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Abstract This work proposes an algorithm allowing to perform a fast and light computation
of branches of damped Nonlinear Normal Modes (dNNMs). Based on a previous work about
undamped NNMs (uNNMs), it couples Proper Generalized Decomposition (PGD) features,
harmonic balance and prediction-correction continuation schemes. After recalling the main
contributions of the method applied on an example with cubic nonlinearities, the issue of a
reduced nonlinear modal synthesis is briefly addressed.

The differential equations governing the motion of a nonlinear dynamical system can usually
take the following form after a spatial discretization, where the nonlinear efforts fnl(x, ẋ) are
separated from the linear ones:

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t),x(t)) = f e(t) (dim.: N) (1)

Assuming the Rosenberg’s framework [4], an undamped NNM is a set of limit cycles of
Eq. (1) from which dissipative and external forcing terms are put to zero. Shaw and Pierre
extended this first definition of NNMs to the case of dissipative systems: a (damped) NNM
is a two-dimensional invariant manifold in the phase space [5]. Hence, one wants to obtain a
dNNM by computing a set of pseudo-periodic solutions of Eq. (1) with f e(t) = 0.

A frequential reduced algorithm coupling a PGD approach with an harmonic balance
method (HBM) is implemented to make a quick and compact dNNM computation. The first
step of the PGD process is separating the variables, here space and time:

x(t) ≈
m
∑

j=1

pjqj(t) ⇔ x(t) ≈ Pq(t) with P = [p1, . . . ,pm] (2)

m ≪ N is a positive integerand denotes the number of PGD modes (pj , qj(t)) used for x
decomposition. P is the (N × m)-sized matrix of the m PGD mode shapes pj , and q(t) is
the vector containing the time dependence of each PGD mode. Then a spatial subproblem Sm

and a temporal subproblem Tm are defined from specific weak formulations [1]. The calculus,
its notations and operators are detailed in [3]. Given the spatial matrix P, Tm is a set of m
ordinary differential equations of order 2. A complex HBM [2] is then implemented to obtain
another nonlinear algebraic system for Tm from the following solution form:

q(t) =
a0√
2
+

H
∑

k=1

e−kβt[ak cos (kωt) + bk sin (kωt)] (3)

β-dependant linear terms can easily be separated from the classic undamped HBM matrices.
Given the temporal part q(t), the spatial subproblem Sm is a N × m nonlinear algebraic
system which takes into account the damping ratio β into the definition of its operators. The
PGD/HBM solver is obtained by integrating Sm and Tm into an alternated directions solver.
This PGD/HBM solver is eventually embedded into a continuation scheme as a corrector in
order to build the dNNM branch. The choice of predictor is left to the user.



The first point of the branch is described with only one PGD mode which contains the
shape and the frequency of the underlying linear damped mode with a null amplitude. When
the error criterion can no longer be met through the continuation, the size of the description m

is incremented and some new spatial and temporal information is added to the PGD description.
Unlike Grolet and Thouverez [1] who initialized q(t) with random values, we propose to process
Tm first based on the shape on the next damped linear modes. The full algorithm adds new
modal data on the fly, only when it is necessary with respect to the error criterion.

It should be noted that two variants have been implemented: oPGD (optimized PGD)
recomputes the whole P matrix at each point of the branch whereas pPGD (progressive PGD)
only computes the last shape pm+1 when it is introduced. Although oPGD generally needs less
PGD modes than pPGD, the computational cost is higher.

The method is here applied on a cantilever beam with a cubic spring at its free end investi-
gated in [3]. A 1% modal damping is added on each linear mode. The Frequency-Energy Plot
given on Fig. 1 illustrates the hardening effect of the cubic nonlinearity while the conservative
mechanical energy grows and the damping-energy dependence of the NNM.

Figure 1: (a) Schematic diagram of beam+cubic spring (b) Main branch of dNNM1 (c) Damping
ratio with respect to energy. Squares: Solution points where a PGD mode is added.

Eventually, this compact description of NNMs can be embedded into a reduced modal
synthesis solver in order to quickly build Frequency Response Functions by looking for x solution
of Eq. (1) as follows:

x(t) = P(s)

(

a0(s)√
2

+

H
∑

k=1

[ak(s) cos (k(ωt+ φ)) + bk(s) sin (k(ωt+ φ))]

)

(4)

where s is an index for the dNNM branch and φ is the phase of the response. Although this
decomposition is slightly different of the one given in [2], the two equations used to solve for s
and φ are similar.
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