
HAL Id: hal-02292436
https://hal.science/hal-02292436v1

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3DPlasticToolkit: Plasticity for 3D User Interfaces
Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan

To cite this version:
Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Eric Maisel, Jérôme Royan. 3DPlasticToolkit: Plas-
ticity for 3D User Interfaces. EuroVR 2019 - 16th EuroVR International Conference, Oct 2019,
Tallinn, Estonia. pp.62-83, �10.1007/978-3-030-31908-3_5�. �hal-02292436�

https://hal.science/hal-02292436v1
https://hal.archives-ouvertes.fr

3DPlasticToolkit: Plasticity for 3D User Interfaces

Jérémy Lacoche1,2, Thierry Duval3,4, Bruno Arnaldi5,6, Eric Maisel4,7, and Jérôme
Royan2

1 Orange Labs, Rennes, France
2 IRT b<>com, Rennes, France
3 IMT ATlantique, Brest, France

4 Lab-STICC, UMR CNRS 6285, Brest, France
5 Irisa, UMR CNRS 6074, Rennes, France

6 INSA de Rennes, Rennes, France
7 ENIB, Brest, France

Abstract. The goal of plasticity is to ensure usability continuity whatever the
context of use. This context must be modeled into the system and possibly taken
into account to adapt the final application. The difficulty to handle plasticity for
3D applications comes from the lack of solutions for developers and designers to
model and take these constraints into account. This paper introduces new models
designed to deal with plasticity for Virtual Reality (VR) and Augmented Reality
(AR). These models are implemented in a software solution: 3DPlasticToolkit. It
aims to provide a solution for developing 3D applications that can automatically
fit any context of use. This context of use includes a set of 3D hardware and envi-
ronmental constraints, such as user preferences and available interaction devices.
3DPlasticToolkit includes tools for modeling this context and for creating appli-
cation components independently from it. We propose an adaptation engine based
on a scoring algorithm to dynamically create the most suited 3D user interfaces
according to the context of use at runtime. We use a furniture planning scenario
to show how these adaptations can impact interactions and content presentation.

Keywords: Plasticity, 3D User Interfaces, Virtual reality

1 Introduction

Plasticity is the capacity of an interactive system to withstand variations of both the
system physical characteristics and the environment while preserving its usability [20].
Code interoperability is a necessary condition but is not sufficient for an interactive
system to be considered as plastic. Usability continuity has to be guaranteed too, and
performances and capabilities have to remain at least constant.

Today, there is a growing interest in 3D user interfaces, daily announcements of
new interaction devices and the emergence of new kinds of users. In parallel, ubiqui-
tous computing and continuity of access to information are widespread uses in everyday
life. Regarding these new constraints, end-users need to have access to plastic user in-
terfaces. Some tools already exist for developing user interfaces that take into account
the plasticity property, especially for 2D. However, the problem is even larger for 3D

2 J. Lacoche et al.

and for now no solution meets all the plasticity requirements [14]. Indeed, during the
development of 3D user interfaces, designers and developers have to handle a lot of in-
put and output devices [2], a lot of interaction techniques [2, 10], a lot of possible kinds
of target users and a lot of ways to present content. Manually developing a version of an
application for each possible configuration has an important combinatorial complexity
and therefore is not a very flexible way toward adapting it to various features.

In this paper, we introduce new models for plasticity that fit 3D constraints and take
into account most of the possible adaptation sources and targets as well as static and
dynamic adaptations. These models have been implemented in a software solution for
3D application developers: 3DPlasticToolkit, to make possible the development of mul-
tiple applications that must be usable in a wide variety of possible contexts of use. We
will describe how 3DPlasticToolkit helped us to develop such an application consist-
ing of laying-out an empty room with furniture. It must be available on a wide variety
of platforms, from desktop ones to immersive systems through mobile devices. It also
must be independent of any concrete interaction devices and new devices must be easily
integrated. Last, this application may be used by expert and novice users and needs to
be adapted to each particular user’s capacities and preferences.

This paper is structured as follows: in section 2, we recall the plasticity requirements
for 3D and some related work. In section 3 we present an overview of our solution and
in section 4 how it integrates the application model and device model from [13], to
which we have added a device model and a task model to enhance the representation
of the context. In section 5 we present how the application components are instantiated
according to the context with a scoring algorithm and how this adaptation behavior can
be modified at runtime. Last, in section 6 we describe how we used 3DPlasticToolkit to
develop a furniture planning application in order to show its advantages compared to a
state of the art solution.

2 Related Work

2.1 Plasticity requirements for 3D

Considering plasticity for the development of a 3D User Interface can induce a lot of
advantages for the developer such as the reduction of the development and maintenance
times and costs and the possibility to distribute the application widely. It also benefits
the end-user as he/she will get an application that corresponds to his/her needs and that
provide him/her usability continuity on his/her different interaction platforms. This is
particularly interesting in the field of VR/AR as most users are still novices regarding
these interfaces, and as the diversity of platforms is still important. To handle the plas-
ticity property, a 3D toolkit must take into account a set of 3D requirements such as
those reported in [14]. These requirements are the following ones:

R1 Deal with the main adaptation sources or be extendable to do so. It includes users,
data semantic and hardware characteristics. To be considered as adaptation sources
they must be modeled in the system.

R2 Deal with the main adaptation targets or be extendable to do so. It can refer to the
presentation of the application content such as a parameter of a 3D object (color,
size, etc.), the structural organization of a 3D world, or an interaction technique.

3DPlasticToolkit: Plasticity for 3D User Interfaces 3

R3 Support the two means of adaptation of plasticity: recasting (modifying locally the
application components) and redistribution (changing the distribution of its compo-
nents statically or dynamically [4] across different dimensions such as platforms,
displays, and users). In this paper we focus on local adaptations (recasting), as we
already discussed about redistribution in [15].

R4 Ensure code portability. The library must be available on many operating systems
(mobile and desktop). Moreover, a toolkit needs to be possibly interfaced with the
main VR frameworks and not dependent on a particular one.

R5 Perform dynamic and static adaptations. To ensure usability continuity the system
needs to be able to detect a context modification such as a device plugged or a new
user configuration at runtime and to update the interface accordingly.

R6 Handle user and system adaptations. The system automatically chooses the best 3D
user interfaces according to the adaptation process, this is adaptivity. However, the
user must be aware of which adaptation occurs and to be able to modify the aspect
of the interface with a set of predefined parameters, this is adaptability.

R7 Be flexible, easy to use and to extend for developers and designers. According to
Myers et al. [19], a toolkit and its authoring tool must have a low threshold (easy to
use and to learn) while having a high ceiling (how much can be done using them).

2.2 2D solutions

The most common approach for dealing with plastic 2D user interfaces consists of using
Model-Driven Engineering. The CAMELEON conceptual framework [3] proposes to
structure the development process of a user interface into four steps where each step
is represented by models: task and concepts (T&C), abstract UI (AUI), concrete UI
(CUI), and final UI (FUI). The reconfiguration of the user interface consists in applying
transformations at each of these steps according to the context of use to ensure usability
continuity. UsiXML [17] is an XML based markup language for the development of
plastic user interfaces which conforms to the CAMELEON framework and can be used
by designers and developers. It proposes a language for the creation of the different
models at each development step of CAMELEON. It also introduces a language for the
creation of rules for transforming the models according to the context of use.

In the field of pervasive computing, the Dynamo Framework [1] uses proxy mod-
els and interaction models to maintain a mediation chain that defines multimodal inter-
action techniques. The system can check the context (services, devices) at runtime and
reconfigure itself dynamically. These models let developers focus on interaction tech-
niques development independently from the concrete devices used. However, to avoid
wrong associations between interaction techniques and devices, designers or develop-
ers have to create pre-defined mediation chains (interaction models). It needs a priori
knowledge on how the devices will be used and is a lesser automatic approach than
describing at a fine grain each device to perform the associations. Moreover, the frame-
work does not include yet the possibility for the user to reconfigure the system and to
express his/her preferences.

4 J. Lacoche et al.

2.3 3D solutions

Model-driven engineering can also deal with the development of 3D Virtual Environ-
ments [7]. The configuration of the 3D content and the deployment on various software
and hardware platforms can be automated through code generation. However, the con-
figuration is static, it does not address dynamical context changes.

2D model-based user interface development can be extended to 3D to handle plastic-
ity [8]. User and hardware adaptations are integrated into the user interface development
process with model transformations rules described with UsiXML, but the solution fo-
cuses on the creation of adaptable 3D widgets and the final user interface is generated
as a VRML or X3D file. Therefore, the interaction part is limited.

Viargo [21] proposes to abstract devices by units which provide events to interac-
tion metaphor components. They process the events to update the state of the appli-
cation. If a device is exchanged at runtime, the interaction metaphor is not disturbed
while the new device events are compatible with it. Nevertheless, Viargo only considers
hardware as adaptation sources and the interaction techniques as adaptation targets.

The Grappl library [9, 16] adapts the interaction techniques to the hardware con-
text. It proposes an association between a high-level task and a set of compatible inter-
action techniques. To refine the choice, a set of parameters is associated with each task
by the designer or by the developer. However, Grappl does not solve the conflict that
may happen when different interaction techniques provide the same interaction possi-
bilities. Furthermore, Grappl does not take into account any user preference while a
user could prefer an interaction technique to another one for a specific task. Even if the
user interface is constructed at runtime, Grappl does not give any solution to deal with
context modifications such as a device unplugged.

As Grappl, the CATHI framework [18] also aims at adapting the application ac-
cording to the hardware configuration. It also creates the best user interface according
to a set of high-level needed tasks and to the current context of use. It represents a 3D
user interface as a graph of interconnected components. The designer selects the high-
level tasks to add to this graph. Then, according to the encountered context at runtime,
the most suited low-level tasks are connected to the graph. A low-level task represents
an interaction technique. It is based on an interaction modality and determines a set of
device units that are needed for this interaction modality to be usable. This low-level
task is instantiable if all these units are available at runtime. A scoring system is used to
avoid conflicts between equivalent possible low-level tasks. The scores are customized
by developers or designers with rules that can take the context into account. At run-
time, the graph with the higher level score is selected as the current 3D user interface
proposed to the user. CATHI handles context modifications at runtime by recreating
the interface graph when a modification happens, but it only takes into account device
configuration and weather conditions as context information. It does not take user adap-
tation into account yet, the only possibility given to the user to change the adaptation
behavior is to modify the set of rules, which can be difficult for non-expert users.

MiddleVR [11] is a generic VR toolbox that supports many interactions devices and
VR displays. Configuration files make it possible to adapt an application to many VR
systems without any new coding. Anyway, it manages neither recasting nor redistribu-
tion and doesn’t provide anything for high-level task description or user preferences.

3DPlasticToolkit: Plasticity for 3D User Interfaces 5

All these different solutions lack the feature, for the end-users, to check and control
adaptation behavior. Even if the created application is considered as the best one by the
system, the user may want to try another interaction technique or another device. He
must be able to modify the application adaptations at runtime.

3 Solution Overview

Tasks

Context models

Devices
[11]

Users

Adaptation process

Scoring

Meta-user
Interface

Final Application

PAS/ARCH
Concrete

Components [11]

Interaction

Content
visualization

Adaptation targets

Fig. 1: 3DPlasticToolkit overview. We propose models for three kinds of adaptation
sources. The adaptation process can be configured at runtime by the end-user through
an integrated user interface: the meta-user interface.

Our toolkit implements new models that aim at satisfying the requirements exposed
in Section 2.1: to deal with the main adaptation sources and complete R1. It proposes
models for these adaptation sources and exposes them to the adaptation process. They
correspond to the context models represented in Figure 1. These models can be edited
and extended by any developer. For now, data semantic is not modeled in the system
and not taken into account as an adaptation source, so it is not addressed in this paper.

First, the device model represents the hardware configuration at runtime. We de-
scribe its implementation in [13]. It exposes the available devices’ input and output
capabilities. This model does not only describe the data acquired or provided by de-
vices, but it also exposes their properties, limitations, and representations in the real
world. This model is described with UML class diagrams. It can be edited by any de-
veloper who wants to add new properties, input, or output types. To add a new device
into 3DPlasticToolkit, the developer must create a new class that inherits from the ba-
sic device class and then complete some functions of this class. These functions must
fulfill the input data, trigger the outputs and tell the system when a new instance of the
device is plugged or unplugged. The device properties corresponding to the device and
the description of its units are fulfilled at runtime with an XML description file. The
developer can create and edit this XML file with a dedicated graphical tool. He can also
edit the dynamic properties at runtime in the device class.

Second, a task model represents at a high level the application behavior and possi-
bilities through a collection of high-level tasks. The application developer or designer
provides this collection in a configuration file. Tasks can also be added and removed
at runtime using the toolkit API. Tasks expose compatible concrete application com-
ponents that will be possibly instantiated in the final application. A concrete applica-

6 J. Lacoche et al.

tion component is a software element that can be instantiated in the final application
to accomplish a task. For instance, it can correspond to the code for a 3D widget or
an interaction technique. The compatibility between a task and a concrete application
component is ranked: each compatible component is associated with a score. This score
can be modified at runtime according to the context. Additional properties can also be
included in the task descriptions in the configuration file.

Third, each task is associated with a user to perform user adaptation, especially
for taking user preferences into account. This user model can also be edited with a
configuration file. It includes the user profile with different properties such as age, size
or skill to define a profile for each possible user. It also includes preference scores for
the concrete application components, such as a specific interaction technique.

As shown in Figure 1, such an application component can be an interaction tech-
nique, a 3D menu, a 3D metaphor for data visualization, etc. This model is an extension
of PAC [6] to create application components independent of any concrete interaction de-
vices and that can support alternative concrete representations. It separates the original
presentation facet into two different facets. First, the rendering facet handles graphics
output and physics. It depends on a particular 3D framework. It can also define its rep-
resentation in the virtual world, such as the 3D aspect of a widget. Second, the logical
driver facet handles input and output devices management for the development of inter-
action techniques. It describes the way the interaction technique is controlled according
to a set of interaction device units described with the device model. The developer
must choose these device units to drive correctly the interaction technique. The logical
driver can be instantiated if these units are available at runtime. It receives the input
data that it needs from concrete devices and it can trigger the outputs. By using this
approach we ensure a good decoupling between the application component semantics
and its concrete implementation, the independence of the component over the target 3D
framework and OS, over the concrete devices used. Moreover, as multiple rendering
presentations can be implemented, the same component can have different 3D aspects
in the final application. We use a C# implementation of this model but the presentation
facets can be easily developed in the language required by the target 3D framework or
OS. In that case, a simple wrapper is needed to ensure the interface.

To take into account the adaptation sources and impact the different adaptation tar-
gets, we propose to use a scoring algorithm that will drive the application component
instantiations and modifications. As shown in Figure 1, this scoring algorithm is one
part of our adaptation process. This adaptation process handles local adaptations to
support Recasting and partially covers R3. This core component of our system receives
the different events corresponding to the changes in the context of use and can react
accordingly at runtime. Therefore dynamicity is supported and R5 is covered. Thanks
to this mechanism, the optimal usability of the application is always ensured.

One important missing capability in the state-of-the-art solutions is the possibility
for the end-user to check and modify the adaptation behavior at runtime. To solve this
issue and therefore cover R6 our toolkit contains a built-in configuration user interface
that can be shown and hidden at runtime: the meta-user interface. As shown in Figure
1, this is the second part of our adaptation process. For instance, the meta-user interface
allows the end-user to update his/her profile, change concrete application components

3DPlasticToolkit: Plasticity for 3D User Interfaces 7

or switch from an interaction device to another one. As shown in [15], such an interface
can also be used to control the redistribution process of an application developed with
our models. Therefore, R3 can be completely covered.

For now, we only partially cover R6 by providing a graphical authoring tool, a
collection of implemented interaction techniques and some integrated devices.

4 Context representation

In this section, we will only focus on the task and user models, as our device model has
already been introduced in [13].

4.1 Task Model

As in Grappl [9] and CATHI [18] we represent a 3D user interface as a composition
of high level tasks. Both consider a high-level task component as a self-contained con-
stituent of a 3D user interface. Both solutions focus on interaction tasks. An interaction
task corresponds to an action performed by a user via a user interface to achieve a cer-
tain goal. In Grappl, each interaction task has a corresponding coding interface that
compatible interaction techniques must respect. In the CATHI framework, high-level
interaction tasks are connectable components connected to the application logic and
low-level interaction tasks.

Our task model does not only focus on interaction tasks. They can refer to inter-
action techniques, widgets or application logic components. They are elementary tasks
that represent the behavior of the application independently from any concrete appli-
cation component. For now, it does not include the notions of sequences of events and
actions that can occur in the application. At runtime, each task is associated with a con-
crete application component. Each task in the system derives from a basic task class
and contains a list of compatible application components developed with the model
proposed in [13]. This compatibility is ranked. Indeed, some application components
can be considered more suited than others. Therefore, a compatibility score is assigned
to each application component. This compatibility list has to be edited in an XML file.
For a given task, the developer has to give the list of the control facets names that cor-
respond to the compatible application components. The names of these control facets
are associated with the compatibility scores. This XML file also contains the compati-
bility scores between control facets, rendering presentations and logical drivers for the
application model. Indeed, for a given application component, some rendering presen-
tation and logical driver can be considered more suited than others by the application
developer. An excerpt of this XML file for the creation of this list is given in Listing
1.1. It corresponds to the compatible application components for the selection and ma-
nipulation task given in Figure 2. To associate the component names with concrete code
instances, we use a factory design pattern in which the developer has to register his/her
components. As the compatibility can also depend on the context of use, these scores
can be edited at runtime, which can result in modifications in the final application. This
compatibility list is exposed to the system to allocate the best application components
according to the desired tasks and the current context of use. To illustrate this task

8 J. Lacoche et al.

1 <TaskCompatibility taskName=”TaskSelectionManipulation” componentName=”
Ray3DC” score=”1.0” />

2 <TaskCompatibility taskName=”TaskSelectionManipulation” componentName=”
Cursor3DC” score=”0.8” />

3 <TaskCompatibility taskName=”TaskSelectionManipulation” componentName=”
Proximity3DC” score=”0.5” />

Listing 1.1: Excerpt of an XML file describing compatibilities between tasks and
application components.

model, Figure 2 and Listing 1.1 give an example of a selection and manipulation task.
This task is compatible with three interaction components: a 3D ray component with a
score of 1.0, a 3D cursor component with a score of 0.8, and a 3D proximity component
with a score of 0.5. This association can let the system perform user adaptation.

User n°1 3D
Cursor

3D
Ray

3D
Proximity

Compatible with :

Sa = 1.0 Sa=0.8 Sa= 0.5
Selection and
Manipulation

Task

Associated
with :

Fig. 2: An example of high level task: selection and manipulation, compatible with three
concrete application components.

The developer can also include some parameters into the task as key-value proper-
ties. At runtime, an application component will have access to its corresponding high-
level task and therefore its parameters. In the example of the manipulation task given
in Figure 2, we can parametrize the degrees of freedom on which objects can be ma-
nipulated. An application control task could be parameterized with a tree that defines
the possible choices of a menu. Dependent tasks can also be defined by the developer
or the designer to indicate if a task needs another task to be completely performed. For
example, a 3D menu would need a selection interaction task to be achieved.

To represent an interaction task as an action performed by a user via a user inter-
face, we associate each task to a particular user (see Figure 2). This user is described
according to the model presented in the next subsection.

To add a new task to the system, the developer must create a new class that inherits
from a basic task class. To select which tasks will have to be performed in a particular
application, the developer must fulfill an XML configuration file. This file also contains
the parameters of the tasks. As for the device model, a graphical tool is provided to per-
form this configuration to make it usable by any designer. For now, key-value properties
in a string format can be extracted from the configuration file for each task. Custom

3DPlasticToolkit: Plasticity for 3D User Interfaces 9

1 <TaskConfig>
2 <NeedTask userId=”1” taskName=”SelectionManipulation” taskId=”0”

ScoringModule= ”User” >
3 </NeedTask>
4 <NeedTask userId=”1” taskName=”FurnitureControl” taskId=”1” topTask=”0”

ScoringModule=”Default” />
5 <NeedTask userId=”1” taskName=”Navigation” taskId=”2” ScoringModule=”

User” />
6 </NeedTask>
7 </ TaskConfig>

Listing 1.2: Task configuration file with 3 high level tasks

properties can also be included in XML nodes in the configuration file. The parsing
of these nodes must be implemented in the corresponding task class by the developer.
As an example, the configuration file for the furniture planning application detailed in
Section 6 is given in Listing 1.2. The application is composed of three tasks. The first
one is a selection and manipulation task for menu selection and moving 3D objects into
the scene. he second one is an application task for adding furniture into the room with a
menu. A menu needs a selection mechanism so this task is defined as dependent on the
first one in the configuration file. Last, the third one is a navigation task that is needed to
move the user’s point of view into the room. For each task, there is a parameter named
”Scoring Module”, it allows the developer to choose how the compatibility scores will
be taken into account. The possible choices and the impact on adaptations are described
in Section 5.

4.2 User Model

The goal of the user model is to describe the users who will interact with the application
and therefore perform user adaptations. This user model must contain two kinds of
information.

First, the user profile contains the different properties that characterize the user.
These properties can be for example the user age, his/her gender, his/her level of exper-
tise. In the user model, they are represented as key-value properties.

Second, the user model contains user preferences. These preferences are represented
as scores that will be taken into account by the adaptation process, described in Section
5, to instantiate the application components at runtime. Multiple scores can be contained
in the user model:

– As proposed in Section 4.1, a score Sa represents the compatibility between a high-
level task and a concrete application component. The user can also express how
he/she perceives this compatibility by including a score Sau in his/her model. For
instance, it can tell the system which interaction techniques the user prefers.

– In the application model, the scores Sld represent compatibility between an applica-
tion component and a logical driver. The user model includes scores Sldu to expose

10 J. Lacoche et al.

1 <UserConfig>
2 <User userId=”1”>
3 <Name value=”Bernard” />
4 <Age value=”35” />
5 <Gender value=”M” />
6 <Expertise value=”Novice” />
7 <UserPrefComponent Name=”3DRay” Task=”SelectionManipulation” score=”1.0”

>
8 <UserPrefDriver Name=”3DRayGamePadDriver” score=”0.3” />
9 <UserPrefDriver Name=”3DRay6DofDriver” score=”1.5” />

10 <UserPrefDriver Name=”3DRayMouseDriver” score=”0.5” />
11 </ UserPrefComponent>
12 <UserPrefComponent Name=”3DCursor” Task=”SelectionManipulation” score=”

0.8”>
13 (. . .)
14 </ UserPrefComponent>
15 <UserPrefComponent Name=”3DProximity” Task=”SelectionManipulation” score

=”0.5”>
16 (. . .)
17 </ UserPrefComponent>
18 </ User>
19 </ UserConfig>

Listing 1.3: User configuration file with only one user described.

preferences for this compatibility. For example, the user may prefer using some
kinds of devices to control a specific interaction technique.

– In the same way, the scores Srp represent compatibility between an application
component and a rendering presentation facet. The user model can also expose
preferences for these facets with scores Srpu. For instance, it can express a prefer-
ence for a particular representation of a 3D widget.

As for the task model, an XML configuration file is used to edit the profiles and
preferences of the users. One example of an XML configuration file for one user is
given in Listing 1.3. The file contains the user properties as well as his/her preferences.
An authoring tool makes it possible to perform this configuration. At runtime, 3DPlas-
ticToolkit API allows the developer to add dynamic properties and to modify the user
preferences. Listing 1.4 gives an example of code with some modifications for this user.
Here, the level of expertise of the user is updated, he is now considered as an expert.
Moreover, his/her preference score for the 3DCursor component increased.

5 Adaptation process

The adaptation process consists in taking into account the description of the context of
use to adapt application components developed with the model proposed in [13]. Its

3DPlasticToolkit: Plasticity for 3D User Interfaces 11

1 int indexUser = 1 ;
2 IndividualUser user = UserManager . Instance () . getUser (indexUser) ;
3 user . setProperty (”Expertise” , ”Expert”) ;
4 f loat newScore = 2.0 ;
5 user . setPreferenceComponent (”3DCursor” , ”SelectionManipulation” ,

newScore) ;

Listing 1.4: Properties and preferences modified at runtime with the user API.

Tasks
(Ex: Selection &
manipulation)

Users

Devices
(Ex: Razer

Hydra)

Sa

Sau
Srp

Sld

Depends on

Expose Required by

Sldu

Srpu

User defined preference score

Designer/Developer defined compatibility score

Device Units
(Ex: 2x 6Dof +

2 buttons +
etc)

Application Component
Logical Driver

(Ex: 3D ray 6 Dof driver)

Application Component
Abstraction
(Ex: 3D Ray
abstraction)

Applicaton
Component

Control
(Ex: 3D Ray

control)

Application Component
Rendering Presentation

(Ex : The 3D ray as a
red cylinder

 with a collider in Unity

Fig. 3: A summary of the application model and the context models.

goal is to provide always the best application to cover R4 and R5. It is divided into two
parts. First, there is an adaptation engine on top of all application components, which
continuously checks the current context and drives the instantiation and modification
of these agents through communication with all supervision control facets. Second, a
graphical meta-user interface lets the end-user check and modify the adaptation behav-
ior at runtime.

5.1 Adaptation engine

We propose to use a scoring system combined with our application model. This scor-
ing system uses the compatibility scores given by the developer or the designer and
exposed in the application model and the task model. It also uses the preferences scores
contained in the user model. The goal is to use these different scores to maximize the
usability of the final application.

For a given task, multiple components can be compatible, so the developer or the
designer can rank each compatible application component with a score Sa. In the same
way, for a given application component, a compatible rendering presentation will be
ranked with a score Srp and a logical driver with a score Sld. Theses scores are edited
separately in an XML configuration file. In the user model, each user has his/her own
preferences for these compatibilities and therefore the model contains the correspond-
ing scores: Sau, Srpu, and Sldu. This ranking is illustrated Figure 3.

At runtime, the construction of the 3D user interface consists in associating to each
task the best triplet (application component, logical driver, rendering presentation). The

12 J. Lacoche et al.

goal of the adaptation engine is to find the triplet which maximizes the score of com-
patibility to create the application that uses the most suited devices and with the most
suited content presentation. For a given triplet, its score is computed according to the
compatibility scores and the user preferences scores. As said in Section 4.1, for each
task there is a parameter named ”Scoring Module”. The score assigned to a triplet for a
given task will depend on its associated scoring module. A scoring module corresponds
to a software component that implements a particular score computation according to
the scores exposed to the system. Three built-in modules can be chosen:

– Default module: this module only considers the compatibility scores provided by
the designer or the developer. The goal is to provide them the maximum control
over the adaptation process. The score for a given triplet is: S = Sa+Sld +Srp

– User module: this module only uses the scores extracted from the user preferences.
The goal is to provide the application that corresponds as much as possible to the
user’s needs. The score for a given triplet is: S = Sau+Sldu+Srpu

– Combination module: this module proposes to combine the developer’s scores
with the user’s ones. It provides a good compromise between the user’s preferences
and the developers’ and designers’ choices. The score for a given triplet is: S =
(Sa+Sau)+(Sld +Sldu)+(Srp+Srpu)

This system gives to designers and developers a good control over the adaptation
process to build a final application that will best fit the user needs. Moreover, the
3DPlasticToolkit API gives also the possibilities for developers to integrate new scoring
modules. Therefore, it gives them the flexibility to deeply control the adaptation process
if they have specific needs.

The scoring process is performed at every context modification, it ensures to detect
application components that are not available or suited any longer or more suited ones:

1. Context modification is detected. For example, it can be the connection of a new
device, the add of a task, or the association of a task to a newly detected user.

2. This modified context is transmitted through all supervision controls currently in-
stantiated. For each one, we check if the associated logical driver is still possible
in the current context of use. It is still possible if the devices that it uses are still
plugged and available. If not, the application component is destroyed and the asso-
ciated task is classified as not done.

3. For each not done task, we create a list of all possible triplets (application compo-
nent, logical driver, rendering presentation) that can achieve the given task. A triplet
is possibly instantiable if the logical driver needed device units can be found in the
list of connected devices and if they are available. The rendering presentations that
do not correspond to the current used 3D framework are omitted. We attribute a
score for each triplet according to the previously described computation. Then, if
multiple triplets are found, the one that obtains the best score is used to instantiate
the PAC agent with the suited logical driver and rendering presentation. The de-
vices units associated with the logical driver are set as not available. The task is
classified as done

4. For each done task that has not been processed in the previous step, we check if
we can find a triplet more suited than the current one. To do so, we create a list

3DPlasticToolkit: Plasticity for 3D User Interfaces 13

with all triplets that get a better score than the current one. If the list is empty, the
current one is still the most suited. Conversely, we destroy the current application
component and we instantiate the new best choice. For now, this choice is directly
applied but it could be only suggested to the user to produce a less disturbing effect.

To illustrate this process, a usage scenario is given in Figure 4. It shows the different
steps of the adaptation process in 3DPlasticToolkit when context changes happen. In
this example, we focus on the instantiation of application components for the following
tasks: navigation and object manipulation. This adaptation scenario can correspond to
the application described in Section 6. In this example, the context change consists of
modifications of the available devices.

Launch application

- Selection/Manipulation
- Navigation

Add tasks Connection

Connection

Disconnection

3DRay and WalkingNavigation are destroyed: they are no more possible

Task Selection/Manipulation:
- Best couple: (3DCursor, 3DCursor6DofDriver, 3DCursorPUnity3D) with score = 3.3
- 3DCursor6DofDriver is connected to Leap Motion units (hand position, rotation, open

state)

 Task Navigation
- Best couple: (WalkingNavigation , WalkingNavigationKeyboardDriver,

WalkingNavigationPUnity3D) with score = 2.5
- WalkingNavigationKeyboardDriver is connected to keyboard units (directional arrows)

Task Selection/Manipulation:
- Best triplet: (3DRay , 3DRay6DofDriver, 3DRayPUnity3D) with score = 3.5
- 3DRay6DofDriver is connected to Razer Hydra units (position, rotation, buttons)

 Task Navigation

- Best couple: (WalkingNavigation, WalkingNavigationJoystickDriver,
WalkingNavigationPUnity3D) with score = 3.0

- WalkingNavigationJoystickDriver is connected to Razer Hydra units (one joystick)

New Tasks : New Devices

Fig. 4: Example of adaptation process.

In this scenario, when the application is launched, three devices are connected to the
computer: a keyboard, a mouse, and a Razer Hydra. The Unity3D game engine is used.
In the XML configuration file of the application, the Oculus Rift HMD is chosen as the
main display. Therefore, the associated device class configures the device SDK and the
3D rendering accordingly. The launch of the application induces the instantiation of a

14 J. Lacoche et al.

component for each task. The score assignation for the components is made with the
user module according to the scores detailed in Listing 1.3:

1. For the selection and manipulation task, according to the devices available the pos-
sible choices are:

– (3DRay, 3DRay6DofDriver, 3DRayPUnity3D) with S = 1.0+1.5+1.0 = 3.5
– (3DCursor, 3DCursor6DofDriver, 3DCursorPUnity3D) with S = 0.8+ 1.5+

1.0 = 3.3
– (3DProximity, 3DProximity6DofDriver, 3DProximityPUnity3D) with S= 0.5+

1.5+1.0 = 3.0
– (3DRay, 3DRayMouseDriver, 3DRayPUnity3D) with S= 1.0+0.5+1.0= 2.5
– (3DRay, 3DRayGamePadDriver, 3DRayPUnity3D) with S = 1.0+0.3+1.0 =

2.3
– (3DCursor, 3DCursorGamePadDriver, 3DCursorPUnity3D) with S= 0.8+0.2+

1.0 = 2.0
– (3DProximity, 3DProximityGamePadDriver, 3DProximityPUnity3D) with S =

0.5+0.2+1.0 = 1.7
The combination chosen is (3DRay, 3DRayDriver6Dof, 3DRayPUnity3D) because
it gets the best score (3.5). Therefore, the application component is instantiated.
The user can now manipulate the objects with a 3D Ray-based interaction technique
controlled with the Razer Hydra.

2. For the navigation task, the possibilities are:
– (WalkingNavigation, WalkingJoystickDriver, WalkingNavigationPUnity3D) with

S = 1.0+1.0+1.0 = 3.0
– (WalkingNavigation, WalkingKeyboardDriver, WalkingNavigationPUnity3D)

with S = 1.0+0.5+1.0 = 2.5
The chosen triplet is (WalkingNavigation, WalkingDriverJoystick, WalkingNavi-
gationPUnity3D) because it gets the best score (3.0). It corresponds to an inter-
action technique based on a walking navigation metaphor controlled with one of
the joysticks provided by the Razer Hydra. This metaphor can be compared to the
”WALK” navigation type from X3D. The joystick is used to move the point of view
forward and backward as well as changing its rotation around the up axis.

The logical driver instantiated for the navigation task also describes a tactile output
as an optional output. A vibration is triggered when colliding a virtual object. As this
output is optional, the logical driver can be instantiated without it. Indeed, the Razer
Hydra does not provide any vibration capabilities.

After a few minutes, someone asks the user for the Razer Hydra. The user does not
want to stop using the application because he/she has not finished to lay the items of
furniture out. In exchange for the Razer Hydra, he gets a Leap Motion. As the Razer
Hydra is disconnected, the two currently instantiated application components are de-
stroyed because they are not possible anymore. Then, with the connection of the Leap
Motion the interface is rebuilt as follows:

1. For the selection and manipulation task, some triplets are not possible any longer,
the list of possible ones is updated:

3DPlasticToolkit: Plasticity for 3D User Interfaces 15

– (3DCursor, 3DCursor6DofDriver, 3DCursorPUnity3D) with S = 0.8+ 1.5+
1.0 = 3.3

– (3DProximity, 3DProximity6DofDriver, 3DProximityPUnity3D) with S= 0.5+
1.5+1.0 = 3.0

– (3DRay, 3DRayMouseDriver, 3DRayPUnity3D) with S= 1.0+0.5+1.0= 2.5
– (3DProximity, 3DProximityGamePadDriver, 3DProximityPUnity3D) with S =

0.5+0.2+1.0 = 1.7
The triplet that gets the best score (3.3) is now (3DCursor, 3DCursor6DofDriver,
3DCursorPUnity3D). It corresponds to a 3D cursor controlled with a driver that
implements a 6-DoF interaction. The position and rotation of the cursor are con-
trolled through one hand detected by the Leap Motion. The open or closed state of
the hand is used as the signal for selection and deselection.

2. For the navigation task, no joysticks are available any longer. One triplet is possible
and therefore is instantiated: (WalkingNavigation, WalkingKeyboardDriver, Walk-
ingNavigationPUnity3D). The walking navigation component is now controlled
with the directional keys of the keyboard. The up and down keys are used to move
forward and backward while the left and right ones are used to rotate the point of
view around the up axis.

This usage scenario demonstrates the ability of the proposed model to handle con-
text modification to ensure usability continuity of any 3D user interface. Moreover, with
the use of a scoring system, this usability is maximized according to the current context
of use. In the next section, we demonstrate how this adaptation mechanism can be con-
figured at runtime by the end-user thanks to an integrated graphical user interface: the
meta-user interface.

5.2 The meta-user interface

One of the identified drawbacks in current solutions is the lack of control given to the
user over the adaptation process. Indeed, the user must be aware of any system adapta-
tion and be able to modify the result (requirement R5). Therefore, our solution proposes
a built-in application component that implements a graphical user interface (GUI) that
satisfies this need: the meta-user interface. The aspect of the meta-user interface is cho-
sen thanks to our scoring mechanism presented before. It can be a 3D menu placed in
the 3D world for an AR or VR system, or it can be a 2D menu placed on top of the
virtual world. The menu can be shown and hidden at runtime and the user can interact
with it thanks to the different selection techniques integrated into 3DPlasticToolkit. The
meta-user interface provides the end-user with a view of the current state of the system
and gives him the possibility to modify the following aspects of the application:

– For each task, the user can see the currently associated application component and
can select another one to achieve it. Only the possible ones are proposed to the user.
For instance, it can be used to switch from an interaction technique to another one.

– For each instantiated application component, the user can see the associated logical
driver and can select another one to control it. Similarly to the interaction techniques,
only the possible logical drivers are proposed. For example, it can be used to change
the kinds of devices that control an interaction technique.

16 J. Lacoche et al.

– For each instantiated application component, the user can see the associated render-
ing presentation and can select another one. Only the possible ones are proposed. For
example, it can be used to change the aspect of a 3D widget at runtime.

– For each logical driver, the user can see all associations between actions and device
units. The user can change each associated device unit in a list of compatible and
available ones.

– The user can edit his/her profile. It can be a modification of his personal properties
such as his/her age or expertise and the modification of his/her preference scores.
These modifications are taken into account as context changes by the adaptation pro-
cess.

These features are used by the adaptation process to modify the user model. Indeed,
the preferences and profiles modifications are directly reported and saved in the user
model. In the same way, the choices for the application components, logical drivers, and
the rendering presentations are also used to update the user model. Indeed, when a user
changes one of these components in the meta-user interface and keeps the new one until
the end of the application, the preferences scores of the two components are swapped.
The goal is to learn from the user’s habits to automatically adapt the application.

6 Development of a Furniture Planning Application with
3DPlasticToolkit

To demonstrate the benefits of 3DPlasticToolkit, we developed a furniture planning ap-
plication. We developed this application with 3DPlasticToolkit to evaluate its capabili-
ties. We compared the results to what could be obtained with MiddleVR, one solution
introduced in Section 2 and the only one of them available online. The goal of this
application is to help a customer to plan the use of premises, here a room rented for
special events. As this room can be under construction or too far for a real guided tour,
we propose to immerse the customer into a virtual version of the premises. The cus-
tomer has the capability to layout the room with furniture (add, remove, move). These
features help him/her to understand the potential of the free space and make it possible
for him/her to imagine and plan how space will be used.

We exploited a library of existing 3D objects (the room and the items of furniture) to
implement this application. We use 3DPlasticToolkit or MiddleVR to develop its inter-
active capabilities. The first step consists of importing those objects into Unity3D and
create a scene with the empty room and with the 3DPlasticToolkit or MiddleVR scripts.
The second step in the development consists of configuring the interactive capabilities
of the application. With 3DPlasticToolkit, the developers select the high-level task that
will describe this application. At the task level, the furniture planning application is
composed of three different tasks:

– The ”SelectionManipulation” Task. The goal of this task is to give the possibility
to the end-user to select and move furniture in the room.

– ”The ”Navigation Task” With this task the user will be able to move his point of
view in the scene with a navigation interaction technique.

3DPlasticToolkit: Plasticity for 3D User Interfaces 17

– The ”FurnitureControl”. This task has been specially built for this application. It
contains different events that can be triggered by the associated application com-
ponent such as adding an item of furniture, saving the current layout, and loading a
pre-defined one.

The XML task configuration file of this application is provided in Listing 1.2. Mid-
dleVR does not introduce such an abstraction for interaction techniques. Indeed, they
need to be chosen in Unity3D at development time, preventing from changing them
at runtime or between sessions. We then chose a 3D ray-based selection/manipulation
technique and a joystick-based navigation technique.

Regarding those tasks, 3DPlasticToolkit components for navigation and selection/-
manipulation were already developed as they are interaction capabilities required for
3DUser interfaces. Examples of selection/manipulation techniques included in 3DPlas-
ticToolkit are described in [13]. MiddleVR also includes the same built’in interaction
techniques for selection/manipulation and navigation. For the ”FurnitureControl” task,
we had to develop a dedicated application component for both MiddleVR and 3DPlas-
ticToolkit. This application component implements a graphical menu with the required
features (adding objects, load, save). The rendering presentation facets dynamically
check which kind of device is used to place this menu in the 3D space (in immersive
mode) or screen space (in 2D mode). For instance, with 3DPlasticToolkit, as shown
in Figures 5a and 5b, for desktop and immersive setups, the menu is placed in the 3D
space and can be moved, while on a tablet it is static and it overlays the application as
seen in Figure 5c.

Then, our goal is to deploy this application on multiple platforms and for users
with different profiles. Here, we describe three types of platforms that can be used
and how the application is adapted. 3DPlasticToolkit discovers the capabilities of the
devices dynamically and changes can be handled at runtime, while MiddleVR requires
a graphical user interface to make a configuration which cannot be changed at runtime.

First, the application can be used on a desktop platform (see Figure 5a). This plat-
form is simply composed of a monitor, a mouse, and a keyboard. With MiddleVR,
the basis of the ray is controlled with the mouse by simulating a 6-DoF tracker. This
simulation is limited at it only allows to move the ray backward and forward and to
rotate it around the Up axis. The application is then not completely usable. Selection/-
Manipulation is confirmed with one button of the mouse and navigation is controlled
with keyboard buttons simulating a joystick. With 3DPlasticToolkit, a 3D ray-based
interaction technique is proposed for the selection and manipulation task. The logical
driver uses the mouse position to control the ray extremity and the buttons for select-
ing and grabbing. For the navigation task, a walking navigation metaphor is deployed.
The associated logical driver uses the arrows of the keyboard to translate and rotate the
user’s point of view. For the furniture application control task, a 3D graphical menu
is deployed and placed according to the user’s point of view. In such a situation, the
user stands in front of his PC and he could decide to plug another device at runtime to
benefit from more advanced 3D interactions. A similar adaptation scenario as the one
described in Section 5.1 could be considered with the furniture planning application.
Indeed, the plugging of a new device such as Razer Hydra or of a leap motion would

18 J. Lacoche et al.

(a) (b) (c)
Fig. 5: Three different types of platforms on which the furniture application can be run
with 3DPlasticToolkit: (a) a desktop platform (b) an immersive platform (an HTC Vive),
(c) a mobile platform (a tablet).

result in modifications of the deployed application components. Such a situation cannot
be handled with MiddleVR.

Second, as shown in Figure 5b, the application can be used on an immersive plat-
form. Here, we use an HTC Vive that is composed of an HMD and two 6-DoF con-
trollers with buttons and trackpads. With MiddleVR, the application can be easily con-
figured. The 3D-ray interaction technique can be associated with one of the two con-
trollers, and one of the trackpads can be used for navigation. With 3DPlasticToolkit,
for the selection and manipulation task, a virtual hand is used to select and catch the
scene objects. The logical driver uses the position and the rotation of one of the con-
trollers to set the hand’s position and rotation. One button of the controller is used to
close the hand and grab an object. For the navigation task, the user can navigate at
scale one in the area defined by the head tracking zone. Moreover, we combine it with
a teleportation capability. With the second controller, the user can use a ray-based in-
teraction technique to select a point in the scene where he wants to be teleported. As
for the desktop platform, the graphical menu is also deployed in the 3D space for the
furniture application control task. In this example, multiple alternatives for the two first
tasks could be deployed. Indeed, a 3D-ray could also be controlled with a 6-DoF con-
troller to select and manipulate the scene objects. As well, the teleportation navigation
technique could also be replaced by a navigation technique that exploits the trackpad of
one of the controllers to rotate and move forward and backward as in MiddleVR. For
the ”FurnitureControl” task, an alternative of the 3D menu could be to propose a con-
crete application component based on vocal recognition. Contrary to MiddleVR, with
3DPlasticToolkit such adaptation can be intended directly by the end-user. Indeed, he
could edit his/her preferences score or he could use the meta-user interface at runtime
to change the deployed interactions as detailed in Section 5.2.

Third, as shown in Figure 5c, the application can be used on a mobile platform. Here
the platform is an Android tablet. With 3DPlasticToolkit, it requires a specific build
of the application for Android configured in Unity3D. However, mobile platforms are
not handled by MiddleVR and therefore our application cannot be deployed with this
solution. With 3DPlasticToolkit, for the selection and manipulation task, a 2D cursor
interaction technique is deployed on the tablet. The chosen logical driver uses the multi-

3DPlasticToolkit: Plasticity for 3D User Interfaces 19

touch capabilities of the tablet. With this technique, the user can translate the objects
onto the floor with one finger and rotate them around the up axis with two fingers. For
the navigation task, a pan and zoom navigation technique is deployed. The graphical
menu for the application control task is also deployed on this platform and overlays the
whole application in screen space. It can be shown and hidden.

To conclude this section, this comparison shows that MiddleVR cannot meet all
plasticity requirements. In particular, MiddleVR fails to cover R2 and R5 as it cannot
propose dynamic adaptation of interaction techniques. Usability continuity is not al-
ways ensured with MiddleVR. As well, as it is only available on Windows it cannot
cover R4. With MiddleVR, the end-user is also partially excluded from the adaptation
process, and then we cannot cover R1 and R6. However, contrary to the current im-
plementation of 3DPlasticToolkit, MiddleVR can handle clustering and can deploy to
a CAVE system. That is why we developed an interface between 3DPlasticToolkit and
MiddleVR to exploit these capacities as described in [15]. Moreover, we consider that
MiddleVR tools are very easy to use for developers and better cover R7 so far. In-
deed, the solution only relies on a graphical user interface and on Unity3D scripts while
3DPlasticToolkit may require some coding, the use of not yet optimized graphical user
interfaces and manual edition of XML files. To confirm our assumptions, we plan to set
up a formal comparison between these tools with experienced developers.

7 Conclusion

3DPlasticToolkit is a toolkit that supports plasticity for 3D user interfaces, it relies on
three models to represent the context of use, including hardware, task and user config-
urations. Its adaptation process is based on a scoring algorithm that takes into account
the context of use to create the most suited 3D user interface. This adaptation engine
can be configured at runtime with a built-in graphical tool: the meta-user interface.

This solution covers most of the plasticity requirements for 3D. Moreover, these
models have also been extended to support redistribution as a mean for adaptation [15].

To demonstrate the capabilities of 3DPlasticToolkit and its differences with state-
of-the-art solutions, multiple examples are given in the paper based on the development
of a furniture planning application. This application is now totally usable and meets its
plasticity requirements.

Our future work will consist in fulfilling the current lacks of our toolkit to meet all
plasticity requirements.

Exploring scenario engines to complete the task model: The task model allows
the developer to model the application behavior and possibilities at a high level. How-
ever, it does not let him orchestrate the sequences of events and actions that can occur
in the virtual environment. This is the goal of scenario engines such as SEVEN [5] that
could be associated with our toolkit.

Toolkit completion and validation: For now, our solution mainly focuses on help-
ing developers for the creation of plastic 3D user interfaces. However, authoring tools
are not completely developed and are not ready to use yet by designers. More work
should be done on that point before a possible evaluation.

20 J. Lacoche et al.

Exploring new solutions for learning user preferences: For now, the user’s pref-
erences scores are declared for each user. It would be interesting to analyze the current
user profile and the current task parameters, to automatically determine the user prefer-
ences scores, as suggested in [12] to build general, group and individual user models,
by using machine learning algorithms.

8 Reference to the official publication

Springer Nature Switzerland AG 2019
P. Bourdot et al. (Eds.): EuroVR 2019, LNCS 11883, pp. 1–22, 2019.
The final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-31908-3 5

References

1. Avouac, P.A., Lalanda, P., Nigay, L.: Autonomic management of multimodal interaction:
DynaMo in action. In: EICS 2012. pp. 35–44. ACM New York, NY, USA, Copenhagen,
Denmark (2012)

2. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory and Prac-
tice. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (2004)

3. Calvary, G., Coutaz, J., Thevenin, D.B., L., Florins, M., Limbourg, Q., Souchon, N., Vander-
donckt, J., Marucci, L., Paterno, F., Santoro, C.: The CAMELEON Reference Framework.
Deliverable D1.1 (2002)

4. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A.: Towards a new generation of
widgets for supporting software plasticity: the ”comet”. In: EICS 2005, p. 306–324. Springer

5. Claude, G., Gouranton, V., Bouville Berthelot, R., Arnaldi, B.: #SEVEN, a Sensor Effec-
tor Based Scenarios Model for Driving Collaborative Virtual Environment. In: ICAT-EGVE
(Dec 2014)

6. Coutaz, J.: PAC, on object oriented model for dialog design. In: Interact’87 (1987), 6 pages.
7. Duval, T., Blouin, A., Jézéquel, J.M.: When model driven engineering meets virtual reality:

Feedback from application to the collaviz framework. In: 7th Workshop SEARIS (2014)
8. Gonzalez-Calleros, J., Vanderdonckt, J., Muoz-Arteaga, J.: A structured approach to support

3d user interface development. In: Advances in Computer-Human Interactions, 2009. ACHI
’09. Second International Conferences on. pp. 75–81 (Feb 2009)

9. Green, M., Lo, J.: The grappl 3d interaction technique library. In: VRST 2004. p. 16–23.
ACM, New York, NY, USA

10. Hand, C.: A survey of 3d interaction techniques. In: Computer graphics forum. vol. 16, p.
269–281 (1997)

11. Kuntz, S.: Middlevr a generic vr toolbox. In: 2015 IEEE Virtual Reality (VR). pp. 391–392
(March 2015)

12. Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., Royan, J.: Machine Learning Based Interac-
tion Technique Selection For 3D User Interfaces. In: EuroVR 2019. p. to appear. Springer,
Lecture Notes in Computer Science

13. Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., Royan, J.: Plasticity for 3D User Interfaces:
new Models for Devices and Interaction Techniques. In: EICS 2015. ACM

14. Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., Royan, J.: A survey of plasticity in 3D user
interfaces. In: 7th Workshop SEARIS (2014)

3DPlasticToolkit: Plasticity for 3D User Interfaces 21

15. Lacoche, J., Duval, T., Arnaldi, B., Maisel, É., Royan, J.: D3part: A new model for redis-
tribution and plasticity of 3d user interfaces. In: 3D User Interfaces (3DUI), 2016 IEEE
Symposium on. IEEE (2016)

16. Lee, W.L., Green, M.: Automatic layout for 3d user interfaces construction. In: Proceedings
of the 2006 ACM international conference on Virtual reality continuum and its applications.
p. 113–120 (2006)

17. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: Usixml: a
language supporting multi-path development of user interfaces. pp. 11–13. Springer-Verlag
(2004)

18. Lindt, I.: Adaptive 3D-User-Interfaces. Ph.D. thesis (2009)
19. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface software tools.

ACM Transactions on Computer-Human Interaction (TOCHI) 7(1), 3–28 (2000)
20. Thevenin, D., Coutaz, J.: Plasticity of user interfaces: Framework and research agenda. In:

Proceedings of INTERACT. vol. 99, p. 110–117 (1999)
21. Valkov, D., Bolte, B., Bruder, G., Steinicke, F.: Viargo - a generic virtual reality interaction

library. In: 5th Workshop SEARIS (2012)

