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Abstract

We consider the full shift T : Ω→ Ω where Ω = AN, A being a finite
alphabet. For a class of potentials which contains in particular potentials
φ with variation decreasing like O(n−α) for some α > 2, we prove that
their corresponding equilibrium state µφ satisfies a Gaussian concentra-
tion bound. Namely, we prove that there exists a constant C > 0 such
that, for all n and for all separately Lipschitz functions K(x0, . . . , xn−1),
the exponential moment of K(x, . . . , Tn−1x)−

∫
K(y, . . . , Tn−1y) dµφ(y)

is bounded by exp
(
C
∑n−1
i=0 Lipi(K)2

)
. The crucial point is that C is

independent of n and K. We then derive various consequences of this
inequality. For instance, we obtain bounds on the fluctuations of the
empirical frequency of blocks, the speed of convergence of the empirical
measure, and speed of Markov approximation of µφ. We also derive an
almost-sure central limit theorem.
Keywords: concentration inequalities, empirical measure, Kantorovich
distance, Wasserstein distance, d-bar distance, relative entropy, Markov
approximation, almost-sure central limit theorem.
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1 Introduction

We consider the full shift T : Ω→ Ω where Ω = AN, A being a finite alphabet.
Given an ergodic measure µ on Ω and a continuous observable f : Ω→ R, we
know by Birkhoff’s ergodic theorem that n−1Snf(x) converges, for µ-almost
every x, to

∫
fdµ. (We use the standard notation Snf = f + f ◦ T + · · · +

f ◦ Tn−1.) To refine this result, we need more assumptions on µ and f . For
instance, if µ = µφ is the equilibrium state for a Lipschitz potential φ : Ω→ R

and f is also a Lipschitz function, then the following central limit theorem
holds:

lim
n→∞

µφ

(
x :

Snf(x)− n
∫
fdµφ√

n
≤ u

)
=

1

σ
√

2π

∫ u

−∞
e−

ξ2

2σ2 dξ (1.1)

for all u ∈ R, where σ2 = σ2
f is the variance of the process {f(Tnx)}n≥0

where x is distributed according to µφ. 1 This result says in essence that the
fluctuations of Snf(x)−n

∫
fdµφ are with high probability of order

√
n, when

n→∞. Fluctuations of order n, referred to as ‘large deviations’, are unlikely

1 σ2
f =

∫
f2dµφ −

( ∫
fdµφ

)2
+ 2

∑
`≥1

(∫
f · f ◦ T `dµφ −

( ∫
fdµφ

)2)
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to appear. Indeed, for instance one has

µφ

(
x :

1

n
Snf(x) ≥

∫
fdµφ + u

)
� e−nI(u+

∫
fdµφ) (1.2)

where u ≥ 0 and I(u) ≥ 0 is the so-called ‘rate function’ which is (strictly)
convex, such that I(

∫
fdµφ) = 0, and equal to +∞ outside a certain finite

interval (uf , ūf ).2 Of course, both the central limit theorem and the large
deviation asymptotics have been obtained for more general potentials, and for
more general ‘chaotic’ dynamical systems. For a fairly recent review on prob-
abilistic properties of nonuniformly hyperbolic dynamical systems modeled by
Young towers, we refer to [4].

In this paper, we are interested in concentration inequalities which describe
the fluctuations of observables of the form K(x, Tx, . . . , Tn−1x) around their
average. The only restriction on K is that it has to be separately Lipschitz.
By this we mean that, for all i = 0, . . . , n− 1, there exists a constant Lipi(K)
with

|K(x0, . . . , xi, . . . , xn−1)−K(x0, . . . , x
′
i, . . . , xn−1)| ≤ Lipi(K) d(xi, x

′
i).

for all points x0, . . . , xi, . . . , xn−1, x
′
i in Ω, where d is the usual distance on Ω

(see (2.1)). So K can be nonlinear and implicitly defined. Of course, such a
class contains partial sums of Lipschitz functions, namely functions of the form
K(x0, . . . , xn−1) = f(x0) + · · ·+ f(xn−1) for which Lipi(K) = Lip(f) for all i.
Beside considering very general observables, the other essential characteristics
of concentration inequalities is that they are valid for all n, contrarily to the
above two results which are valid only in the limit n → ∞. More precisely,
we shall prove the following ‘Gaussian concentration bound’. There exists
a constant C such that, for all n and for all separately Lipschitz functions
K(x0, . . . , xn−1), we have∫

exp
(
K
(
x, Tx, . . . , Tn−1x

))
dµφ(x)

≤ exp

(∫
K
(
x, Tx, . . . , Tn−1x

)
dµφ(x)

)
exp

C n−1∑
j=0

Lipj(K)2

 . (1.3)

The crucial point is that C is independent of n andK. By a standard argument
(see below), the previous inequality implies that for all u > 0

µφ

(
x : K

(
x, Tx, . . . , Tn−1x

)
−
∫
K
(
y, Ty, . . . , Tn−1y

)
dµφ(y) ≥ u

)
≤ exp

(
− u2

4C
∑n−1

i=0 Lipi(K)2

)
. (1.4)

2For two positive sequences (an), (bn), an � bn means that limn(1/n) log an =
limn(1/n) log bn.
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The Gaussian concentration bound (1.3) is known for Lipschitz potentials
[7]. We shall prove that it remains true for a large subclass of potentials φ
satisfying Walters condition. For instance, the bound holds for a potential
whose variation is O(n−α) for some α > 2. The proof of our result relies on
two main ingredients. First, we start with a classical decomposition of K−

∫
K

as a telescopic sum of martingale differences. Second, we have to do a second
telescoping to use Ruelle’s Perrons-Frobenius operator. But we do not have a
spectral gap anymore as in [7] (in the case of Lipschitz potentials). Instead,
we use a result of V. Maume-Deschamps [18] based on Birkhoff cones.

We apply the Gaussian concentration bound and its consequences, like
(1.4), to various observables. On the one hand, we obtain concentration
bounds for previously studied observables. We get the same bounds but
they are no more limited to equilibrium states with Lipschitz potentials. On
the other hand, we consider observables not considered before. Even when
K(x, . . . , Tn−1x) = Snf(x), we get a non-trivial bound. We then obtain a
control on the fluctuations of the empirical frequency of blocks a0, . . . , ak−1

around µ([a0, . . . , ak−1]), uniformly in a0, . . . , ak−1 ∈ Ak. We then consider
an estimator of the entropy µφ based on hitting times. The next application
is about the speed of convergence of the empirical measure (1/n)

∑n−1
i=0 δT ix

towards µφ in Wasserstein distance. Then we obtain an upper bound for the
d̄-distance between any shift-invariant probability measure and µφ. This dis-
tance is bounded by the square root of their relative entropy, times a constant.
A consequence of this inequality is a bound for the speed of convergence of the
Markov approximation of µφ in d̄-distance. Then we quantify the ‘shadowing’
of an orbit by another one which has to start in a subset of Ω with µφ-measure
1/3, say. Finally, we prove an almost-sure version of the central limit theorem.
This application shows in particular that concentration inequalities can also
be used to obtain limit theorems.

2 Setting and preliminary results

Let Ω = AN where A is a finite set. We denote by x = x0x1 . . . the elements
of Ω (hence xi ∈ A), and by T the shift map: (Tx)k = xk+1, k ∈ N. (We use
upper indices instead of lower indices because we will need to consider bunches
of points in Ω, e.g., x0, x1, . . . , xp, xi ∈ Ω.) We use the classical distance

dθ(x, y) = θinf{k:xk 6=yk} (2.1)

where θ ∈ (0, 1) is some fixed number. Probability measures are defined on the
Borel sigma-algebra of Ω which is generated by cylinder sets. Let φ : Ω → R

be a continuous potential, which means that

varn(φ) := sup{|φ(x)− φ(y)| : xi = yi, 0 ≤ i ≤ n− 1} n→∞−−−→ 0.
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The sequence (varn(φ))n≥1 is the modulus of continuity of φ and it is called
the ‘variation’ of φ in our context. By the way, we denote by C (Ω) the Banach
space of real-valued continuous functions on Ω equipped with the supremum
norm ‖ · ‖∞. We put further restrictions on φ, namely that it must satisfy the
Walters condition [22]. For x, y in Ω let

W (φ, x, y) = sup
n∈N

sup
a∈An

|Snφ(ax)− Snφ(ay)| .

We assume that W (φ, x, y) exists and that there exists W (φ) > 0 such that

sup
x,y ∈Ω

W (φ, x, y) ≤W (φ) . (2.2)

Now for p ∈ N let

Wp(φ) := sup{W (φ, x, y) : xi = yi, 0 ≤ i ≤ p− 1} .

Definition 2.1. φ is said to satisfy Walters’ condition if (Wp(φ))p∈N is a
strictly positive sequence and decreases to 0 as p→∞.

We now make several remarks on Walters’ condition. First, observe that
locally constant potentials do not satisfy this condition because Wp(φ) = 0 for
all p larger than some p0. But one can in fact work with any strictly positive
sequence (W̃p(φ))p∈N decreasing to zero such that Wp(φ) ≤ W̃p(φ) for all p,
e.g., max(Wp(φ), ηp) for some fixed η ∈ (0, 1). Second, one easily checks that

varp+1(φ) ≤Wp(φ) ≤
∞∑

k=p+1

vark(φ) , p ∈ N. (2.3)

Hence the set of potentials satisfying Walters’ condition contains the set of
potentials with summable variation. In particular, (Wp(φ))p is bounded above
by a geometric sequence if and only if (varp(φ))p is also bounded above by
a geometric sequence. This corresponds to the case of Lipschitz or Hölder
potentials (with respect to dθ).

Now define Ruelle’s Perron-Frobenius operator Pφ : C (Ω)→ C (Ω) as

Pφf(x) =
∑
Ty=x

f(y) eφ(y) .

The next step is to define a function space preserved by Pφ and on which it
has good spectral properties. We take the space of Lipschitz functions with
respect to a new distance dφ built out of φ as follows.

Definition 2.2 (The distance dφ). For x, y ∈ Ω let

dφ(x, y) = Wp(φ) if dθ(x, y) = θp

and dφ(x, x) = 0.
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Now define

Lφ = {f ∈ C (Ω) : ∃M > 0 such that varn(f) ≤MWn(φ), n = 1, 2, . . .}

and

Lipφ(f) = sup

{
|f(x)− f(y)|
dφ(x, y)

: x 6= y

}
= sup

{
varn(f)

Wn(φ)
: n ∈ N

}
.

One can then define a norm on Lφ, making it a Banach space, by setting

‖f‖Lφ = ‖f‖∞ + Lipφ(f).

Remark 2.1. The usual Banach space of Lipschitz functions is defined as
follows. Let

Lθ = {f ∈ C (Ω) : ∃M > 0 such that varn(f) ≤Mθn, n = 1, 2, . . .}

and

Lipθ(f) = sup

{
|f(x)− f(y)|
dθ(x, y)

: x 6= y

}
= sup

{
varn(f)

θn
: n ∈ N

}
.

The canonical norm making Lθ a Banach space is ‖f‖Lθ = ‖f‖∞ + Lipθ(f).
In view of (2.3), if we have Wn(φ) = O(θn), then Lθ = Lφ. If we now

have, for instance, Wn(φ) = O(n−q) for some q > 0, then we get a bigger
space which contains in particular all functions f such that varn(f) = O(n−r)
with r ≥ q.

The following result is instrumental to this article. In brief, it tells us
that a potential φ satisfying Walters’ condition has a unique equilibrium state,
which will be denoted by µφ, and gives a speed of convergence for the properly
normalized iterates of the associated Ruelle’s Perron-Frobenius operator. The
first part of the theorem is due to Walters, while the second one is due to
Maume-Deschamps and can be found in her PhD thesis [18, Chapter I.2].
Unfortunately, her result was not published even though it is much sharper
than the result in [16].

Theorem 2.1 ([22], [18]). Let φ : Ω → R satisfying Walters’ condition as
above. Then the following holds.

A. There exists a unique triplet (hφ, λφ, νφ) such that hφ ∈ Lφ and is strictly
positive, ‖ log hφ‖∞ < ∞, λφ > 0, νφ a fully supported probability mea-
sure such that

∫
hφ dνφ = 1. Moreover, Pφhφ = λφhφ and P ∗φνφ = λφνφ,

and φ has a unique equilibrium state µφ = hφνφ which is mixing. 3

3This means that for any pair of cylinders B,B′ limn→∞ µφ(B∩T−nB′) = µφ(B)µφ(B′).
In particular µφ is ergodic.
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B. There exists a positive sequence (εn)n∈N converging to zero, such that,
for any f ∈ Lφ,∥∥∥∥∥Pnφ fλnφ − hφ

∫
fdνφ

∥∥∥∥∥
∞

≤ C(2.1) εn‖f‖Lφ , ∀n ∈ N . (2.4)

Morover, one has the following behaviors:

1. If Wn(φ) = O(ηn) for some η ∈ (0, 1), then there exists η′ ∈ (0, 1)
such that εn = O(η′n).

2. If Wn(φ) = O(n−α) for some α > 0, then εn = O(n−α).

3. If Wn(φ) = O(θ(logn)α) for some θ ∈ (0, 1) and α > 1, then, for
any ε > 0, εn = O(θ(logn)α−ε).

4. If Wn(φ) = O(e−cn
α
) for some c > 0 and α ∈ (0, 1), then there

exists c′ > 0 such that εn = O
(

e−c
′n

α
α+1

)
.

The fact that µφ is an equilibrium state means that it maximizes the func-
tional µ 7→ h(ν)+

∫
φ dν over the set of shift-invariant probability measures on

Ω, where h(ν) is the entropy of ν, and the maximum is equal to the topological
pressure P (φ) of φ (see e.g. [15]), and we have P (φ) = log λφ.

Let us give examples of potentials. First consider A = {−1, 1} and p > 1,
and define

φ(x) = −
∑
n≥2

x0xn−1

np
.

One can check that Wn(φ) = O(n−p+2). This is the analog of the so-called
long-range Ising model on N. Let us now take A = {0, 1} and let [0k1] = {x ∈
Ω : xi = 0, 0 ≤ i ≤ k − 1, andxk = 1}. Let (vn) be a monotone decreasing
sequence of real numbers converging to 0 and define

φ(x) =


vk if x ∈ [0k1]

0 if x = (0, 0, . . .)

0 otherwise .

One can check that varn(φ) = vn. This example is taken from [19].

Remark 2.2. Let us briefly explain how we can interpret an equilibrium state
for a non Lipschitz potential as an absolutely continuous invariant measure of
a piecewise expanding map of the unit interval with a Markov partition. It is
well-known that a uniformly expanding map S of the unit interval with a finite
Markov partition which is piecewise C1+η, for some η > 0, can be coded by
a subshift of finite type (Ω, T ) over a finite alphabet. Then, − log |S′| induces
a potential φ on Ω which is Lipschitz (with respect to dθ). The pullback of
µφ is then the unique absolutely continuous invariant probability measure for
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S. In [10], the authors showed that, given φ which is not Lipschitz, one can
construct a uniformly expanding map of the unit interval with a finite Markov
partition which is piecewise C1, but not piecewise C1+η for any η > 0, and
such that the pullback of µφ is the Lebesgue measure.

3 Main result and applications

3.1 Gaussian concentration bound

We can now state our main theorem whose proof is deferred to Section 4. We
start by the definition of separately dθ-Lipschitz functions.

Definition 3.1. A function K : Ωn → R is said to be separately dθ-Lipschitz
if, for all i, there exists a constant Lipθ,i(K) with

|K(x0, . . . , xi, . . . , xn−1)−K(x0, . . . , x
′
i, . . . , xn−1)| ≤ Lipθ,i(K) dθ(xi, x

′
i).

for all points x0, . . . , xi, . . . , xn−1, x
′
i in Ω.

Theorem 3.1. Suppose that φ satisfies one of the following conditions:

1. Wn(φ) = O(θn) (that is, φ is dθ-Lipschitz);

2. Wn(φ) = O(n−α) for some α > 1;

3. Wn(φ) = O(θ(logn)α) for some θ ∈ (0, 1) and α > 1;

4. Wn(φ) = O(e−cn
α
) for some c > 0 and α ∈ (0, 1).

Then the process (x, Tx, . . .), with x distributed according to µφ, satisfies the
following Gaussian concentration bound. There exists C(3.1) > 0 such that for
any n ∈ N and for any separately dθ-Lipschitz function K : Ωn → R, we have∫

exp
(
K
(
x, Tx, . . . , Tn−1x

))
dµφ(x)

≤ exp

(∫
K
(
x, Tx, . . . , Tn−1x

)
dµφ(x)

)
exp

C(3.1)

n−1∑
j=0

Lipθ,j(K)2

 .

(3.1)

Three remarks are in order. First, we conjecture that this theorem is valid
under the condition

∑
n varn(φ) < ∞. Second, it would be useful to have an

explicit formula for C(3.1) in (3.1). Unfortunately, this constant is proportional
to C(2.1) (see Theorem 2.1) which is cumbersome since it involves the eigendata

of Pφ . Third, for the sake of simplicity, we considered the full shift AN. In
fact, our results remain true if Ω ⊂ AN is a topologically mixing one-sided
subshift of finite type. Moreover, one can extend Theorem 3.1 to bilateral
subshifts of finite type by a trick used in [7].
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We now give some corollaries of our main theorem that we will be used in
the section on applications. First, by (2.3) we immediately obtain the following
corollary.

Corollary 3.2. If there exists α > 2 such that

varn(φ) = O

(
1

nα

)
then we have the Gaussian concentration bound (3.1).

Next, we get the following concentration inequalities from (3.1).

Corollary 3.3. For all u > 0, we have

µφ

(
x ∈ Ω : K

(
x, Tx, . . . , Tn−1x

)
−
∫
K
(
y, Ty, . . . , Tn−1y

)
dµφ(y) ≥ u

)
≤ exp

(
− u2

4C(3.1)

∑n−1
i=0 Lipθ,i(K)2

)
(3.2)

and

µφ

(
x ∈ Ω :

∣∣∣∣K (x, Tx, . . . , Tn−1x
)
−
∫
K
(
y, Ty, . . . , Tn−1y

)
dµφ(y)

∣∣∣∣ ≥ u)
≤ 2 exp

(
− u2

4C(3.1)

∑n−1
i=0 Lipθ,i(K)2

)
. (3.3)

Proof. Inequality (3.2) follows by a well-known trick referred to as Chernoff’s
bounding method [2]. Let us give the proof for completeness. Let u > 0.
For any random variable Y , Markov’s inequality tells us that P(Y ≥ u) ≤
e−ξuE

(
eξY
)

for all ξ > 0. Now let

Y = K
(
x, Tx, . . . , Tn−1x

)
−
∫
K
(
y, Ty, . . . , Tn−1y

)
dµφ(y) .

Using (3.1) and optimizing over ξ, we get (3.2). Inequality (3.3) follows by
applying (3.2) to −K and then summing up the two bounds.

The last corollary we want to state is about the variance of any separately
dθ-Lipschitz function.

Corollary 3.4. We have∫ (
K
(
x, Tx, . . . , Tn−1x

)
−
∫
K
(
y, Ty, . . . , Tn−1y

)
dµφ(y)

)2

dµφ(x)

≤ 2C(3.1)

n−1∑
i=0

Lipθ,i(K)2 . (3.4)
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Proof. To alleviate notations, we simply writeK instead ofK
(
x, Tx, . . . , Tn−1x

)
,∫

K instead of
∫
K
(
y, Ty, . . . , Tn−1y

)
dµφ(y), and so on and so forth. Apply-

ing (3.1) to ξK where ξ is any real number different from 0, we get

∫
exp

(
ξ
(
K −

∫
K
))
≤ exp

C(3.1)ξ
2
n−1∑
j=0

Lipθ,j(K)2

 .

Now by Taylor expansion we get

1 +
ξ2

2

∫ (
K −

∫
K
)2

+ o(ξ2) ≤ 1 + C(3.1)ξ
2
n−1∑
j=0

Lipθ,j(K)2 + o(ξ2) .

Dividing by ξ2 on both sides and then taking the limit ξ → 0, we obtain the
desired inequality.

Although we were not able to prove the Gaussian concentration bound
for separately dφ-Lipschitz functions, for many applications separately dθ-
Lipschitz functions are more natural. Furthermore there is a notable class
of separately dφ-Lipschitz functions, namely Birkhoff sums of the potential
itself, for which our theorem holds. Indeed, when φ ∈ Lφ, the function
K(x, . . . , Tn−1x) = Snφ(x) is obviously separately dφ-Lipschitz and Lipφ,j(K) =
Lipφ(φ) for all j. We have the following result.

Theorem 3.5. Under the hypotheses of Theorem 3.1, there exists C(3.5) > 0
such that, for any ψ ∈ Lφ, for all u > 0, and for all n ∈ N, we have

µφ

(
x ∈ Ω :

1

n
Snψ(x)−

∫
ψ dµφ ≥ u

)
≤ exp

(
− nu2

4C(3.5)Lipφ(ψ)2

)
. (3.5)

The proof is left to the reader. The main (simple) modification lies in
the proof of Lemma 4.3 in which considering a Birkhoff sum of a dφ-Lipschitz
function works fine, whereas we are stuck for a general separately dφ-Lipschitz
function.

We will apply this result with ψ = −φ to derive concentration bounds for
hitting times. Note that under the assumptions of this theorem, {ψ(Tnx)}n≥0

satisfies the central limit theorem [18, Chapter 2].

3.2 Related works

The novelty here is to prove a Gaussian concentration bound for potentials
with a variation decaying subexponentially. For φ is Lipschitz, Theorem 3.1
was proved in [7]. The main goal of [7] was then to deal with nonuniformly
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hyperbolic systems modeled by a Young tower. For a tower with a return-
time to the base with exponential tails, the authors of [7] proved a Gaussian
concentration bound. For polynomial tails, they proved moment concentration
bounds. For C1+η maps of the unit interval with an indifferent fixed point,
which are thus nonuniformly expanding, we are in the latter situation. In view
of Remark 2.2 above, we deal here with maps whose derivative is not Hölder
continuous, but which are still uniformly expanding.

Let us also mention the paper [14] in which the authors prove a Gaus-
sian concentration bound for φ of summable variation (whereas we need a
bit more than summable). Their proof is based on coupling. However, they
consider functions K on An, not on

(
AN
)n

= Ωn as in this paper. For such
functions, the analogue of Lipθ,i(K) is δi(K) = sup{|K(a0, . . . , ai, . . . , an−1)−
K(b0, . . . , bi, . . . , bn−1)| : aj = bj ,∀j 6= i}. It is clear that a Gaussian concen-
tration bound for functions K :

(
AN
)n → R implies a Gaussian concentration

bound for functions K : An → R, but the converse is not true.

3.3 Applications

We now give several applications of the Gaussian concentration bound (3.1)
and its corollaries. Throughout this section, µφ is the equilibrium state for a
potential φ satisfying one of the conditions 1-4 in Theorem 3.1.

3.3.1 Birkhoff sums

Let f : Ω→ R be a dθ-Lipschitz function and define

K(x0, . . . , xn−1) = f(x0) + · · ·+ f(xn−1)

whence K(x, Tx, . . . , Tn−1x) = f(x) + f(Tx) + · · · + f(Tn−1x) := Snf(x) is
the Birkhoff sum of f . Clearly, Lipθ,i(K) = Lipθ(f) for all i = 0, . . . , n − 1.
Applying Corollary 3.3 we immediately get

µφ

(
x :

∣∣∣∣Snf(x)

n
−
∫
fdµφ

∣∣∣∣ ≥ u) ≤ 2 exp
(
−c(3.6)nu

2
)

(3.6)

for all n ≥ 1 and u ∈ R+, where

c(3.6) =
1

4C(3.1)Lipθ(f)2
.

This bound can be compared with the large deviation asymptotics (1.2). We
see that it has the right behavior in n. Replacing u by u/

√
n in (3.6) we get

µφ

(
x :

∣∣∣∣Snf(x)− n
∫
fdµφ

∣∣∣∣ ≥ u√n) ≤ 2 exp
(
−c(3.6)u

2
)

for all n and u > 0. This can be compared with the central limit theorem
(1.1). We can see that the previous bound is consistent with that theorem.
Note that the central limit is about convergence in law, whereas here we obtain
a (non-asymptotic) bound from which one cannot deduce a convergence in law.
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3.3.2 Empirical frequency of blocks

Take f(x) = 1[a0,k−1](x) where

[a0,k−1] = {x ∈ Ω : xi = ai, i = 0, . . . , k − 1}

is a given k-cylinder. Let

fn(x, a0,k−1) =

∑n−k
k=0 1[a0,k−1](T

kx)

n− k + 1
.

This is the ‘empirical frequency’ of the block a0,k−1 ∈ Ak in the orbit
of x up to time n − k. By Birkhoff’s ergodic theorem, we know that, for
each a0,k−1, fn(x, a0,k−1) goes to µφ([a0,k−1]) for µφ-almost all x. The next
theorem quantifies this asymptotic statement. Notice that we can control the
fluctuations of fn(x, a0,k−1) around µφ([a0,k−1]) uniformly in a0,k−1.

Theorem 3.6. For all n ∈ N, for all 1 ≤ k ≤ n and for all u > 0 we have

µφ

(
x : max

a0,k−1

∣∣∣fn(x, a0,k−1)− µφ([a0,k−1])
∣∣∣ ≥ (u+ c

√
k ) θ−k√

n− k + 1

)
≤ e
− u2

4C(3.1)

where c = 2
√

2C(3.1) log |A|. Moreover, if k = k(n) = ζ log n for some ζ > 0,

then

µφ

(
x : max

a0,k(n)−1

∣∣∣fn(x, a0,k(n)−1)− µφ([a0,k(n)−1])
∣∣∣ ≥ (u+ c′

√
log n )nζ| log θ|√

n− k(n) + 1

)

≤ e
− u2

4C(3.1)

where c′ = 2
√

2ζC(3.1) log |A|.

Proof. Define the function K : Ωn−k+1 → R by

K(x0, . . . , xn−k) = max
a0,k−1

Z(a0,k−1;x0, . . . , xn−k)

where

Z(a0,k−1;x0, . . . , xn−k) =

∣∣∣∣∣
∑n−k

j=0 1[a0,k−1](xj)

n− k + 1
− µφ([a0,k−1])

∣∣∣∣∣ .
It is left to the reader to check that Lipθ,j(K) = Lipθ(f)

n−k+1 = 1
θk(n−k+1)

, so we get

immediately from 3.6

µφ

(
x ∈ Ω : K(x, Tx, . . . , Tn−kx) ≥ u+

∫
K
(
y, Ty, . . . , Tn−ky

)
dµφ(y)

)
≤ exp

(
− θ2k

4C(3.1)
(n− k + 1)u2

)

12



for all n ≥ 1 and u > 0. To complete the proof, we need a good upper bound
for
∫
K
(
y, Ty, . . . , Tn−k−1y

)
dµφ(y). Actually, this can be done by using again

the Gaussian concentration bound. Using (3.1) and Jensen’s inequality we get
for any ξ > 0

exp

(
ξ

∫
K
(
x, Tx, . . . , Tn−kx

)
dµφ(x)

)
≤
∫

exp

(
ξ max
a0,k−1

Z(a0,k−1;x, Tx, . . . , Tn−kx)

)
dµφ(x)

≤
∑

a0,k−1∈Ak

∫
exp

(
ξZ(a0,k−1;x, Tx, . . . , Tn−kx)

)
dµφ(x)

≤ 2|A|k exp

(
C(3.1)θ

−2kξ2

n− k + 1

)
.

The third inequality is obtained by using the trivial inequality

emaxpi=1 ai ≤
p∑
i=1

eai .

Taking logarithms on both sides and then dividing by ξ, we have∫
K
(
x, Tx, . . . , Tn−kx

)
dµφ(x) ≤ log 2 + k log |A|

ξ
+
C(3.1)θ

−2kξ

n− k + 1
.

There is a unique ξ > 0 minimizing the right-hand side, hence

∫
K
(
x, Tx, . . . , Tn−kx

)
dµφ(x) ≤ 2θ−k

√
C(3.1)(k + 1) log |A|

n− k + 1

where we used that log 2 ≤ log |A|. Hence we get the desired estimate.

Note that log |A| is the topological entropy of the full shift with alphabet
A.

3.3.3 Hitting times and entropy

For x, y ∈ Ω, let

Tx0,n−1(y) = inf{j ≥ 1 : yj,j+n−1 = x0,n−1} .

This is the first time that the n first symbols of x appear in y. We assume
that φ satisfies

varn(φ) = O

(
1

nα

)
for some α > 2 . (3.7)
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One can prove (see [9]) that

lim
n→∞

1

n
log Tx0,n−1(y) = h(µφ) , for µφ ⊗ µφ-almost every (x, y) .

Roughly, this means that, if we pick x and y independently, each one according
to µφ, then the time it takes to see the first n symbols of x appearing in y for
the first time is ≈ enh(µφ).

Theorem 3.7. If φ satisfies (3.7), then there exist strictly positive constants
c1, c2 and u0 such that, for all n and for all u > u0,

(µφ ⊗ µφ)
{

(x, y) :
1

n
log Tx0,n−1(y) ≥ h(µφ) + u

}
≤ c1 e−c2nu

2

and

(µφ ⊗ µφ)
{

(x, y) :
1

n
log Tx0,n−1(y) ≤ h(µφ)− u

}
≤ c1 e−c2nu .

These bounds were obtained in [8] when φ is Lipschitz. Observe that the
probability of being above h(µφ) is bounded above by c1 e−c2nu

2
, whereas the

probability of being below h(µφ) is bounded above by c1 e−c2nu. The proof
of this theorem being very similar to that given in [8], we omit the details
and only sketch it. We cannot directly deal with Tx0,n−1(y) but we have
log Tx0,n−1(y) = log

(
Tx0,n−1(y)µφ([x0,n−1])

)
− logµφ([x0,n−1]). Then we use

Theorem 3.5 for ψ = −φ, assuming (without loss of generality) that P (φ) = 0,
that is, h(µφ) = −

∫
φ dµφ, because we can control uniformly in x the approx-

imation − logµφ([x0,n−1]) ≈ Sn(−φ)(x). To control the other term, we use
that the law of Tx0,n−1(y)µφ([x0,n−1]) is well approximated by an exponential
law.

Another estimator of h(µφ) is the so-called plug-in estimator. We could
also obtain concentration bounds for it in the spirit of [8].

3.3.4 Speed of convergence of the empirical measure

Instead of looking at the frequency of a block ak1 we can consider a global
object, namely the empirical measure

En(x) =
1

n

n−1∑
j=0

δT jx .

For µφ-almost every x, we know that

1

n

n−1∑
j=0

δT jx
n→∞−−−→ µφ

14



where the convergence is in the weak topology on the space of probability
measures M (Ω) on Ω. This is a consequence of Birkhoff’s ergodic theorem.
The natural question is: how fast does this convergence takes place? We can
answer this question by using the Kantorovich distance dK which metrizes
weak topology on M (Ω):

dK(ν1, ν2) = sup

{∫
fdν1 −

∫
fdν2 : f : Ω→ R such that Lipθ(f) = 1

}
.

We have the following result.

Theorem 3.8. For all u > 0 and all n ≥ 1 we have

µφ

(
x :
∣∣dK(En(x), µφ)−

∫
dK(En(y), µφ) dµφ(y)

∣∣ ≥ u) ≤ 2 e−c(3.8)nu
2

(3.8)

where c(3.8) = (4C(3.1))
−1.

Proof. Let

K(x0, . . . , xn−1) = sup

 1

n

n−1∑
j=0

f(xj)−
∫
fdµφ : f : Ω→ R with Lipθ(f) = 1

 .

Of course, K(x, Tx, . . . , Tn−1x) = dK(En(x), µφ). It is left to the reader to
check that

Lipθ,i(K) ≤ 1

n
, i = 0, . . . , n− 1 .

The result follows at once by applying inequality (3.3).

It is natural to ask for a good upper bound for
∫
dK(En(y), µφ)dµφ(y)

because this would give a control on the fluctuations of dK(En(x), µφ) around
0. Getting such a bound turns out to be difficult. In [5, Section 8] it is proved
that ∫

dK(En(y), µφ) dµφ(y) � 1

n
1

2(1+log |A|)
.

For two positive sequences (an), (bn), an � bn means that lim supn
log an
log bn

≤ 1.
One could in principle get a non-asymptotic but messy bound.

3.3.5 Relative entropy, d̄-distance and speed of Markov approxi-
mation

Given n ∈ N and x0,n−1, y0,n−1 ∈ An the (non normalized) Hamming distance
between x and y is

d̄n(x0,n−1, y0,n−1) =

n−1∑
i=0

1{xi 6=yi} . (3.9)
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Now, given two shift-invariant probability measures µ, ν on Ω, denote by µn
and νn their projections on An, and define their d̄n-distance by

d̄n(µn, νn) = inf
∑

x0,n−1∈An

∑
y0,n−1∈An

d̄n(x, y)Pn(x0,n−1, y0,n−1)

where the infimum is taken over all the joint shift-invariant probability distri-
butions Pn on An × An such that

∑
y0,n−1∈An Pn(x0,n−1, y0,n−1) = µn(x0,n−1)

and
∑

x0,n−1∈An Pn(x0,n−1, y0,n−1) = νn(y0,n−1). By [20, Theorem I.9.6, p.
92], the limit following exists:

d̄(µ, ν) := lim
n→∞

1

n
d̄n(µn, νn) (3.10)

and defines a distance on the set of shift-invariant probability measures. It
induces a finer topology than the weak topology and, in particular, the d̄-limit
of ergodic measures is ergodic, and the entropy is d̄-continuous on the class of
ergodic measures.4

Next, given n ∈ N and a shift-invariant probability measure ν on Ω, define
the n-block relative entropy of ν with respect to µφ by

Hn(ν|µφ) =
∑

x0,n−1∈An
νn(x0,n−1) log

νn(x0,n−1)

µφ,n(x0,n−1)
.

One can easily prove that the following limit exists and defines the relative
entropy of ν with respect to µφ:

lim
n→∞

1

n
Hn(νn|µφ,n) =: h(ν|µφ) = P (φ)−

∫
φ dν − h(ν) (3.11)

where P (φ) is the topological pressure of φ:

P (φ) = lim
n→∞

1

n
log

∑
a0,n−1∈An

esup
{
Snφ(x):x∈[a0,n−1]

}
.

This limit exists for any continuous φ. (To prove (3.11), we use that there
exists a positive sequence (εn)n going to 0 such that, for any a0,n−1 ∈ An and
any x ∈ [a0,n−1], µφ([a0,n−1])/ exp(−nP (φ) + Snφ(x)) is bounded below by
exp(−nεn) and above by exp(−nεn).) By the variational principle, h(ν|µφ) ≥
0 with equality if and only if ν = µφ (recall that µφ is the unique equilibrium
state of φ). We refer to [21] for details. We can now formulate the first theorem
of this section.

Theorem 3.9. For every shift-invariant probability measure ν on Ω and for
all n ∈ N, we have

d̄n(νn, µφ,n) ≤ c(3.9)

√
nHn(νn|µφ,n) (3.12)

4These two properties are false in the weak topology.
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where c(3.9) =
√

2C(3.1). In particular

d̄(ν, µφ) ≤ c(3.9)

√
h(ν|µφ) . (3.13)

Proof. For a function f : An → R, define for each i = 0, . . . , n− 1

δi(f) = sup{|f(a0,n−1)− f(b0,n−1)| : aj = bj , ∀j 6= i} .

We obviously have that for all a0,n−1, b0,n−1 ∈ An

|f(a0,n−1)− f(b0,n−1)| ≤
n−1∑
j=0

1{aj 6=bj}δj(f) .

A function f : An → R such that δj(f) = 1, i = 0, . . . , n− 1 is 1-Lipschitz for
the Hamming distance (3.9). We now consider the set of functions

H(n, φ) =

{
f : An → R : f 1-Lipschitz for d̄n ,

∫
An
f dµφ,n = 0

}
.

We can identify a function f ∈ H(n, φ) with a function f̃ : Ωn → R in a
natural way: f̃(x0, . . . , xn−1) = f(π(x0), . . . , π(xn−1)) where π : Ω → A is
defined by π(x) = x0. We obviously have

∫
f̃ dµφ = 0 and it is easy to check

that Lipj(f̃) = δj(f) = 1, j = 0, . . . , n − 1. Therefore we can apply the
Gaussian concentration bound (3.1) to get∫

An
eξf dµφ,n ≤ eC(3.1)nξ

2
, for all f ∈ H(n, φ) and for all ξ ∈ R . (3.14)

We now apply an abstract result [1, Theorem 3.1] which says that (3.14) is
equivalent to

d̄(νn, µφ,n) ≤
√

2C(3.1)nHn(νn|µφ,n) for all probability measures νn on An .

Hence (3.12) is proved. To get (3.13), divide by n on both sides and take the
limit n→∞ and use (3.10) and (3.11).

We now give an application of inequality (3.13). Let

φ1(x) = logµφ(x0) and φn(x) = logµφ(xn−1|x0,n−2), n ≥ 2.

The equilibrium state for φn is a (n − 1)-step Markov measure. One can
prove that in the weak topology (µφn)n converges to µφ, but one cannot get
any speed of convergence. We get the following upper bound on the speed of
convergence of (µφn)n to µφ in the finer d̄ topology.
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Corollary 3.10. Assume, without loss of generality, that φ is normalized in
the sense that ∑

a∈A
eφ(ax) = 1, ∀x ∈ Ω.

Then there exists nφ ≥ 1 such that, for all n ≥ nφ, we have

d̄(µφn , µφ) ≤ ρφ varn(φ) (3.15)

where

ρφ =
√

2|A|C(3.1) (e−1) e
3
2
‖φ‖∞ .

More details on how to normalize a potential are given in Subsection 4.1.

Proof. Using (3.11) and the variational principle we get

h(µφn |µφ) = −
∫
φ dµφn − h(µφn) =

∫
(φn − φ) dµφn . (3.16)

Indeed, since φ and φn are normalized, we have in particular that P (φ) =
P (φn) = 0, and by the variational principle h(µφn) = −

∫
φndµφn . Now∫

(φn − φ) dµφn =

∫
log

(
eφn

eφ

)
dµφn =

∫
log

(
1 +

eφn − eφ

eφ

)
dµφn

≤
∫

eφn − eφ

eφ
dµφn (3.17)

where we used the inequality log(1 + u) ≤ u for all u > −1. Now using the
shift-invariance of µφn and replacing eφn by eφn − eφ + eφ we get∫

eφn − eφ

eφ
dµφn =

∫
dµφn(x)

∑
a∈A

eφn(ax) eφn(ax)−eφ(ax)

eφ(ax)

=

∫
dµφn(x)

∑
a∈A

(
eφn(ax)− eφ(ax)

)2
eφ(ax)

+

∫
dµφn(x)

∑
a∈A

(
eφn(ax)− eφ(ax)

)
≤ |A| e‖φ‖∞ (‖ eφn − eφ ‖∞)2 (3.18)

where we used that
∑

a∈A(eφn(ax)− eφ(ax)) = 0. Combining (3.13), (3.16),
(3.17) and (3.18) we thus obtain

d̄(µφn , µφ) ≤
√

2|A|C(3.1) e‖φ‖∞ ‖ eφn − eφ ‖∞.

It remains to estimate ‖ eφn − eφ ‖∞ in terms of varn(φ). We have

‖ eφn − eφ ‖∞ =
∥∥ eφn − eφ

∥∥
∞ ≤ e‖φ‖∞

∥∥ eφ−φn −1
∥∥
∞ ≤ (e−1) e‖φ‖∞ ‖φ−φn‖∞
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provided that ‖φ−φn‖∞ < 1, where we used the inequality | eu−1| ≤ (e−1)|u|
valid for |u| < 1. Finally, since ‖φ − φn‖∞ ≤ varn(φ), we define nφ to be the
smallest integer sucht varn(φ) < 1 and we can take

ρφ =
√

2|A|C(3.1) (e−1) e
3
2
‖φ‖∞ .

We thus proved (3.15).

Let us mention the paper [13] in which the authors obtain the same bound
for the speed of convergence of Markov approximation, up to the constant.
Their approach is a direct estimation of d̄(µφn , µφ) by using a coupling method.
The point here is to obtain the same speed of convergence as an easy corollary
of inequality (3.13). Let us remark that from (4.8) we get a worse result since
we end up with a bound proportional to

√
varn(φ). The trick which leads to

the correct bound was told us by Daniel Takahashi.

3.3.6 Shadowing of orbits

Let A be a Borel subset of Ω such that µφ(A) > 0 and define for all n ∈ N

SA(x, n) =
1

n
inf
y∈A

n−1∑
j=0

dθ(T
jx, T jy)

A basic example of set A is a cylinder set [a0,k−1]. The quantity SA(x, n),
which lies between 0 and 1, measures how we can trace, in the best possible
way, the orbit of some initial condition not in A by an orbit starting in A.

Theorem 3.11. For any Borel subset A ⊂ Ω such that µφ(A) > 0, for any
n ∈ N and for any u > 0

µφ

{
x ∈ Ω : SA(x, n) ≥ uA + u√

n

}
≤ e
− u2

4C(3.1)

where
uA = 2

√
−C(3.1) lnµφ(A) .

We give a shorter and simpler proof than in [11].

Proof. LetK(x0, . . . , xn−1) = 1
n infy∈A

∑n−1
j=0 dθ(xj , T

jy). One can easily check
that

Lipθ,i(K) =
1

n
, ∀i = 0, . . . , n− 1.

It follows from (3.2) that

µφ

{
SA(x, n) ≥

∫
SA(y, n) dµφ(y) +

u√
n

}
≤ e
− u2

4C(3.1)
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for all n ≥ 1 and for all u > 0. We now need an upper bound for
∫
SA(y, n)dµφ(y).

We simply observe that by (3.1) and the definition of SA(·, n)

µφ(A) =

∫
e−ξSA(x,n) 1A(x) dµφ(x) ≤

∫
e−ξSA(x,n) dµφ(x)

≤ e−ξ
∫
SA(y,n) dµφ(y) e

C(3.1)ξ
2

n

for all ξ > 0. Hence∫
SA(y, n) dµφ(y) ≤

C(3.1)ξ

n
+

1

ξ
ln(µφ(A)−1)

Optimizing this bound over ξ > 0 gives

∫
SA(y, n) dµφ(y) ≤ 2

√
C(3.1) ln(µφ(A)−1)

n
.

The theorem follows at once.

3.3.7 Almost-sure central limit theorem

It was proved in [18, Chapter 2] that (Ω, T, µφ) satisfies the central limit
theorem for the class of dθ-Lipschitz functions f : Ω → R such

∫
fdµφ = 0,

that is, for any such f the process {f ◦ Tn}n≥0 satisfies

µφ

(
x :

Skf(x)√
k
≤ u

)
=

∫
1{Skf(x)√

k
≤t
}dµφ(x)

k→∞−−−→ G0,σ2(f)((−∞, t]) (3.19)

where

σ2(f) =

∫
f2 dµφ + 2

∑
i≥1

∫
f · f ◦ T i dµφ ∈ [0,+∞) .

If σ2(f) > 0, G0,σ2 denotes the law of a Gaussian random variable with mean
0 and variance σ2(f), that is,

dG0,σ2(f)(u) =
1

σ
√

2π
e
− u2

2σ2(f) du, u ∈ R .

When σ2(f) = 0 we set G0,0 = δ0, the Dirac mass at zero.

Remark 3.1. In fact, a more general statement was proved in [18, Chapter
I.2]. Namely, (3.19) holds when φ is such that

∑
k εk < +∞ and f ∈ Lφ.

Now, for each N ≥ 1 and x ∈ Ω, define the probability measure

AN (x) =
1

LN

N∑
n=1

1

n
δSnf(x)√

n

(3.20)
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where LN =
∑N

n=1
1
n and where, as usual, δu is the Dirac mass at point u ∈ R.

Of course, LN = logN + O(1). Notice that AN is a random probability
measure. Finally, the Wasserstein distance between two probability measures
ν, ν ′ on the Borel sigma-algbra B(R) is

W1(ν, ν ′) = inf
π∈Π(ν,ν′)

∫
dθ(x, x

′) dπ(x, x′)

where the infimum is taken over all probability measures such that∫
π(B, x′) dx′ = ν(B) and

∫
π(x,B) dx = ν ′(B)

for any Borel subset of R. By the Kantorovich-Rubinstein duality theorem,
W1(ν, ν ′) is equal to the Kantorovich distance which is the supremum of∫
`dν −

∫
`dν ′ over the set of 1-Lipschitz functions ` : R → R. We refer

to [12] for background and proofs.

Now we can formulate the almost-sure central limit theorem.

Theorem 3.12. Let f : Ω → R be a dθ-Lipschitz function. Then, for µφ
almost every x ∈ Ω, we have

W1(AN (x), G0,σ2(f)) −−−−−→
N→+∞

0 .

We make several comments. Recall that the Wasserstein distance metrizes
the weak topology on the set of probability measures ν on B(R). Moreover,
if (νn)n≥1 is a sequence of probability measures on B(R) and ν a probability
measure on B(R), then

lim
n→∞

W1(νn, ν) = 0 ⇐⇒ νn
law−−→ ν and

∫
|u| dνn(u)

n→+∞−−−−−→
∫
|u|dν(u)

where “
law−−→” means weak convergence of probability measures on B(R).

To compare with (3.19), observe that Theorem 3.12 implies that for µφ-almost

every x, AN (x)
law−−→ G0,σ2(f), which in turn implies that

∫
1{u≤t}dAN (u) =

1

LN

N∑
n=1

1

n
1{Snf/

√
n≤t} −−−−−→

N→+∞
G0,σ2(f)((−∞, t]).

Therefore, the expectation with respect to µφ in (3.19) is replaced by a path-
wise logarithmic average in the almost-sure central limit theorem.

Proof. The proof follows from an abstract theorem proved in [6]. In words,
that theorem says the following. Let (Xn)n≥0 be a stochastic stationary pro-
cess where the Xn’s are random variables taking values in Ω. Assume that
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if f : Ω → R is d-Lipschitz and such that E[f(X0)] = 0, then it satisfies the
central limit theorem, that is, for all u ∈ R,

P

(∑n−1
j=0 f(Xj)√

n
≤ u

)
n→∞−−−→ G0,σ2(f)((−∞, u])

where σ2(f) := E[f2(X0)] + 2
∑

`≥1E[f(X0)f(X`)] is assumed to be 6= 0.
Moreover, assume that the process (Xn)n≥0 satisfies the following variance
inequality: There exists C > 0 such that for all separately d-Lipschitz functions
K : Ωn → R for some distance d on Ω,

E
[
(K(X0, . . . , Xn−1)− E[K(X0, . . . , Xn−1)])2

]
≤ C

n−1∑
i=0

Lipi(K)2 .

Then, the conclusion is that, almost surely,

1

LN

N∑
n=1

1

n
δX0+···+Xn−1√

n

converges in Wasserstein distance (or, equivalently, in Kantorovich distance) to
G0,σ2(f)((−∞, u]). We apply this abstract theorem to the process (x, Tx, . . .)

where x ∈ Ω is distributed according to µφ with Ω = AN and d = dθ. Since
we have (3.19) and (3.4), the theorem follows.

Remark 3.2. The previous result relies only upon the variance inequality
(3.4), which is much weaker than the Gaussian concentration bound of The-
orem 3.1. On the one hand, the variance inequality (3.4) should be true for
less regular potentials than the ones we consider here. On the other hand,
the Gaussian concentration bound should provide a strengthening of Theorem
3.12, namely a speed of convergence.

4 Proof of Theorem 3.1

We follow the proof given in [7] with the appropriate modifications to go
beyond Lipschitz potentials.

4.1 Some preparatory results

It is convenient to normalize the potential φ or, equivalently, the operator Pφ
in the following way. We use the notations of Theorem 2.1. Let

P̃φf = λ−1
φ h−1

φ Pφ(fhφ).

Thus
P̃φ1 = 1 and P̃ ∗φµφ = µφ. (4.1)
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Let g denote the inverse of the Jacobian of T , and g(k) the inverse of the
Jacobian of T k, that is,

g =
hφ

λφhφ ◦ T
exp(φ) and g(k) =

hφ

λkφhφ ◦ T
exp

( k−1∑
i=0

φ ◦ T i
)
.

(Of course g = g(1).) Therefore we have

P̃φf(x) =
∑
Ty=x

g(y)f(y) and P̃ kφf(x) =
∑
Tky=x

g(k)(y)f(y) . (4.2)

Estimate (2.4) now takes the form∥∥∥∥P̃nφ f − ∫ fdµφ

∥∥∥∥
∞
≤ C(2.1) ‖f‖Lφ εn, n ≥ 1, (4.3)

for any f ∈ Lφ. Finally, we will need the following distortion estimate. Let
x, y ∈ Ω such that xi = yi for i = 0, . . . , n−1 and x′, y′ ∈ Ω such that T kx′ = x
and T ky′ = y. Then it is easy to check (see [18, Chapter 2]) that, for any k,∣∣∣∣∣1− g(k)(x′)

g(k)(y′)

∣∣∣∣∣ ≤ c(4.4) dφ(x, y) (4.4)

for some constant c(4.4) > 0 depending only on φ.
We will use the following inequality relating the distances dθ and dφ.

Lemma 4.1. Suppose that Wn(φ) = O(θn), n ≥ 1, or

lim
n

Wn(φ)

Wn+1(φ)
= 1 . (4.5)

Then there exists c(4.1) > 0

sup
n

θn

Wn(φ)
≤ c(4.1)

or, equivalently,
dθ(x, y) ≤ c(4.1)dφ(x, y)

for all x, y.

Proof. The statement is trivial when Wn(φ) = O(θn). If (4.5) holds, then
there exists n0 such that for all n ≥ n0

Wn(φ)

Wn+1(φ)
≤ 1

θ
,

hence Wn(φ) ≥ θn−n0Wn0(φ). Then the desired inequalities follow easily from
the definitions.
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4.2 Proof of Theorem 3.1

Fix a separately dθ-Lipschitz function K : Ωn → R. It is convenient to think
of it as a function on ΩN depending only on the first n coordinates, therefore
Lipθ,i(K) = 0 for i ≥ n. We endow ΩN with the measure µ∞ obtained as the

limit when k → ∞ of the measure µ∞k on Ωk given by dµ∞k (x0, . . . , xk−1) =
dµφ(x0)δx1=Tx0 · · · δxk−1=Txk−2

. On ΩN, let Fp be the σ-algebra of events
depending only on the coordinates (xj)j≥p (this is a decreasing sequence of
σ-fields). We want to write the function K as a sum of reverse martingale
differences with respect to this sequence. Therefore, let Kp = E(K|Fp) and
Dp = Kp −Kp+1. More precisely,

Kp(xp, xp+1, . . . ) = E(K|Fp)(xp, xp+1, . . . )

= E(K(X0, . . . , Xp−1, xp, . . . )|Xp = xp)

=
∑

T p(y)=xp

g(p)(y)K(y, . . . , T p−1y, xp, . . . ).

The function Dp is Fp-measurable and E(Dp|Fp+1) = 0. Moreover

K − E(K) =
∑
p≥0

Dp. (4.6)

We then apply Azuma-Hoeffding inequality (see e.g. [17, Page 68]) which says
that

E
(

e
∑P−1
p=0 Dp

)
≤ e

1
2

∑P−1
p=0 ‖Dp‖2∞ . (4.7)

Therefore, the point is to obtain a good bound on Dp. This is the claim of
the following lemma.

Lemma 4.2. There exists C(4.2) > 0, depending only on φ, such that for any
p ∈ N one has

‖Dp‖∞ ≤ C(4.2)

p∑
i=0

εp−i

i∑
j=0

Lipθ,j(K) θi−j + Lipθ,p(K) .

Using this lemma and applying Young’s inequality for convolutions [3, p.
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316] twice we obtain

P−1∑
p=0

‖Dp‖2∞

≤ 2C2
(4.2)

P−1∑
p=0

 p∑
i=0

εp−i

i∑
j=0

Lipθ,j(K) θi−j

2

+ 2
P−1∑
p=0

Lipθ,p(K)2

≤ 2C2
(4.2)

∑
k≥1

εk

2
P−1∑
p=0

 p∑
j=0

Lipθ,j(K) θp−j

2

+ 2

P−1∑
p=0

Lipθ,p(K)2

≤ 2

C2
(4.2)(1− θ)

−2

∑
k≥1

εk

2

+ 1

 P∑
p=0

Lipθ,p(K)2.

Remark 4.1. If u = (un)n and v = (vn)n are sequences of reals, their con-
volution u ? v is given by (u ? v)n =

∑n
k=0 ukvn−k. Young’s inequality tells us

that if u ∈ `p(N), u ∈ `q(N) and 1 ≤ p, q, r ≤ ∞ with r−1 + 1 = p−1 + q−1,
then

‖u ? v‖r ≤ ‖u‖p‖v‖q .

We used it twice with r = 2, p = 2 and q = 1.

Notice that by assumption and by Theorem 2.1 we have
∑

k≥1 εk < +∞.
Therefore, using (4.7) at a fixed index P and then letting P tend to infinity,
we get by the dominated convergence theorem

E
(

e
∑
p≥0Dp

)
≤ e

1
2

∑
p≥0 ‖Dp‖2∞

which is, in view of (4.6), exactly (3.1) with

C(3.1) = 1 + C2
(4.2)(1− θ)

−2

∑
k≥1

εk

2

.

Now we are going to prove Lemma 4.2 by proving that Kp is close to an
integral quantity. This is the content of the following lemma which is the core
of the proof.

Lemma 4.3. There exists C(4.3) > 0, depending only on φ, such that, for all
p ∈ N,∣∣∣∣Kp(xp, . . . )−

∫
K(y, . . . , T p−1y, xp, . . . ) dµφ(y)

∣∣∣∣
≤ C(4.3)

p−1∑
i=0

εp−i

i∑
j=0

Lipθ,j(K) θi−j
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where

C(4.3) = C(2.1)(c(4.4) + 2c(4.1)).

Proof of Lemma 4.2. Applying Lemma 4.3 yields

|Kp(xp, xp+1, . . . )−Kp(x
′
p, xp+1, . . . )|

≤ 2C(4.3)

p−1∑
i=0

εp−i

i∑
j=0

Lipθ,j(K) θi−j + Lipθ,p(K) .

AveragingKp(x
′
p, xp+1, . . . ) over the preimages of x′p we get exactlyKp+1(xp+1, . . . ),

hence the previous bound holds for |Dp|, proving the lemma.

Proof of Lemma 4.3. Let us fix a point x∗ in Ω and decompose Kp as

Kp(xp, . . . ) =

p−1∑
i=0

∑
T p(y)=xp

g(p)(y)(K(y, . . . , T i−1y, T iy, x∗, . . . , x∗, xp, . . . )

−K(y, . . . , T i−1y, x∗, . . . , x∗, xp, . . . ))

+K(x∗, . . . , x∗, xp, . . . ).

For fixed i, we can group together those points y ∈ T−p(xp) which have the
same image under T i, splitting the sum

∑
T p(y)=xp

as
∑

T p−i(z)=xp

∑
T i(y)=z.

Since the jacobian is multiplicative, one has g(p)(y) = g(i)(y)g(p−i)(z). Let us
define two functions fi and H as follows:

fi(z) =
∑
T iy=z

g(i)(y)(K(y, . . . , T i−1y, T iy, x∗, . . . , x∗, xp, . . . )

−K(y, . . . , T i−1y, x∗, . . . , x∗, xp, . . . ))

=
∑
T iy=z

g(i)(y)H(y, . . . , T iy).

Bearing in mind (4.2), we obtain

Kp(xp, . . . ) =

p−1∑
i=0

P̃ p−iφ fi(xp) +K(x∗, . . . , x∗, xp, . . . ).

Now we want to prove that fi ∈ Lφ to use (4.3). First observe that for any
z ∈ Ω

|fi(z)| ≤
∑
T iy=z

g(i)(y) Lipθ,i(K) dθ(x∗, T
iy) ≤ Lipθ,i(K)

since dθ(x∗, T
iy) ≤ 1 and

∑
T iy=z g

(i)(y) = 1. Hence

‖fi‖∞ ≤ Lipθ,i(K) .
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We now estimate the dφ-Lipschitz norm of fi. We write

fi(z)− fi(z′) =
∑

(g(i)(y)− g(i)(y′))H(y, . . . , T iy)

+
∑

g(i)(y′)(H(y, . . . , T iy)−H(y′, . . . , T iy′))
(4.8)

where z and z′ are two points in the same partition element, and their re-
spective preimages y, y′ are paired according to the cylinder of length i they
belong to. Using the distorsion control (4.4) we have

|g(i)(y)− g(i)(y′)| ≤ c(4.4) g
(i)(y) dφ(z, z′)

hence the first sum in (4.8) is bounded in absolute value by

c(4.4) Lipθ,i(K) dφ(z, z′) .

For the second sum, substituting successively each T jy with T jy′, we have

|H(y, . . . , T iy)−H(y′, . . . , T iy′)| ≤ 2
i∑

j=0

Lipθ,j(K) dθ(T
jy, T jy′)

≤ 2
i∑

j=0

Lipθ,j(K) θi−jdθ(z, z
′)

≤ 2c(4.1)

i∑
j=0

Lipθ,j(K) θi−jdφ(z, z′)

where we used Lemma 4.1 for the third inequality.
Summing over the different preimages of z, we deduce that

‖fi‖Lφ ≤ (c(4.4) + 2c(4.1))

i∑
j=0

Lipθ,j(K) θi−j .

Therefore we can apply (4.3) to get∥∥∥∥P̃ p−iφ fi −
∫
fi dµφ

∥∥∥∥
∞
≤ C(2.1)

(
c(4.4) + 2c(4.1)

)
εp−i

i∑
j=0

Lipθ,j(K) θi−j .

Summing those bounds, one obtains∣∣∣Kp(xp, . . . )−
p−1∑
i=0

∫
fi dµφ −K(x∗, . . . , x∗, xp, . . . )

∣∣∣
≤ C(2.1)

(
c(4.4) + 2c(4.1)

) p−1∑
i=0

εp−i

i∑
j=0

Lipθ,j(K) θi−j .

Finally, when one computes the sum of the integrals of fi, there are again
cancelations, leaving only

∫
K(y, . . . , T p−1y, xp, . . . ) dµφ(y).
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