Fillon, V.; et al. ChickRH6: A chicken whole-genome radiation hybrid panel. Genet. Sel. Evol. 2002, 34,
521–533. [CrossRef]

38. Deakin, J.E.; Papenfuss, A.T.; Belov, K.; Cross, J.G.; Coggill, P.; Palmer, S.; Sims, S.; Speed, T.P.; Beck, S.;
Graves, J.A. Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genom.
2006, 7, 281. [CrossRef]

39. Pasparakis, M.; Alexopoulou, L.; Episkopou, V.; Kollias, G. Immune and inflammatory responses in TNF
alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles,
follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune
response. J. Exp. Med. 1996, 184, 1397–1411. [CrossRef]

40. Flier, J.S. Lowered leptin slims immune response. Nat. Med. 1998, 4, 1124–1125. [CrossRef]
41. Naylor, C.; Petri, W.A., Jr. Leptin Regulation of Immune Responses. Trends Mol. Med. 2016, 22, 88–98.

[CrossRef] [PubMed]
42. Francisco, V.; Pino, J.; Campos-Cabaleiro, V.; Ruiz-Fernandez, C.; Mera, A.; Gonzalez-Gay, M.A.; Gomez, R.;

Gualillo, O. Obesity, Fat Mass and Immune System: Role for Leptin. Front. Physiol. 2018, 9, 640. [CrossRef]
[PubMed]

43. Dong, K.; Chang, S.; Xie, Q.; Black-Pyrkosz, A.; Zhang, H. Comparative transcriptomics of genetically
divergent lines of chickens in response to Marek’s disease virus challenge at cytolytic phase. PLoS ONE 2017,
12, e0178923. [CrossRef] [PubMed]

http://dx.doi.org/10.1210/en.2014-1273
http://dx.doi.org/10.1371/journal.pone.0092751
http://dx.doi.org/10.1210/en.2014-1084
http://dx.doi.org/10.1016/j.aggene.2016.04.001
http://dx.doi.org/10.1186/s12864-018-4675-0
http://dx.doi.org/10.1093/nar/13.17.6361
http://dx.doi.org/10.1093/nar/15.21.8957
http://www.ncbi.nlm.nih.gov/pubmed/3479750
http://dx.doi.org/10.1038/44856
http://www.ncbi.nlm.nih.gov/pubmed/10553909
http://dx.doi.org/10.1186/1471-2164-11-616
http://www.ncbi.nlm.nih.gov/pubmed/21050458
http://dx.doi.org/10.1016/j.it.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29396014
http://dx.doi.org/10.1534/g3.116.035923
http://www.ncbi.nlm.nih.gov/pubmed/27852011
http://dx.doi.org/10.1128/MCB.22.24.8626-8634.2002
http://dx.doi.org/10.1186/1297-9686-34-4-521
http://dx.doi.org/10.1186/1471-2164-7-281
http://dx.doi.org/10.1084/jem.184.4.1397
http://dx.doi.org/10.1038/2619
http://dx.doi.org/10.1016/j.molmed.2015.12.001
http://www.ncbi.nlm.nih.gov/pubmed/26776093
http://dx.doi.org/10.3389/fphys.2018.00640
http://www.ncbi.nlm.nih.gov/pubmed/29910742
http://dx.doi.org/10.1371/journal.pone.0178923
http://www.ncbi.nlm.nih.gov/pubmed/28591220


Int. J. Mol. Sci. 2019, 20, 4489 14 of 15

44. Bacon, L.D.; Hunt, H.D.; Cheng, H.H. A review of the development of chicken lines to resolve genes
determining resistance to diseases. Poult. Sci. 2000, 79, 1082–1093. [CrossRef] [PubMed]

45. Bush, S.J.; Freem, L.; MacCallum, A.J.; O’Dell, J.; Wu, C.; Afrasiabi, C.; Psifidi, A.; Stevens, M.P.; Smith, J.;
Summers, K.M.; et al. Combination of novel and public RNA-seq datasets to generate an mRNA expression
atlas for the domestic chicken. BMC Genom. 2018, 19, 594. [CrossRef] [PubMed]

46. Tan, X.; Hsueh, W.; Gonzalez-Crussi, F. Cellular localization of tumor necrosis factor (TNF)-alpha transcripts
in normal bowel and in necrotizing enterocolitis. TNF gene expression by Paneth cells, intestinal eosinophils,
and macrophages. Am. J. Pathol. 1993, 142, 1858–1865. [PubMed]

47. Santaolalla, R.; Abreu, M.T. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 2012, 28,
124–129. [CrossRef]

48. Bado, A.; Levasseur, S.; Attoub, S.; Kermorgant, S.; Laigneau, J.P.; Bortoluzzi, M.N.; Moizo, L.; Lehy, T.;
Guerre-Millo, M.; Le Marchand-Brustel, Y.; et al. The stomach is a source of leptin. Nature 1998, 394, 790–793.
[CrossRef]

49. Peters, J.H.; Ritter, R.C.; Simasko, S.M. Leptin and CCK selectively activate vagal afferent neurons innervating
the stomach and duodenum. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1544–R1549. [CrossRef]

50. Yarandi, S.S.; Hebbar, G.; Sauer, C.G.; Cole, C.R.; Ziegler, T.R. Diverse roles of leptin in the gastrointestinal
tract: Modulation of motility, absorption, growth, and inflammation. Nutrition 2011, 27, 269–275. [CrossRef]

51. Sambrook, J.G.; Figueroa, F.; Beck, S. A genome-wide survey of Major Histocompatibility Complex (MHC)
genes and their paralogues in zebrafish. BMC Genom. 2005, 6, 152. [CrossRef] [PubMed]

52. O’Hare, T.H.; Delany, M.E. Genetic variation exists for telomeric array organization within and among the
genomes of normal, immortalized, and transformed chicken systems. Chromosome Res. 2009, 17, 947–964.
[CrossRef] [PubMed]

53. Seroussi, E.; Pitel, F.; Leroux, S.; Morisson, M.; Bornelov, S.; Miyara, S.; Yosefi, S.; Cogburn, L.A.; Burt, D.W.;
Andersson, L.; et al. Mapping of leptin and its syntenic genes to chicken chromosome 1p. BMC Genet. 2017,
18, 77.

54. Wajant, H.; Siegmund, D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages.
Front. Cell Dev. Biol. 2019, 7, 91. [CrossRef] [PubMed]

55. Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 2003, 10, 45–65.
[CrossRef] [PubMed]

56. Cammisotto, P.; Bendayan, M. A review on gastric leptin: The exocrine secretion of a gastric hormone.
Anat. Cell Biol. 2012, 45, 1–16. [CrossRef] [PubMed]

57. Inagaki-Ohara, K. Gastric leptin and tumorigenesis: Beyond obesity. Int. J. Mol. Sci. 2019, 20, 2622.
[CrossRef]

58. Darcel, N.P.; Liou, A.P.; Tome, D.; Raybould, H.E. Activation of vagal afferents in the rat duodenum by
protein digests requires PepT1. J. Nutr. 2005, 135, 1491–1495. [CrossRef]

59. Pitel, F.; Abasht, B.; Morisson, M.; Crooijmans, R.P.; Vignoles, F.; Leroux, S.; Feve, K.; Bardes, S.; Milan, D.;
Lagarrigue, S.; et al. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with
human chromosomes. BMC Genom. 2004, 5, 66. [CrossRef]

60. de Givry, S.; Bouchez, M.; Chabrier, P.; Milan, D.; Schiex, T. CARHTA GENE: Multipopulation integrated
genetic and radiation hybrid mapping. Bioinformatics 2005, 21, 1703–1704. [CrossRef]

61. Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002,
93, 77–78. [CrossRef] [PubMed]

62. Plachy, J. The chicken—A laboratory animal of the class Aves. Folia Biol.-Prague 2000, 46, 17–23.
63. Federspiel, M.J.; Hughes, S.H. Retroviral gene delivery. Method Cell Biol. 1997, 52, 179.
64. Courtet, M.; Flajnik, M.; Du Pasquier, L. Major histocompatibility complex and immunoglobulin loci

visualized by in situ hybridization on Xenopus chromosomes. Dev. Comp. Immunol. 2001, 25, 149–157.
[CrossRef]

65. Himly, M.; Foster, D.N.; Bottoli, I.; Iacovoni, J.S.; Vogt, P.K. The DF-1 chicken fibroblast cell line: Transformation
induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology
1998, 248, 295–304. [CrossRef] [PubMed]

66. Krylov, V.; Tlapakova, T.; Macha, J. Localization of the single copy gene Mdh2 on Xenopus tropicalis
chromosomes by FISH-TSA. Cytogenet. Genome Res. 2007, 116, 110–112. [CrossRef]

http://dx.doi.org/10.1093/ps/79.8.1082
http://www.ncbi.nlm.nih.gov/pubmed/10947175
http://dx.doi.org/10.1186/s12864-018-4972-7
http://www.ncbi.nlm.nih.gov/pubmed/30086717
http://www.ncbi.nlm.nih.gov/pubmed/8506954
http://dx.doi.org/10.1097/MOG.0b013e3283506559
http://dx.doi.org/10.1038/29547
http://dx.doi.org/10.1152/ajpregu.00811.2005
http://dx.doi.org/10.1016/j.nut.2010.07.004
http://dx.doi.org/10.1186/1471-2164-6-152
http://www.ncbi.nlm.nih.gov/pubmed/16271140
http://dx.doi.org/10.1007/s10577-009-9082-6
http://www.ncbi.nlm.nih.gov/pubmed/19890728
http://dx.doi.org/10.3389/fcell.2019.00091
http://www.ncbi.nlm.nih.gov/pubmed/31192209
http://dx.doi.org/10.1038/sj.cdd.4401189
http://www.ncbi.nlm.nih.gov/pubmed/12655295
http://dx.doi.org/10.5115/acb.2012.45.1.1
http://www.ncbi.nlm.nih.gov/pubmed/22536547
http://dx.doi.org/10.3390/ijms20112622
http://dx.doi.org/10.1093/jn/135.6.1491
http://dx.doi.org/10.1186/1471-2164-5-66
http://dx.doi.org/10.1093/bioinformatics/bti222
http://dx.doi.org/10.1093/jhered/93.1.77
http://www.ncbi.nlm.nih.gov/pubmed/12011185
http://dx.doi.org/10.1016/S0145-305X(00)00045-8
http://dx.doi.org/10.1006/viro.1998.9290
http://www.ncbi.nlm.nih.gov/pubmed/9721238
http://dx.doi.org/10.1159/000097427


Int. J. Mol. Sci. 2019, 20, 4489 15 of 15

67. Knytl, M.; Tlapakova, T.; Vankova, T.; Krylov, V. Silurana Chromosomal Evolution: A new piece to the
puzzle. Cytogenet. Genome Res. 2018, 156, 223–228. [CrossRef]

68. Knytl, M.; Smolik, O.; Kubickova, S.; Tlapakova, T.; Evans, B.J.; Krylov, V. Chromosome divergence during
evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by
Zoo-FISH. PLoS ONE 2017, 12, e0177087. [CrossRef]

69. Carabajal Paladino, L.Z.; Nguyen, P.; Sichova, J.; Marec, F. Mapping of single-copy genes by TSA-FISH in the
codling moth, Cydia pomonella. BMC Genet. 2014, 15 (Suppl. 2), S15. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1159/000494708
http://dx.doi.org/10.1371/journal.pone.0177087
http://dx.doi.org/10.1186/1471-2156-15-S2-S15
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Mapping Chicken TNF onto Chicken GGA16 Using Radiation-Hybrid (RH) Panel 
	Mapping the Chicken TNF and its Syntenic Genes Using Fluorescent in Situ Hybridization with Tyramide Signal Amplification (FISH-TSA) 
	Expression Profiling of mRNAs of TNF, Leptin and Their Cognate Receptors in Immune Cells 
	Expression Profiling of Leptin, TNF and Their Cognate Receptors in Variety of Chicken Tissues 
	Immunohistochemistry Analysis of Leptin in Chicken Duodenum 

	Discussion 
	Materials and Methods 
	RH-Mapping 
	FISH-TSA Analysis 
	Chromosome Preparation and Cell Culture 
	cDNA Probe Preparation and Labelling 
	FISH-TSA 
	Microscopy and Processing of FISH-TSA Images 

	Bioinformatic Analysis 
	Animals and Tissue Sampling 
	Antibodies and Western Analysis 
	IHC Analysis 
	Statistical Analyses 

	References

