
HAL Id: hal-02292413
https://hal.science/hal-02292413

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual, Digital and Hybrid Twins: A New Paradigm in
Data-Based Engineering and Engineered Data

Francisco Chinesta, Elías G. Cueto, Emmanuelle Abisset-Chavanne, Jean
Louis Duval, Fouad El Khaldi

To cite this version:
Francisco Chinesta, Elías G. Cueto, Emmanuelle Abisset-Chavanne, Jean Louis Duval, Fouad El
Khaldi. Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engi-
neered Data. Archives of Computational Methods in Engineering, 2019, �10.1007/s11831-018-9301-4�.
�hal-02292413�

https://hal.science/hal-02292413
https://hal.archives-ouvertes.fr


Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based
Engineering and Engineered Data

Francisco Chinesta1 • Elias Cueto2 • Emmanuelle Abisset-Chavanne3 • Jean Louis Duval4 •

Fouad El Khaldi4

Abstract
Engineering is evolving in the same way than society is doing. Nowadays, data is acquiring a prominence never imagined.

In the past, in the domain of materials, processes and structures, testing machines allowed extract data that served in turn to

calibrate state-of-the-art models. Some calibration procedures were even integrated within these testing machines. Thus,

once the model had been calibrated, computer simulation takes place. However, data can offer much more than a simple

state-of-the-art model calibration, and not only from its simple statistical analysis, but from the modeling and simulation

viewpoints. This gives rise to the the family of so-called twins: the virtual, the digital and the hybrid twins. Moreover, as

discussed in the present paper, not only data serve to enrich physically-based models. These could allow us to perform a

tremendous leap forward, by replacing big-data-based habits by the incipient smart-data paradigm.

1 Introduction

As models involved in science and engineering become too

complex, their analytical solution is often compromised.

On the other hand, computers are able to perform very

efficiently only elementary operations. Consequently, it is

necessary to transform complex mathematical objects

(derivatives, …) into simpler objects, i.e., elementary

operations. At the same time, it is necessary to reduce the

number of points and time instants at which the solution of

the model is evaluated, by replacing the continuum by a

discrete system, treatable by digital computers. Such a

procedure is known as numerical simulation and consti-

tutes one of the three pillars of twentieth century engi-

neering—modeling and experiments being the other two

pillars—. This age has been coined as the third paradigm

of science [1].

In the previous (third) industrial revolution, ‘‘virtual

twins’’ (emulating a physical system by one, or more,

mathematical models to describe its complex behavior)

were major protagonists.1 Nowadays, numerical simulation

is present in most scientific fields and engineering domains,

making accurate designs and virtual evaluation of systems

responses possible—drastically cutting the number of

experimental tests.

The usual numerical model in engineering practice

(which we will denote here as virtual twin) is something

static. This kind of (finite element, finite volume, finite

difference) models is nowadays ubiquitous in the design of

complex engineering systems and their components. We

say that they are static because they are not expected to be
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continuously fed by data so as to assimilate them. This

would be what is today understood as a Dynamic Data-

Driven Application System (DDDAS) [2]. The character-

istic time of standard engineering simulation strategies can

not accommodate the stringent real-time constraints posed

by DDDAS, specially for control purposes. Real-time

simulation for control is typically ensured by techniques

based on the use of ad hoc—or black box—models of the

system (in the sense that they relate some inputs to some

outputs, encapsulated into a transfer function). This adap-

ted representation of the system allows proceeding in real-

time. However, it becomes too coarse when compared with

rich, high fidelity simulations, such as the ones performed

using, for example, Finite Element techniques.

Although science was preeminently data-based at the

early years (think of Tycho Brahe, for instance), it was at

the end of the 20th century that data irrupted massively in

most scientific fields, and in particular in the one we are

specially interested in: engineering. For many years data

have been widely incorporated to usual practice in many

disciplines where models were more scarce or less reli-

able—with respect to engineering sciences—. Thus, mas-

sive data were classified, visualized (despite its frequent

multi-dimensional nature), curated, analyzed, …thanks to

the powerful techniques recently developed in the wide

areas of artificial intelligence and machine learning. When

correlations are removed from data, a certain simplicity

emerges from the apparent complexity, as proved by

advanced nonlinear dimensionality reduction techniques

based on manifold learning. Moreover, a number of tech-

niques were proposed to establish the relations between

outputs of interest and certain inputs, assumed to be suf-

ficient to explain and infer the outputs. These are the so-

called ‘‘model learners’’, based on the use of linear and

nonlinear regressions, decision trees, random forests, neu-

ral networks—inevitably linked to deep-learning tech-

niques—, among many others.

The solution of physically-based models, very well

established and largely validated in the last century, was

partially or totally replaced by these data-based models,

due to their computational complexity. This is especially

true for applications requiring real-time feedback. Thus,

massively collected and adequately curated data, as just

discussed, provided interpretation keys to advise on an

imminent fortuitous event. This makes possible improved

data-based predictive maintenance, efficient inspection and

control, …that is, allows for real-time decision making.

The price to pay is an as rich as possible learning stage.

This takes considerable time and efforts, as the establish-

ment of validated models took in the previous engineering

revolution.

Important success was reported, many possibilities

imagined, …justifying the exponential increase in

popularity of these ‘‘digital twins’’. There has been a fast

development of data-driven models for representing a

system with all its richness while ensuring real-time

enquiries to its governing model. However, replacing the

rich history of engineering sciences (that proved their

potential during more than a century with spectacular

successes) led to feelings of bitterness and of waste of

acquired knowledge.

This new incipient engineering consists of ‘‘virtual

twins’’, that operate offline in the design stage, and their

digital counterparts, based on data, taking over in online

operations. However, the domain of applicability of the

last, even if they are superior in what concerns their rate of

response, continues to be narrower. A combination of both,

the ‘‘virtual’’ and ‘‘digital’’ twins seems to be the most

appealing solution. However, prior to combining both, a

major difficulty must be solved: the real-time solution of

physically-based models.

All the just introduced problems can not be overcome by

simply employing more powerful computers—in other

words, by employing modern supercomputing facilities—.

Even when this is a valuable route, it strongly limits the

accessibility to the appropriate simulation infrastructure.

This is true also in what concerns to its integration in

deployed platforms. Recent history has proved that this is a

prohibitive factor for small and medium-sized companies.

An effort must be paid towards the to democratization of

simulation.

Again, it was at the end of the past century and the

beginning of the 21st century, that major scientific

accomplishments in theoretical and applied mathematics,

applied mechanics, and computer sciences contributed to

new modeling and simulation procedures. Model Order

Reduction (MOR) techniques were one of these major

achievements [3]. These techniques do not proceed by

simplifying the model, models continue to be well estab-

lished and validated descriptions of the physics at hand.

Instead, they rely on an adequate approximation of the

solution that allows simplifying the solution procedure

without any sacrifice on the model solution accuracy, in

view of accommodating real-time constraints.

A feasible alternative within the MOR framework con-

sists of extracting offline the most significant modes

involved in the model solution, and then projecting the

solution of similar problems in that reduced space. Con-

sequently, a discrete problem of very small size must be

solved at each iteration or time step. Thus, MOR-based

discretization techniques provide significant savings in

computing-time. Another MOR-based route consists of

computing offline, using all the needed computational

resources and computing time, a parametric solution that

contains the solution of all possible scenarios. This para-

metric solution can then be online particularized to any



scenario using deployed computational facilities, including

tablets or even smartphones. It allows then to perform

efficient simulation, optimization, inverse analysis, uncer-

tainty propagation and simulation-based control, all under

real-time constraints. Such a solution has been demon-

strated on many applications where the Proper Generalized

Decomposition (PGD) method is used [4–9].

The next generation of twins was born, the so-called

‘‘hybrid twinTM’’, that combines physically-based models

within a MOR framework (for accommodating real-time

feedback) and data-science.

On one hand, real-time solution of physically-based

models allows us to assimilate data collected from physical

sensors, to calibrate them. Therefore, it also exhibits pre-

dictive capabilities to anticipate actions. Thus, simulation-

based control was made possible, and successfully imple-

mented in many applications, often by using deployed

computing devices (e.g., Programmable Logic Controllers).

Despite an initial euphoric and jubilant period in which

high-fidelity models were exploited in almost real-time by

using standard computing platforms, unexpected difficul-

ties appeared as soon as they were integrated into data-

driven application systems.

Significant deviations between the predicted and

observed responses have been detected, nevertheless, by

following this approach. The origin of these deviations

between predictions and measurements can be attributed to

inaccuracy in the employed models, in parameters or in

their time evolution. These often continue to be crude

descriptions of the actual systems. Attacking this ignorance

can done by developing on-the-fly data-driven models that

could eventually correct this deviation between data and

model predictions.

Indeed, a DDDAS consists of three main ingredients: (1)

a simulation core able to solve complex mathematical

problems representing physical models under real-time

constraints [10]; (2) advanced strategies able to proceed

with data-assimilation, data-curation and data-driven

modeling; and (3) a mechanism to online adapt the model

to evolving environments (control). The Hybrid

TwinTM [11] embraces these three functionalities into a

new paradigm within simulation-based engineering sci-

ences (SBES).

2 From Virtual to Hybrid Twins

A given physical system is characterized by a number of

continuous or discrete variables. In general, to manipulate

these variables in a computer, continuous variables are

discretized, i.e., more than looking for those variable at any

point, it is assumed that variables at any point can be

expressed from the ones existing in some particular

locations (the nodes, if we employ the finite element ter-

minology) by using adequate interpolations.

In what follows the discrete form of the variables

defining the system state at time t is denoted by XðtÞ. As
just indicated, they could include, depending on the con-

sidered physics, nodal temperatures, velocities, displace-

ments, stresses, etc.

The system evolution is described by its state XðtÞ,
evolving from its initial state at the initial time t ¼ t0 ¼ 0,

denoted by X0. Numerical models based on well estab-

lished physics allow making this prediction of the system

state at time t from the knowledge of it at the initial time t0,

by integrating its rate of change (coming from the physical

laws adequately discretized) given by _XðsÞ at s 2 ð0; t�.
This contribution will be expressed by

_Xðt; lÞ ¼ AðX; t; lÞ—we emphasize its parametric form—,

where l represents the set of involved parameters that

should be identified offline or online.

Remark 1 In the previous expression the semicolon ð�; �Þ
makes a distinction between the coordinates before the

semicolon—in this case, time—and the model parameters

after it—here, l.

Thus, if we assume a model to accurately represent the

subjacent physics involved in the system, predictions are

easily performed by integrating AðX; t; lÞ. Here, if real-

time feedbacks are needed, standard integration (based on

the use of well experienced numerical techniques like finite

elements, finite differences, finite volumes, spectral meth-

ods, meshless (or meshfree) techniques, …) of the

dynamical system expressed by AðX; t; lÞ, turns out to be

unsatisfactory. As previously discussed, the employ of

model reduction techniques opened new routes in this

sense. In particular, the Proper Generalized Decomposi-

tion—PGD—precomputes (offline) the parametric solu-

tion, thus making possible to accommodate real-time

constraints.

When model calibration is performed online, model

parameters l are calculated by enforcing that the associated

model prediction fits as much as possible to the experi-

mental measurements, at least at the measurement points.

In the context of process or system control, external actions

can be applied to drive the model towards the given target.

Thus, the state rate of change (if we neglect noise for the

moment) is composed by two terms,

_Xðt; lÞ ¼ AðX; t; lÞ þ CðtÞ; ð1Þ

that expresses the physical and forced (external goal-ori-

ented actions) contributions, A and C, respectively.

Remark 2 In general, control actions, here represented by

the term C could depend on measures and/or on the

inferred model parameters, but here, and without loss of



generality, we only indicate explicitly its dependence on

time.

2.1 Model Updating

When models represent the associated physics poorly, a

non negligible deviation between their predictions and the

actual evolution of the system, acquired from collected

data, is expected. This deviation is expected to be biased,

because it represents the modeler’s ignorance on the sub-

jacent physics. The unbiased deviation contribution is

associated to modeling or measurement noise and is easily

addressed by using adequate filters. However, biased

deviations express hidden physics and required a particular

treatment, that is, their online modeling by assimilating

collected data.

Indeed, the deviation (gap between the model prediction

Xðt; lÞ and measurements XexpðtÞ) when considering the

optimal choice of the model parameters l, and, more pre-

cisely its time derivative, should be used for the online

construction (under the already mentioned severe real-time

constraints) of the so-called data-based correction model.

This correction, also referred as deviation model, is here

denoted by BðX; tÞ. Even if, in what follows, the presence

of unbiased noise is ignored, its inclusion is

straightforward.

Thus, the fundamental equation governing a hybrid

twins writes

_Xðt; lÞ ¼ AðX; t; lÞ þ BðX; tÞ þ CðtÞ þ RðtÞ; ð2Þ

expressing that the rate of change of the system state at

time t contains four main contributions:

1. the model contribution, whose rate of change related to

the model parameters l reads AðX; t; lÞ. MOR is

crucial at this point to ensure real-time feedback;

2. a data-based model BðX; tÞ describing the gap between

prediction and measurement;

3. external actions CðtÞ introduced into the system

dynamics in order to drive the model solution towards

the desired target. It also includes any other kind of

decision based on the collected and analyzed data;

4. the unbiased noise RðtÞ, that has been traditionally

addressed using appropriate filters [12]. This terms also

includes external actions for which there is no possible

prediction. Typically, human intervention on the

system.

Here we have omitted a very important distinction, the

necessity of collecting appropriate data with different aims:

(1) to calibrate the considered physically-based model,

assumed to represent the first-order contribution to pre-

dictions and for explicative purposes; (2) to construct on-

the-fly the data-driven model update; and (3) for decision-

making proposes (control) by using data-analytics on the

collected data.

It is also worth noting that the better locations and fre-

quency of acquisition for collecting data could differ, given

the volume of data to treat and data-assimilation rate,

depending on the purpose: calibration, modeling and con-

trol. In the present framework, the model could help to

infer the smartest data to acquire, and when and where they

should be collected. Thus, Big Data could be replaced by

Smart Data in the framework of a new multi-scale data

science and theory of information, bridging the gap

between data (microscopic), information (mesoscopic) and

knowledge (macroscopic).

The construction of the data-based model deserves some

additional comments:

1. Deviations inform us about the model possibly becom-

ing inaccurate. In our approach, model updating is

based on the deviation model, and then, it is added to

the first-order model when it exists. Other authors

suggested to update the model itself. Thus for example

in [13], the authors proceed by perturbing in a random

way the discrete matrix A, that results in ~A, within a

stochastic framework.

2. In some cases the first order, physically-based model,

A, does not exist, or simply it is ignored as was the case

in most digital twins, motivated by difficulties related

to its real-time solution, to its accuracy, etc …In that

case, the model consists of a unique contribution, the

data-based model [14, 15]. In this case, when con-

structed from scratch, many data are required to reach a

sufficient accuracy. However, when the data-driven

model is only expected to fill the gap between the first-

order model predictions and the measurements, the

higher is the model accuracy, the smaller the data-

driven contribution, implying that the required volume

of data significantly decreases. It is worth mentioning

that collecting data and processing them is expensive,

and could compromise the real-time constraints.

3. The recent exponential growing of machine learning

techniques (data-mining, deep-learning, manifold

learning, linear and nonlinear regression techniques

…to cite but a few) makes it possible to construct on-

the-fly such a data-based deviation model;

4. Another possibility consists of expressing the deviation

within a parametric form within the PGD framework.

To that end, a sparse-PGD is constructed—here viewed

as an advanced powerful nonlinear regression tech-

nique [16]—, operating on the deviations. These

deviations are the difference between the physically-

based prediction and the measurements. The main

advantage of this procedure is that the parametric

expression of the deviation can be added to the



expression of the model based on the known physics,

A, that was already expressed using the same format

(parametric PGD separated representation).

Thus, the resulting solution contains some modes

coming from the discretization of the equations

representing the known physics, while the remaining

ones are associated to the detected deviations. In any

case, both together represent the actual system that

contains hidden physical mechanisms, more complex

that the ones retained in the first-order model,

pragmatically captured even when ignoring its real

nature.

If the real solution evolves in a manifold, its

projection on the manifold defined by the physical

model, A, allows computing the best choice for the

involved parameters, i.e., l (calibration). The orthog-

onal complement represents the deviation model. All

of them, the real, the physical and the deviation models

can be cast into a parametric PGD separated represen-

tation form.

Remark 3 In the previous expression, Eq. (2), the data-

based contribution BðX; tÞ justifies the ‘‘hybrid’’ appella-

tion, because the model is composed of two contributions,

one coming from well established and validated physics,

the other based on data. This double nature makes the

difference between usual digital twins and their hybrid

counterparts.

Remark 4 When enriching a dynamical system with a

data-based contribution, before reaching a sufficient accu-

racy, a stable system can become unstable, thus compro-

mising long-time predictions. In this case the control term

could encompass a numerical stabilization to ensure that

the enriched dynamical systems remains stable.

Remark 5 Deep learning, based on the use of deep neural

networks, allows impressive accomplishments. However, it

generates nowadays a certain frustration in a scientific

community that for centuries tried to explain reality

through models. That aim is almost lost when using deep

learning. Even if many efforts are being paid with the

purpose of explaining these machine learning techniques,

today their impressive performance is not fully understood.

However, within the hybrid twin rationale, things become

less uncomfortable, since these techniques, whose predic-

tions are difficult to explain, are being used to model a

physics that escapes to our understanding, what we have

called ignorance.

2.2 Illustrating Hybrid Twin Features

Hereafter, the construction and functioning of a simple

hybrid twin of resin transfer moulding (RTM) processes is

presented. For the sake of simplicity, realistic complexity

has been sacrificed in favor of description simplicity. The

problem consists in filling a square mould from its central

point. An impermeable square insert is placed in the right-

upper zone in order to break the solution symmetry. The

experimental device is depicted in Fig. 1.

In what follows, the construction and the use of the two

first contributions of the hybrid twin—the physical (A) and

the data-based (B) models—is described through four

steps:

• First, the parametric solution of the flow problem

related to the mould filling process—where the chosen

parameter is the preform permeability j—is carried out

by coupling the commercial software PAM-RTM (ESI

Group, France) and the PGD constructor. In particular,

we use a non-intrusive formulation based on the sparse

subspace learning (which we will refer to as SSL-PGD

in what follows) or its sparse counterpart sPGD (both

reviewed in Sect. 3). Thus, every field (pressure,

velocity, filling factor, …) will be accessible in a

parametric way, that is, for any possible value of the

permeability j. Here, without loss of generality, it is

assumed to be constant and isotropic in the whole

Fig. 1 Square mould filled with

an isotropic reinforcement and

containing an impermeable

square insert (black small

square)



preform. As soon as the parametric solution has been

computed offline, it can be particularized online almost

in real-time. Figure 2 depicts the flow front at different

instants and for three different permeabilities.

• Second, the permeability is identified by comparing the

actual flow front—recorded by a camera—with the ones

obtained by using different permeabilities. The rein-

forcement permeability is identified as the one that,

inserted into the parametric model, allows the best fit

between the predicted flow front position and the

recorded one at different filling times. Once permeabil-

ity has been determined, the simulated filling process

agrees in minute to the one experimentally observed, as

revealed by Fig. 3.

• Permeability is thus identified at the beginning of the

filling procedure. However, the system ignores that the

permeability in the neighborhood of the mould wall is

lower than the just identified one. If this is the case, the

model represented by Aðt; jÞ will significantly deviate

from the measurements when the flow reaches the

regions of reduced permeability. Figure 4 compares the

simulation with the experimental recording of the

modified permeability case. Note how, at the beginning,

the simulation is in perfect agreement with the record-

ing. But as soon as the flow front reaches the region

with modified, lower permeability, important errors are

noticed.

• Finally, by using dictionary learning or by constructing

a PGD form of the correction, the deviation can be

perfectly represented by the data-based contribution

BðX; tÞ, as illustrated in Fig. 5. This ensures the model

predictability all along the filling process.

Through this simple example we would like to highlight

how a hybrid twin is able to detect discrepancies with

respect to the built-in model, and to correct them on the fly.

Let us review the main difficulties associated to the prac-

tical implementation of this concept.

2.3 Implied Methodological Needs

As previously discussed the most complete member of the

twin family involves many different methodologies that are

revisited in the present paper, in particular:

1. Real-time simulation based on Model Order

Reduction;

2. Real-time calibration;

3. Real-time data-assimilation and data completion;

4. Real-time data-analytics;

5. Real-time data-driven modeling.

The previous requirements will be addressed in the next

section by using advanced model order reduction tech-

niques for solving state-of-the-art physical models under

stringent real-time constraints. Then, in Sect. 4 different

Fig. 2 Particularizing the PGD-

based mould filling solution for

three different permeabilities

(low at the left, intermediate at

the center and high at the right)

at three different time steps

(from top to bottom)



methodologies based on data-science will be described for

addressing data-driven modeling.

3 Methods Based on Model Order Reduction
with Special Emphasis on the Proper
Generalized Decomposition

When looking for an approximation of the solution uðx; tÞ
of a given PDE, here assumed scalar and linear without loss

of generality, the standard finite element method considers

the approximation

uðx; tÞ ¼
XN

i¼1

UiðtÞNiðxÞ; ð3Þ

where Ui denotes the value of the unknown field at node i

and NiðxÞ represents the its associated shape function.

Here, N refers to the number of nodes considered to

approximate the field in the domain X where the physical

problem is defined. This approximation results in an

algebraic problem of size N in the linear case, or the

solution of many of them in the general transient and

nonlinear cases. In order to alleviate the computational

cost, model order reduction techniques have been proposed

and are nowadays intensively used.

When considering POD-based model order reduction

[3], a learning stage allows extracting the significant modes

/iðxÞ that best approximate the solution. Very often a

reduced number of modes R (R � N) suffices to approxi-

mate the solution of problems similar to the one that served

to extract the modes at the learning stage. In other words,

while finite element shape functions are general and can be

employed in virtually any problem, the reduced-order basis

are specific for the problem at hand and similar ones, but

precisely because of this, they are much less numerous,

thus minimizing the final number of degrees of freedom.

Fig. 3 Identifying the fibrous medium permeability and comparing

predicted (right) and measured flow front (left) at two different time

steps (top and bottom)

Fig. 4 Introducing a permeability reduction in the mould wall

neighborhood in absence of data-based deviation model

Fig. 5 Introducing a permeability reduction in the mould wall

neighborhood while activating the data-based deviation model

correction



Thus, by projecting the solution uðx; tÞ onto the reduced

basis composed by f/1ðxÞ; . . .;/RðxÞg, according to

uðx; tÞ �
XR

i¼1

niðtÞ/iðxÞ; ð4Þ

the resulting problem will now require the solution of a

linear system of equations of size R, instead of size N,

which is the actual size of the finite element solution. This

often implies impressive savings in computing time.

Addressing nonlinear models requires the use of specific

strategies to ensure solution efficiency [17, 18].

Equations (3) or (4) involve a finite sum of products

composed by time-dependent coefficients multiplied by

space functions. These space function are well-known

finite element shape functions when no prior knowledge

about the structure of the problem exists. Or can be sub-

stituted by a series of modes extracted by applying POD, if

solutions of similar problems are available (i.e., snapshots

of similar systems). A generalization of this procedure

consists in assuming that space functions are also

unknown. This makes it necessary to compute both time

and space functions, on the fly [19]. Thus, the resulting

approximation reads

uðx; tÞ �
XM

i¼1

TiðtÞXiðxÞ: ð5Þ

Since the pairs of space and time functions in Eq. (5) are

unknown, their determination will define a nonlinear

problem. Obviously, it will require some form of lin-

earization. This linearization procedure has been studied in

some of the author’s former works, such as, for instance [7]

or [8] and the references therein.

The final approximation, Eq. (5), will require the solu-

tion of about M problems, with M � N and M� R. Usually

the actual number will be slightly bigger than that. This is

due to the nonlinearity induced by separated representa-

tions but also to the structure itself of the separated con-

structor. To compute the space functions XiðxÞ will require,
at each iteration, to solve problems involving the spatial

coordinates (in general three-dimensional, whose associ-

ated discrete systems are of size N) and also some M one-

dimensional problems to calculate the time functions TiðtÞ.
The CPU cost of the solution of 1D problems is negligible,

if compared to the solution of 3D problems. Thus, the

resulting computational complexity reduces drastically,

and will scale roughly with M instead of P (P being the

number of time-steps employed in the time domain

discretization).

Degenerate geometries (beams, plates, shells, layered

domains such as composite materials) are specially well

suited for a space domain separation [20–23]. If the domain

X can be decomposed as X ¼ Xx � Xy � Xz, the solution

u(x, y, z) could be approximated in turn by a separated

representation of the type

uðx; y; zÞ �
XM

i¼1

XiðxÞYiðyÞZiðzÞ; ð6Þ

which is specially advantageous, since it gives rise to a

sequence of one-dimensional problems instead of the typ-

ical three-dimensional complexity. For some geometries,

like plates or shells, in-plane/out-of-plane this separated

representation becomes specially interesting,

uðx; y; zÞ �
XM

i¼1

Xiðx; yÞZiðzÞ; ð7Þ

where the obtained complexity of the problem is roughly

the typical of a two-dimensional problem, i.e., the calcu-

lation of in-plane functions Xiðx; yÞ.
A very interesting case is that of space-time-parameter

separated representations. In this framework a so-called

computational vademecum (also known as abacus, virtual

charts, nomograms, …) can be developed so as to provide a

sort of computational response surface for the problem at

hand, but without the need for a complex sampling in high

dimensional domains. It has been successfully employed in

problems like simulation, optimization, inverse analysis,

uncertainty propagation and simulation-based control, to

cite a few. Once constructed off-line, this sort of response

surface provides results under very stringent real-time

constraints—in the order of milliseconds—by just invoking

this response surface instead of simulating the whole

problem [5, 24].

Thus, when the unknown field is a function of space,

time and a number of parameters l1; . . .; lQ, the subsequent
separated representation could be established as

uðx; t; l1; . . .; lQÞ �
XM

i¼1

XiðxÞTiðtÞ
YQ

j¼1

M
j
iðljÞ: ð8Þ

The use of a separated representation allows circumventing

the combinatorial explosion. The solution of a sequence of

low-dimensional problems allows calculating the para-

metric solution that can be viewed as a chart, abacus or

vademecum—or, simply, as a high-dimensional response

surface—, to be used online in a variety of applications.

3.1 The Standard, Intrusive, PGD Constructor

For the sake of completeness, we start addressing the

original, intrusive, version of the PGD-based parametric

solver [7] before considering its non-intrusive counterparts,

that will be discussed in the following sections. For that

purpose, we consider the parametric heat transfer equation



ou

ot
� kDu� f ¼ 0; ð9Þ

with homogeneous initial and boundary conditions. Here,

ðx; t; kÞ 2 Xx � Xt � Xk. A completely new approach to

the problem arises by simply considering the conductivity k

as a new coordinate, which will be defined within some

interval of interest Xk.

This new approach, instead of sampling the solution

space for given values of the conductivity, consist in

solving a new, more general problem. This new problem

will be obtained after extending the weighted residual form

related to Eq. (9),
Z

Xx�Xt�Xk

u	
ou

ot
� kDu� f

� �
dx dt dk ¼ 0: ð10Þ

If we look for a PGD approximation to the solution, it will

look like

uðx; t; kÞ �
XM

i¼1

XiðxÞTiðtÞKiðkÞ:

In other words, at iteration n\M the solution unðx; t; kÞ will
be approximated by

unðx; t; kÞ ¼
Xn

i¼1

XiðxÞTiðtÞKiðkÞ;

so that an improvement of this approximation, unþ1ðx; t; kÞ,
will be

unþ1ðx; t; kÞ ¼ unðx; t; kÞ þ Xnþ1ðxÞTnþ1ðtÞKnþ1ðkÞ: ð11Þ

The test function uH for this extended weak form, Eq. (10),

will therefore be given by

uHðx; t; kÞ ¼XHðxÞTnþ1ðtÞKnþ1ðkÞ þ Xnþ1ðxÞTHðtÞKnþ1ðkÞ
þ Xnþ1ðxÞTnþ1ðtÞKHðkÞ:

ð12Þ

As usual, trial and test functions, Eqs. (11) and (12)

respectively, are substituted into the weak form, Eq. (10).

After an appropriate linearization, finite element approxi-

mations to functions Xnþ1ðxÞ, Tnþ1ðtÞ and Knþ1ðkÞ are

found. The simplest linearization strategy is the alternated

directions, fixed point algorithm. It proceeds through the

following steps (the interested reader can refer to [7] for

more details, or to [8] for a thorough description of a

Matlab code):

• Arbitrarily initialize at the first iteration T0
nþ1ðtÞ and

K0
nþ1ðkÞ.

• With T
p�1
nþ1 ðtÞ and K

p�1
nþ1 given at the previous, p� 1,

iteration of the non linear solver, all the integrals in

Xt � Xk are computed, leading to a boundary value

problem for X
p
nþ1ðxÞ.

• With X
p
nþ1ðxÞ just computed and K

p�1
nþ1 given at the

previous iteration of the nonlinear solver, all the

integrals in Xx � Xk are computed, leading to an one-

dimensional initial value problem for T
p
nþ1ðtÞ.

• With X
p
nþ1ðxÞ and T

p
nþ1 just updated, all the integrals in

Xx � Xt are performed, leading to an algebraic problem

for K
p
nþ1ðkÞ.

3.2 Non-intrusive PGD Constructors

To circumvent the intrusivity of standard PGD algorithms

so as to be able to construct parametric solutions by using

commercial simulation softwares, two efficient procedures

have been proposed that showed promise in a variety of

case studies:

3.2.1 Sparse Subspace Learning—SSL

We consider the general case in which a transient para-

metric solution is searched. For the sake of notational

simplicity, we assume that only one parameter is involved

in the model, l 2 ½lmin; lmax�. The generalization to sev-

eral, potentially many parameters is straightforward. The

parametric solution uðx; t; lÞ is searched in the separated

form

uðx; t; lÞ �
XM

i¼1

Xiðx; tÞMiðlÞ;

to circumvent the curse of dimensionality when the number

of parameters increases. In this expression both functions

involved in the finite sum representation, Xiðx; tÞ and

MiðlÞ, are a priori unknown.

SSL consists first in choosing a hierarchical basis of the

parametric domain [25]. The associated collocation points

(the Gauss–Lobatto–Chebyshev) and the associated func-

tions will be noted by: ðlji; n
j
iðlÞÞ, where indexes i and

j refer to the i-point at the j-level.

At the first level, j ¼ 0, there are only to points, l01 and

l02, that correspond to the minimum and maximum value of

the parameters that define the parametric domain, i.e. l01 ¼
lmin and l02 ¼ lmax (Xl ¼ ½lmin; lmax�). If we assume that a

direct solver is available, i.e., a computer software able to

compute the transient solution as soon as the value of the

parameter has been specified, these solutions read

u01ðx; tÞ ¼ uðx; t; l ¼ l01Þ;

and

u02ðx; tÞ ¼ uðx; t; l ¼ l02Þ;



respectively.

Thus, the solution at level j ¼ 0 could be approximated

from

u0ðx; t; lÞ ¼ u01ðx; tÞn
0
1ðlÞ þ u02ðx; tÞn

0
2ðlÞ;

that in fact consists of a standard linear approximation

since at the first level, j ¼ 0, the two approximation func-

tions read

n01ðlÞ ¼ 1� l� l01
l02 � l01

;

and

n01ðlÞ ¼
l� l01
l02 � l01

;

respectively.

At level j ¼ 1 there is only one point located just in the

middle of the parametric domain, i.e. l11 ¼ 0:5ðlminþlmaxÞ
,

being its associated interpolation function n11ðlÞ. It defines
a parabola that takes a unit value at l ¼ l11 and vanishes at

the other collocation points of level j ¼ 0, l01 and l02 in this

case. The associated solution reads

u11ðx; tÞ ¼ uðx; t; l ¼ l11Þ:

This solution contains a part already explained by the just

computed approximation at the previous level, j ¼ 0,

expressed by

u0ðx; t; l11Þ ¼ u01ðx; tÞn
0
1ðl11Þ þ u02ðx; tÞn

0
2ðl11Þ:

Thus, we can define the so-called surplus as

~u11ðx; tÞ ¼ u11ðx; tÞ � u0ðx; t; l11Þ;

from which the approximation at level j ¼ 1 reads

u1ðx; t; lÞ ¼ u0ðx; t; lÞ þ ~u11ðx; tÞn
1
1ðlÞ: ð13Þ

The process continues by adding surpluses when going-up

with the hierarchical approximation level. An important

aspect is that the norm of the surplus can be used as a local

error indicator, and then when adding a level does not

contribute sufficiently, the sampling process can stop.

The computed solution, as noticed in Eq. (13), ensures a

separated representation. However, it could contain too

many terms. In that circumstances a post-compression

takes place by looking for a more compact separated rep-

resentation, that will be described later.

When the model involves more parameters, e.g., l and

g, the hierarchical 2D basis, defined in the parametric space

ðl; gÞ is composed by the cartesian product of the collo-

cations points and the tensor product of the approximation

bases n0i ðlÞ and u0
j ðgÞ.

Thus, the first level j ¼ 0, is composed by the four

points:

ðl01; g01Þ; ðl02; g01Þ; ðl02; g02Þ; ðl01; g02Þ;

with the associated interpolation functions

n01ðlÞu0
1ðuÞ; n02ðlÞu0

1ðgÞ; n02ðlÞu0
2ðgÞ; n01ðlÞu0

2ðgÞ:

When moving to the next level, j ¼ 1, the collocation

points and approximation functions result from the com-

bination of the zero-level of one parameter and the first

level of the second one, i.e., the points are now:

ðl01; g11Þ; ðl02; g11Þ and ðl11; g01Þ; ðl11; g02Þ. In what concerns

the interpolation functions they result from the product of

the zero level in one coordinate and the level one in the

other. It is worth noting that the point ðl11; g11Þ and its

associated interpolation function is in fact a term of level

j ¼ 2.

3.2.2 PGD-Based Regression (rPGD) and Sparse PGD (sPGD)

The main drawbacks of the technique just presented are

from one side, the difficulty to address the case of multiple

parameters and, from the other, the necessity of expressing

the parametric space as a hyper-hexahedron.

An alternative procedure consists in defining a sparse

approximation in high dimensional settings [16]. For the

ease of exposition and, above all, representation, but

without loss of generality, let us begin by assuming that the

unknown objective function f(x, y) lives in R2 and that it is

to be recovered from sparse data. For that purpose we

consider the Galerkin projection
Z

X
wðx; yÞ uðx; yÞ � f ðx; yÞð Þdxdy ¼ 0; ð14Þ

where X 
 R2 and w	ðx; yÞ 2 C0ðXÞ is an arbitrary test

function.

Following the Proper Generalized Decomposition

(PGD) rationale, the next step is to express the approxi-

mated function uMðx; yÞ � uðx; yÞ in the separated form and

look for the enriched approximation unðx; yÞ assuming

known un�1ðx; yÞ,
unðx; yÞ ¼ un�1ðx; yÞ þ XnðxÞYnðyÞ: ð15Þ

with

un�1ðx; yÞ ¼
Xn�1

k¼1

XkðxÞYkðyÞ:

It is worth noting that the product of the test function

w(x, y) times the objective function f(x, y) is only evaluated

at few locations (the ones corresponding to the available

sampled data). Since information is just known at these P

sampling points ðxi; yiÞ, i ¼ 1; . . .;P, it seems reasonable to



express the test function not in a finite element context, but

to express it as a set of Dirac delta functions collocated at

the sampling points,

wðx; yÞ ¼ u	ðx; yÞ
XP

i¼1

dðxi; yiÞ

¼ X	ðxÞYnðyÞ þ XnðxÞY	ðyÞð Þ
XP

i¼1

dðxi; yiÞ:
ð16Þ

In the expressions above nothing has been specified about

the basis in which each one of the one-dimensional modes

was expressed. An appealing choice ensuring accuracy and

avoiding spurious oscillations consists of using interpolants

based on Kriging techniques.

The just described procedure defines a powerful non-

linear regression called rPGD. Following our recent works

on multi-local-PGD representations [26], local approxi-

mations ensuring continuity could be defined.

The rPGD-based regression technique could be applied

to interpolate fields obtained through commercial software,

allowing a drastic reduction of the sampling size, with

respect to the SSL technique. When applied for that pur-

pose it is called sPGD (for sparse PGD).

If we consider a set of S points in the parametric space,

here assumed one-dimensional for the sake of simplicity ,

i.e. lj, and the solution calculated at those points:

u jðx; tÞ ¼ uðx; t; ljÞ, the parametric solution uðx; t; l; gÞ
expressed by

uðx; t; lÞ ¼
XM

i¼1

XiðxÞTiðtÞMiðlÞ;

is constructed by employing the same procedure that in the

regression case described above.

3.3 Miscellaneous

3.3.1 Compressing the Resulting Separated
Representations

The main drawback of the non-intrusive separated repre-

sentation constructor with respect to the intrusive one, is

that the former produces too many terms in the finite sum,

that is, too many modes, much more than those needed to

approximate the solution at the same accuracy.

Imagine for a while that the SSL (or the sPGD) proce-

dure leads to the M-term representation

uðx; yÞ ¼
XM

i¼1

XiðxÞYiðyÞ;

for a given residual. Assume that this residual is known to

accept a more compact representation, i.e., one with a

smaller number of modes ~M, with ~M\M. In this case, PGD

can be efficiently used for post-compression [7], by simply

to applying the PGD approximation algorithm to any non-

optimal PGD solution, f(x, y), in the form

f ðx; yÞ ¼
XM

i¼1

XiðxÞYiðyÞ;

and then looking for a new separated expression of u(x, y)

according to
Z

X
u	ðuðx; yÞ � f ðx; yÞÞdxdy ¼ 0;

where u(x, y) is searched in the separated form

uðx; yÞ ¼
X~M

i¼1

Xc
i ðxÞYc

i ðyÞ:

Here, the super-index �c refers to the compressed separated

representation.

3.3.2 Quantities of Interest and Their Sensitivities

We consider the generic problem

Lðuðx; t; lÞÞ ¼ 0;

with Lð�Þ a linear or nonlinear differential operator, acting

on a parametric field. In our case this field will be denoted

by uðx; t; lÞ, where l is the vector of model parameters

l1; . . .; lQ. By using the standard PGD, or its nonintrusive

counterparts, we are able to write the parametric solution in

the separated form

uðx; t; l1; . . .; lQÞ �
XM

i¼1

XiðxÞTiðtÞM1
i ðl1Þ � � �M

Q
i ðlQÞ;

or in its equivalent tensor form

U �
XM

i¼1

Xi � Ti �M1
i � � � � �MQ

i ;

with U the multi-tensor whose entry k; l;m1; . . .;mQ con-

tains the value of the field u at point, time and parameters

referred by these indexes, i.e., uðxk; tl; l1m1 ; . . .; lQmQ Þ.
Obviously, in any other point that does not coincide with a

node of the mesh of space (xk), time (tl) or parameters

(l1m1 ; � � �), the solution is computed by interpolation.

We assume now that we are not directly interested in the

field involved in the physical model uðx; t; lÞ itself, but in
another output field of interest O, that, for the sake of

simplicity, is assumed scalar and depending on every

model coordinate (x; t; l1; . . .; lQ). Assume that it could be

derived from the former according to



Oðx; t; lÞ ¼ Gðuðx; t; lÞÞ:

Thus, we can compute the output at the collocation points

when using the SSL technique or in the points of a sparse

sampling (e.g., carried out by using the Latin Hyper–Cube

method) so as to define, or better, learn, the model

Oðx; t; lÞ �
XO

i¼1

MiðxÞT iðtÞM1
i ðl1Þ � � �MQ

i ðlQÞ:

Remark 6

• This separated representation can be easily obtained by

using the SSL or the sPGD previously presented.

• The model Oðx; t; lÞ can be also constructed by making

use of machine learning techniques, from the known

output in a large enough number of points.

The sensitivity of the output to a given parameter, in the

expression below to l1 reads [27]

oOðx; t; lÞ
ol1

�
XO

i¼1

MiðxÞT iðtÞ
oM1

i ðl1Þ
ol1

M2
i ðl2Þ � � �M

Q
i ðlQÞ:

3.3.3 Uncertainty Propagation

We recall here the model of the quantity of interest

Oðx; t; lÞ �
XO

i¼1

MiðxÞT iðtÞM1
i ðl1Þ � � �MQ

i ðlQÞ:

If parameters are totally uncorrelated, the probability dis-

tribution of all them becomes independent, so that the

probability density function can be expressed as

Nðl1; . . .; lQÞ ¼ n1ðl1Þ � � � nQðlQÞ:

When correlations cannot be totally avoided, we can

express the joint probability density Nðl1; . . .; lQÞ in a

separated form (by invoking the SSL or the sPGD):

Nðl1; . . .; lQÞ �
XR

i¼1

F 1
i ðl1Þ � � � F

Q
i ðlQÞ:

With both the output and joint probability density expres-

sed in a separated form, the calculation of the different

statistical moments becomes straightforward. Thus, the first

moment, the average field results in

Oðx; tÞ ¼
Z

X1�����XQ

Oðx; t; l1; . . .; lPÞ Nðl1; . . .; lQÞ dl1 � � � dlQ;

where Xk denotes the domain of parameter lk. The sepa-

rated representation is a key point for the efficient evalu-

ation of this multidimensional integral, that becomes a

series of one dimensional integrals. The calculation of

higher order statistical moments (variance, …) proceeds in

a similar manner.

Remark 7

• Monte-Carlo strategies can be also used in a very

efficient way since the solution is available for any

parameter choice.

• The knowledge of the parameter distribution can be

used in a parametric stochastic setting [28].

• When addressing stochastic fields, appropriate spatial

parametrization can be introduced based for example on

the Karhunen–Loève expansions or the use of polyno-

mial chaos.

• Parametric solutions are also very valuable when

addressing Bayesian inference, for example.

3.3.4 Data-Assimilation and Advanced Virtual
and Augmented Reality

Data assimilation is the process by which experimental

measurements are incorporated into the modeling process

of a given system. Data assimilation becomes a key player

in dynamic data-driven application systems (DDDAS), as

well as for mixed or augmented reality applications, for

instance.

Both applications need real-time feedbacks. Depending

on the latency of the particular system, these can oscillate

from a few seconds to some milliseconds, for instance, if

haptic (tactile) feedback is sought. To achieve these

impressive feedback rates, the model and its solution play a

fundamental role. If, as is nearly always the case, non-

linear problems are considered, such feedback rate

restrictions can only be achieved by employing some for of

model order reduction. In our previous works we have

employed PGD strategies.

If we assume that the vademecum (PGD) solution of the

parametric problem is available, given a set of measure-

ments, the precise value of every parameter can be iden-

tified in almost real time by using inverse methodologies,

e.g., Kalman filters [12], Tikhonov regularization [29],

gradient methods [10, 30, 31], or Bayesian inference [32],

to cite but a few.

The use of parametric solutions for immersive virtual

reality purposes has been successfully accomplished [33].

Two examples developed by ESI on crash and stamping are

sketched in Fig. 6. More spectacularly, a combined strat-

egy integrating parametric solutions, computer vision and

inverse analysis allowed unique performances in both

feedback rates and realism in augmented reality applica-

tions [34]. The same techniques are now being employed

for using simulated reality for intelligence augmentation.



4 Methods Based in Data-Science

As widely discussed in Sect. 1, engineering is evolving in

the same way than society. However, data could offer

much more than a simple state-of-the-art model calibration,

and not only from a simple statistical analysis, but from the

artificial intelligence perspective:

• Data can be used to produce data-based models, by

relating the selected outputs of interest to uncorrelated

inputs.

• Data can be used to create data-based models to enrich

state-of-the-art models based on well-established phy-

sics (first principle or largely accepted phenomenolog-

ical constitutive equations). Thus, the data contribution

is expected to compensate (in a pragmatic way) the

modeler ignorance, or the excessive system complexity

impossible to capture for some reason.

• Data can be used to classify behaviors, tendencies,

features. Special attention must be paid to the consid-

ered metrics and induced invariance (Euclidean, fuzzy,

topological persistence, …).

• Data can offer the possibility to extract patterns with

high information contents. This is crucial in predictive

maintenance, inspection, supervision, control, etc.

• Multi-dimensional data can be visualized (using a

particular manifold reduced representation) in order to

extract hidden relations.

• By extracting the existing correlations and then by

removing them, data results in valuable, sufficient and

explicative information. Models constructed from

information more than from the raw data, result in

knowledge, key for real-time decision making purposes.

• The smart-data paradigm should replace the—in many

cases irrational—big data-based habits and procedures.

First-order physics and their associated models could

inform on the most pertinent data to be collected, the

places and time instants to perform that measurements,

and the most adequate observation scale(s). This is

extremely important because data is expensive to

collect and also expensive to treat.

• After data collection, it must be assimilated into models

using adequate procedures. Sometimes, missing data

must be completed (data-completion) to offer a global

map or to infer measures in regions/places where

measures cannot be directly performed.

• Data filtering (models are excellent filters, but when

proceeding directly from data, noise is a real

inevitable issue), the exclusion of outliers (even if

sometimes outliers are crucial, since they are related to

fortuity defects), become compulsory.

• Data must be compressed, mainly if it is involved in

streaming procedures. This implies the use of specific

technologies (tensor formats, compressed sensing,

gappy ROMs, …).

• Data ‘‘V’s’’ (variability, veracity, volume, value, …)

must be addressed from a computational perspective.

• The statistical nature of data represents an added

difficulty, since uncertainty must be quantified and its

propagation evaluated for addressing reliability.

• And many other known and still unknown possibilities.

The domains is expanding exponentially.

Fig. 6 Crash and stamping

immersive virtual reality

platform by ESI



From the above list, it seems clear that the use of data,

nowadays and, more importantly, in the future, drastically

differs from the use of it in the past. It seems clear that two

competences/expertises must be considered independently

(but without a total dissociation, since both should continue

interacting intimately): data-collection and data-analysis.

Even if as just mentioned both should intimately inter-

act, the intrinsic nature, tools, procedures, …of each

become more and more different to the other, and conse-

quently they require different approaches. The former will

be centered in measurements, the second on data, both with

their own science and technological contents and

specificities.

4.1 Extracting Embedded Manifolds: Manifold
Leaning Based in Linear and Nonlinear
Dimensionality Reduction

Very often, our system evolves on manifolds of reduced

dimension (d) embedded into the high-dimensional phase

space RD in which the problems is defined. This is the so-

called slow manifold. By extracting these manifolds, the

computational complexity of discretization techniques

reduces significantly. This fact is at the roots of model

order reduction techniques. Proper Orthogonal Decompo-

sition or Reduced Bases techniques extract first this man-

ifold and then proceed to solve problems by exploiting the

low dimensionality of this manifold (d � D). On the

contrary, PGD constructs the manifold and its approxima-

tion at the same time.

In the same way, in the case of a parametric model,

dimensionality reduction allows to extract the number of

informative, uncorrelated parameters (that depends linearly

or nonlinearly on the original model parameters). This way

of doing things becomes extremely useful when solving a

parametric problem, since the lower is the number of sig-

nificant parameters, the simpler becomes its parametric

solution, its offline construction, and its online

manipulation.

It is well known that the human brain consumes only 4

watts of power to perform some tasks for which today’s

computers will require the power of several nuclear power

plants. Therefore, our usual way of doing simulation,

despite the impressive progress in our computers and

algorithms, must be definitively suboptimal. In everyday

life, we distinguish and recognize, almost instantaneously,

a tree or a human being, even those that we never met

before. This means that, despite the diversity and apparent

complexity, few parameters should suffice to accomplish

the task of classifying. In other words, if recognizing

something will depend on thousands of parameters, the

human being will have to spend hours performing the task.

In that case, his or her survival will be compromised. Since

we have survived all along the long history of evolution, it

is because, without any doubt, in general the answer lies

only in few almost uncorrelated data. Big data is accom-

panied most of the time by small information. The apparent

diversity is hidden in the small scales, but the largest scales

suffice for having a useful image of the nature and our

environment, and then to make adequate decisions nearly

in real-time.

The big challenge is how to remove these intricate

correlations and how to express reality in this new resulting

frame? How to discover the frame in which complexity

disappears in favor of simplicity? How to visualize reality

in that new frame? in which coordinate axes? what is the

physical meaning of these new axes?

Accumulated learning, starting from our infancy, pro-

vided us the capacity of pattern recognition in its more

general sense. To adapt ourselves faster, learning should be

sped up by replacing the human brain by powerful com-

puters based on electrons, very soon in quantum effects,

that proceed much faster [35]. One second of a standard

laptop calculation is equivalent to the calculations that a

human brain could perform during a long life devoted to

the same task. Today some routine calculations, e.g., crash

test simulations, require tens of millions of computing

hours, equivalent to thousands of years on a single core

computer. These unimaginable calculations can be per-

formed in only few days by using high-performance

computing platforms, making use of thousands of cores

working in parallel.

The only need to this end is adequate (robust and effi-

cient) algorithms to recognize and extract simplicity from

the apparent complexity so as to proceed from it. Manifold

learning techniques, few of them summarized in what

follows, is a valuable route. Imagine for a while that we are

interested in solving the mechanical problem related to

liver deformation in biomechanics. The main issue, is that

each patient has its own liver whose shape (anatomy)

defining the domain X in which the mechanical problem

must be solved, is ‘‘similar’’ qualitatively but ‘‘different’’

quantitatively to any other liver. Thus, one is tempted to

introduce parameters defining the liver shape as model

parameters and then compute the mechanical problem

solution for any choice of these parameters. But, how many

geometrical parameters define a liver? Each one of us could

propose a different number related to different geometrical

features, probably many tens, even hundreds. In [36] it was

proved, using nonlinear dimensionality reduction and,

more concretely, manifold learning techniques, that few

almost uncorrelated parameters (2–4) largely suffices to

represent accurately any human liver. Thus, in [37] para-

metric models based on the PGD were developed and

successfully used.



For the sake of completeness, even if many papers and

books deeply address the foundations and applications of

these techniques, in what follows some popular linear and

nonlinear dimensionality reduction techniques, widely

employed in our works, are summarized.

4.1.1 Principal Component Analysis and Its Locally Linearly
Counterpart

Let us consider a vector y 2 RD containing some experi-

mental results. These results are often referred to as

snapshots of the system. If they are obtained by numerical

simulation, they consist of nodal values of the essential

variable along time. Therefore, these variables will be

somehow correlated and, notably, there will be a linear

transformation W defining the vector n 2 Rd , with d\D,

which contains the still unknown latent variables, such that

y ¼ Wn: ð17Þ

The transformation matrix W, D� d, satisfies the orthog-

onality condition WTW ¼ Id, where Id represents the

d � d-identity matrix (WWT is not necessarily ID). This

transformation is the key ingredient of the principal com-

ponent analysis (PCA) [38].

Assume that there existM different snapshots y1; . . .; yM ,

which we store in the columns of a D�M matrix Y. The

associated d �M reduced matrix N contains the associated

vectors ni, i ¼ 1; . . .;M.

PCA works usually with centered variables. In other

words,
PM

i¼1 yi ¼ 0PM
i¼1 ni ¼ 0

�
:

Otherwise, observed variables must be centered by

removing the expectation of Efyg to each observation yi,

i ¼ 1; . . .;M. This is done by subtracting the sample mean,

given the fact that the expectation is not known, in general.

What is remarkable about PCA is its ability to calculate

both d—the dimensionality of the embedding space—and

the associated transformation matrix, W. PCA proceeds by

guaranteeing maximal preserved variance and decorrela-

tion in the latent variable set n. The latent variables in n

will therefore be uncorrelated, thus constituting a basis. In

other words, the covariance matrix of n,

Cnn ¼ EfNNTg;

will be diagonal.

Observed variables will most likely be correlated. PCA

will then extract the d uncorrelated latent variables by

resorting to

Cyy ¼ EfYYTg ¼ EfWNNTWTg ¼ WEfNNTgWT

¼ WCnnW
T :

Pre- and post-multiplying by WT and W, respectively, and

making use of the fact that WTW ¼ I, gives us

Cnn ¼ WTCyyW: ð18Þ

The covariance matrix Cyy can then be factorized by

applying the singular value decomposition,

Cyy ¼ VKVT ; ð19Þ

with V containing the orthonormal eigenvectors and K the

diagonal matrix containing the eigenvalues, sorted in

descending order.

Substituting Eq. (19) into Eq. (18), we arrive at

Cnn ¼ WTVKVTW:

This equality holds when the d columns of W are taken

collinear with d columns of V.

We then conserve those eigenvectors associated with the

d nonzero eigenvalues,

W ¼ VID�d;

which gives

Cnn ¼ Id�DKID�d:

We therefore conclude that the eigenvalues in K represent

the variance of the latent variables (diagonal entries of

Cnn).

Noise may often corrupt experimental observations. If

this is the case, every eigenvalue of Cnn is strictly positive,

and the choice of the d most representative columns in V

becomes intricate. For that to be useful, latent variables

must have variances larger than noise. In that case, it is

enough to choose the eigenvectors associated with the

d largest eigenvalues.

There is a clear geometrical interpretation of all this: the

columns of V indicate the vectors in RD that span the

subspace of latent variables. In Fig. 7 this fact can be

observed. In the left figure a set of points in R2 is repre-

sented. Notice however that these points show some pat-

tern, as they are ordered along a diagonal line, that

constitutes the already mentioned slow manifold. PCA is

able to find an alternative representation, by expressing

these points in a new coordinate system, defined by V (axes

in red). In this new coordinate system, all these points lie

clearly in a one-dimensional space.

PCA has been re-discovered several times in recent

times, under different names, in different scientific spe-

cialities. It relies, nevertheless, in the basic assumption of

linear dependency expressed by Eq. (17) between observed

and latent variables. This is precisely one of its most



relevant limitations, that lead recently to a growing interest

on the so-called non-linear dimensionality reduction

(NLDR) techniques.

Latent variables move frequently around a so-called

slow manifold. If this manifold is not flat, as is frequently

the case, the projection in Eq. (17) will simply not exist.

Examples of this situation include, for instance, non-linear,

large strain solid dynamics. NLDR methods are of course

more general than linear ones, allowing for richer rela-

tionships between latent variables and the experimental

ones. This is shown in Fig. 8, where the reader can notice

how no rotation will give us the desired one-dimensional

embedding of Fig. 7. PCA does not see this situation, and

perceives points as pertaining to a two-dimensional mani-

fold, even if they pertain to a spiral-like curve, which is in

fact a one-dimensional manifold.

Local-PCA (‘-PCA) constitutes an alternative to stan-

dard PCA. It simply consists of PCA applied locally, i.e., to

each data point and its closest neighbors, see Fig. 9 [39].

This gives rise to additional difficulties, such as finding the

way to align the different basis for every patch in the data

[40].

‘-PCA has another appealing property: if all the

dimensions are kept, that is d ¼ D, ‘-PCA allows aligning

locally the reduced manifold with the transformed coordi-

nates, but since no coordinate axis is removed, points out of

the reduced manifold can be placed and transported to the

initial space by using the inverse mapping.

4.1.2 Multidimensional Scaling

PCA works with the covariance matrix of the experimental

results, YYT . However, multidimensional scaling, MDS,

(like k-PCA, which will be described hereafter) works with

the the Gram matrix containing scalar products, i.e., S ¼
YTY [38].

Fig. 9 Sketch of local-PCA

Fig. 8 PCA limits in presence

of strongly-nonlinear manifolds

Fig. 7 Geometrical

interpretation of PCA



Multidimensional scaling methods construct a configu-

ration of points in a target metric space from information

about point distances. MDS preserves pairwise scalar

products instead of pairwise distances. They are never-

theless closely related:

S ¼ YTY ¼ NTWTWN ¼ NTN:

Computing the eigenvalues of S, we arrive at

S ¼ UKUT ¼ UK1=2
� �

K1=2UT
� �

¼ K1=2UT
� �T

K1=2UT
� �

;

which in turn gives

N ¼ Id�MK
1=2UT :

Proving the equivalence between MDS and PCA is there-

fore straightforward [38].

4.1.3 Kernel Principal Component Analysis

The origin of kernel Principal Component Analysis, k-PCA

methods is very appealing for its intuitiveness. It adds,

however, some technical difficulties that will be described

next. In fact, it is easy to understand that data not linearly

separable in D dimensions, could be linearly separated if

previously projected to a space in Q[D dimensions [38].

It may appear surprising that k-PCA projects the data to a

higher dimensional space, in an attempt to linearize the

underlying manifold M. Therefore, a mapping

/ : M 
 RD ! RQ; y ! z ¼ /ðyÞ;

is constructed, where Q may be an arbitrary number of

dimensions. The true advantage comes, however, from the

fact that it is not necessary to write down the analytical

expression of the mapping /.
The symmetric matrix U ¼ ZTZ has to be decomposed

in eigenvalues and eigenvectors. Previously, the mapped

data zi involved in U must be centered. Since the mapping

is unknown, this centering process may seem difficult.

However, centering can be done in an implicit way. The

interested reader should consider to consult classical ref-

erences in the field such as [41, 42].

The eigenvector decomposition can now be performed

on the doubly-centered matrix,

U ¼ UKUT ;

giving rise to

N ¼ Id�MK
1=2UT :

The mapping / could provoke scalar products to become

prohibitive, given the fact that the vectors will now be

expressed in a space of a high number of dimensions, Q. To

avoid this high-dimensional multiplication and even the

search for /, a kernel function j is employed that, based

upon Mercer’s theorem—also knwon as the kernel trick—,

directly gives the value of the scalar product

jðyi; yjÞ ¼ zi � zj. Mercer’s theorem states that if jðu; vÞ is
continuous, symmetric and positive definite, then it defines

an inner-product in the mapped space.

Many different kernels exist that fulfill Mercer’s con-

dition, such as, for instance:

• Polynomial kernels: jðu; vÞ ¼ ðu � vþ 1Þp, with p an

arbitrary integer;

• Gaussian kernels: jðu; vÞ ¼ exp �ku�vk2
2r2

� �
for a real r;

• Sigmoid kernels: jðu; vÞ ¼ tanhðu � vþ bÞ for a real b.

No practical tip can be offered to choose any particular

mapping /. The goal is simply to linearize the manifold to

be embedded. If this goal is met, then the application of

PCA will suffice to unveil the nonlinear principal compo-

nents of the data set, that now lives in a flat space.

4.1.4 Locally Linear Embedding

From the set of points yi 2 RD, i ¼ 1; . . .;M, Locally

Linear Embedding, LLE, methods proceed in two steps

[43]:

1. Interpolate each point yi, i ¼ 1; . . .;M linearly by

choosing a number K of its nearest neighbors. Note that

this interpolation is local (is performed only among its

nearest neighbors) and linear. One of the most cited

limitations of LLE is precisely to have to choose K. In

principle, it should be greater that the expected

dimension d of the embedding manifold, while the

neighbors should be close enough so as to ensure the

validity of linear approximation. In sum, we exploit the

classical definition of what a manifold is: a geometric

structure homeomorphic to a plane in the neighborhood

of each point. Choosing a small number of neighbors

K and a large sampling M provides almost always a

satisfactory reconstruction.

This linear reconstruction of each data point yi can

be expressed as:

yi ¼
X

j2Si

Wijyj;

with Wij the sought weights and Si the set of the K-

nearest neighbors of yi.

The set of weights that best approximates the

manifold structure of the data will be obtained by

minimizing the functional



FðWÞ ¼
XM

i¼1

yi �
XM

j¼1

Wijyj

�����

�����

2

;

where Wij is zero if yj is not one of the K-nearest

neighbors of yi.

2. Every linear patch around yi, 8i, is mapped onto a

lower dimensional embedding space of dimension

d � D. The key ingredient of LLE methods is to

assume that the same weights will hold in the new,

low-dimensional embedding space. If the weights

remain, the problem reduces now to find the particular

coordinates of each point yi in the embedding space,

ni 2 Rd that make it possible to maintain the value of

the weights.

This is achieved by defining a second functional G,
as a function of the sought coordinates, n1; . . .; nM

Gðn1; . . .; nMÞ ¼
XM

i¼1

ni �
XM

j¼1

Wijnj

�����

�����

2

:

In this functional the weights are assumed known

while we look for the reduced coordinates ni. Mini-

mization of G gives rise to a M �M eigenvalue prob-

lem whose d lowest non-zero eigenvalues define the

basis of the space in which the manifold is embedded.

It is worth noting that Gðn1; . . .; nMÞ, with the dif-

ferent coordinates ni already determined, allows us to

obtain a local error estimator as

EðniÞ ¼ ni �
XM

j¼1

Wijnj

�����

�����: ð20Þ

4.2 Data-Driven Mechanics: Data-Based
Constitutive Equations

In an environment in which large scientific infrastructures

produce petabytes of data every day, it was unavoidable

that computational mechanics succumbed under the tsu-

nami of big data. Science was first experimental (the so-

called first paradigm of science), then was able, by means

of models, to establish a theoretical paradigm. In the last

decades it has become heavily computational, so as to

make predictions by simulating the already established

physical laws. However, very recently, the fourth paradigm

of science is that of data exploration, the one that unifies

data, theory and simulation [1].

We are far from an epoch of hypothesis-neutral research

[44]. It is not either a question of finding correlations

among data. What data-driven computational mechanics is

all about is to be able to abandon the cumbersome times of

data fitting to complex, phenomenological constitutive

equations and to be able to perform simulations on top of

large sets of experimental data without the need of over-

simplifying assumptions. In other words: it is a question of

bringing computation to the data, rather than data to the

computation,fourth-paradigm.

The word genome, when applied out of the context of

biological systems, refers to a fundamental building block

toward a larger purpose. The materials genome—see

https://mgi.nist.gov/—is an initiative set forth by the White

House in USA. to face the challenge of incorporating new,

designed materials to the market twice as fast at a fraction

of the nowadays cost. This initiative emphasizes the need

for the design of more advanced computational techniques

able to supplement physical experiments. This will be

possible if data are shared and integrated across the ‘‘ma-

terials continuum’’ process of design. The materials gen-

ome initiative highlights the need for an integrated

workflow of experiments, simulation and theory and the

development of advanced simulation tools that are vali-

dated through experimental data [45]. It also emphasizes

the need to make digital data accessible, including com-

bining data from experiment and computation into a

searchable materials data infrastructure. This need has

revealed, however, being totally insufficient. For instance,

data produced in one week by the Spallation Neutron

Source in the USA used to take one year of graduate stu-

dent’s time to analyze [46]. Now, this research installation

is producing data one hundred times faster.

Therefore, it is absolutely necessary to go substantially

beyond: to develop simulation methods able to integrate

and perform data acquisition, reduction, assimilation and

analysis so as to be able to seamlessly integrate them in the

design and fabrication processes of products involving

radically new materials.

Existing computational tools still posses some other

fundamental limitations. One of the biggest is the difficulty

of integrating disparate time and length scales. For

instance, we can model and predict the vibration of atoms

in a lattice at time scales on the order of picoseconds. But

this information is not suitable for the prediction of mate-

rials behavior across the course of the years. If a compu-

tational tools is needed to cope with this challenge, it will

need to acquire and reduce all this huge amount of data and

convert it in knowledge. Therefore, the need for model

order reduction techniques is seen as a must.

Materials Informatics is a new scientific discipline that

applies the principles of informatics to the design of new

materials. It shares much of the spirit of the materials

genome initiative. Indeed, it envisages the design of

‘‘specialized informatics tools for data capture, manage-

ment, analysis, and dissemination’’ and the need for ‘‘ad-

vances in computing power, coupled with computational

modeling and simulation and materials properties

https://mgi.nist.gov/


databases’’ [47]. Again, the possibility of sifting vast

amounts of data reveals to be the bottleneck of a

suitable strategy.

In an attempt to incorporate the huge possibilities of Big

Data to the field of scientific computing, some proposals

have been proposed very recently. The first one represents

an attempt of working without constitutive laws [14]. In

fact, they propose a method that works directly with bal-

ance equations and seeks for the experimental point that

gives the state closest to equilibrium. To that end, it

employs an optimization procedure.

This method re-opens the epistemic controversy

between the scientific approach followed by Kepler—who,

with the help of ‘‘big’’ data, was able to accurately describe

planet’s orbits—or the one by Newton, who unveiled the

laws of physics behind gravitation that could finally

explain why the computations done by Kepler were right.

The other approach, closer to the one of Newton, is to

discover governing equations from data [48–50]. These

methods need for some assumptions on the form of the

particular sought physical laws, but determines a precise

form of governing laws even in the presence of noised data.

The main limitation that can be envisaged about these

two approaches is their ability to cope with large amounts

of data. In particular, the approach in [14] performs an

optimization procedure to find the experimental point

closest to satisfying balance equations that could be very

expensive in the presence of big data. Furthermore, in an

ICME approach we want to create new materials, still

inexistent, by extrapolating the conclusions obtained by

experimental and computational data. This is not possible

without employing some form of machine learning, able to

extract trends from data and to foresight the properties of

materials yet to come.

In this framework, computational mechanics is hold on

top of three cornerstones: equilibrium, compatibility and

constitutive equations. It is obvious that, as pointed out by

Ortiz et al. [14], the later is of a lower epistemic character.

It is simply nonsense to capture, curate and analyze peta-

bytes of data just to verify equilibrium during an experi-

ment or to check if compatibility is satisfied. Therefore,

data-driven computational mechanics deals naturally with

the issue of correctly reproducing from data the constitu-

tive behavior of the material.

4.2.1 Early Times of Data-Driven Approaches

Of course, data-driven approaches in computational

mechanics trace back to early parameter identification

methods, that had an important popularity after the mid-

nineties [51–57]. Essentially, this approach consisted of

an inverse problem solving by finite elements so as to

determine the value of the material parameter that best

fits with the experimental results. However, this approach

needs a pre-defined constitutive model and is therefore

very intrusive in the process of material characterization.

By data-driven approaches, however, one tends to think

of an approach that does no presuppose any form of con-

stitutive equation. In fact, the work that is often considered

as the first in the field, the one by Kirchdoerfer and Ortiz

[14], does not employ any constitutive equation, and arose

in an attempt to employ data directly in the computations.

There exist, however, some previous works that, in the

framework of numerical homogenization, tried to obtain a

sort of response surface for a representative volume ele-

ment subjected to any possible boundary condition, see for

instance [58–61]. These response surface approaches

avoided the employ of any form of constitutive equation

while also avoided the always cumbersome task of a

microstructure analysis at every Gauss point of the

macroscopic model.

Recent works by W. K. Liu and coworkers share

important similarities with this rationale. For instance, in

[62] a method is developed that works by designing a

sort of response database for material RVEs, such that it

very much eases the task of designing new materials by

simply interpolating among selected microstructures. Of

course, in this approach, very much like in the one by

Yvonnet and coworkers, the issue of the curse of

dimensionality (given the vas amount of design param-

eters that exists in the problem) is of utmost importance.

To circumvent this curse, Liu et al. [63] developed a

technique coined as self-consistent clustering analysis

(SCA). Basically, it relies on k-means clustering tech-

niques to characterize the macroscopic response of sim-

ilar material microstructures [64]. This technique has

recently been extended to elasto-plastic materials with

strain softening [65].

4.2.2 Working Without Constitutive Equations

While the work of Yvonnet et al. [58] assumes that input

data comes from numerical simulations at the scale of the

representative volume element (RVE) of the material, the

work of Kirchdoerfer and Ortiz assumes experimental

results. While the former employs high-dimensional

interpolation so as to obtain a sort of response surface for

the RVE, the one by Kirchdoerfer and Ortiz assumes that

each experimental result is a pair of strain-stress values

(since it is intended for trusses, no tensorial values are

considered) that satisfy equilibrium and compatibility.

Therefore, their method looks for the closest experimental

pair in phase space to satisfy compatibility and equilibrium

by minimizing a cost function.



In subsequent works, Kirchdoerfer and Ortiz extend this

approach to noisy experimental data sets [66] and also to

dynamics [67]. A similar approach is followed in [68] in

which the Euclidean distance to experimental points is

substituted by the Mahalanobis distance. Other than that,

the approach is identical to [14].

More recently, the authors introduced the concept of

constitutive manifold. By applying manifold learning to

pairs of experimental or numerical stress–strain values, the

manifold structure of these data can be unveiled so as to

ascertain the constitutive behavior of the material or

structure [69]. Assume that a set of nexp experimental

stress–strain couples are stored in our database. These

couples are in fact points Xm 2 RD, m ¼ 1; . . .; nexp, in a

space of dimension D ¼ 12 (six stresses and six strains in

Voigt notation). If some coherence exists between strains

and stresses (and this is no more than a constitutive

equation), then, these points could be projected without

loss of information onto a manifold of dimension d � D.

Consider, for instance, a set of randomly generated points

according to a generalized Hooke’s law. By employing

Locally Linear Embedding (LLE) techniques, for instance,

it is easy to find out that they pertain actually to a flat

manifold in which only two parameters are relevant

(Young modulus and Poisson’s coefficient, for instance, or

Lamé coefficients) [43]. The result of embedding coordi-

nates Xm onto the two-dimensional manifold gives the

reduced coordinates nm. This is represented in Fig. 1

(Fig. 10).

The concept of constitutive manifold not only provides

with a very intuitive and visual concept (if the resulting

manifold lives a small enough dimension). It allows to

compute in a very efficient way by iterating between the

equilibrium equation (which is always linear and global)

and the non-linear and local constitutive manifold. The

intersection between both manifolds will provide precisely

with the sought state of the system in the phase space, see

Fig. 11. A very simple iterating algorithm can thus be

established that closely resembles the Large Time Incre-

ment technique by Ladeveze [19, 70, 71].

Thus, the equilibrium manifold S hosts stress–strain

pairs in equilibrium ðrn; enÞ at iteration n. To perform an

iteration so as to obtain a suitable point on the constitutive

manifold, ðr̂; êÞ a search direction must be established. The

intersection of this search direction with the constitutive

manifold provides the sought pair. Note that this iteration is

local, since each integration point on the model could be at

a different stress–strain state. On the contrary, projection

from the constitutive manifold onto the equilibrium man-

ifold so as to obtain a new couple ðrnþ1; enþ1Þ must be done

at a global scale.

In [72] this technique is extended to materials with rich

microstructure in which image techniques can be employed

so as to ascertain the details associated with this fine level

of detail. For these, the concept of constitutive manifold

allows for a proper interpolation among selected sampled

RVEs, producing finally a technique that works very much

like the ones developed by Yvonnet and coworkers. The

extension of the concept of constitutive manifold to prob-

lems with elastoplastic behavior was addressed in [73]. In

[37], on the contrary, kernel-PCA techniques [41, 42]were

employed to ascertain the precise form of the manifolds for

different microstructures.

4.2.3 Hyperelasticity

Hyperelasticity deserves maybe a special comment, since it

is characterized by the presence of a stored energy (po-

tential) function so as to guarantee energy conservation in
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Fig. 10 Reduced coordinates nm 2 R2, m ¼ 1; . . .; nexp, on the

resulting two-dimensional constitutive manifold. These results corre-

spond to a linear elastic material under small strains. The color map

represents the associated elastic energy just to show that the

embedding procedure does not hide information

S
(σn, εn)(σn+1, εn+1)

(σ̂, ε̂)

Fig. 11 Sketch of the iterative scheme proposed in [69]. In blue, the

linear equilibrium manifold is represented. In red, the constitutive

manifold. The technique iterates until finding the intersection of both

manifolds, the true state of the system in the phase field



closed cycles. In this framework, data-driven approaches

are directed towards the precise determination of the shape

of this energy functional. While the general procedure is to

try to reproduce existing, well-known constitutive laws by

means of parameter fitting of experimental data, Montans

and coworkers propose to avoid the use of existing laws

and to simply interpolate experimental results with the help

of splines. This approach is based upon an old technique

developed by Sussman and Bathe [74] and is now known as

what you prescribe is what you get (WYPIWYG) hypere-

lastcity. It has been applied to transversely isotropic [75] as

well as orthotropic materials [76], plasticity [77], com-

pressible elasticity [78] and has been recently applied to

living soft tissues [79, 80]. Although initially thought to

precisely interpolate data points, when there is considerable

noise in the data a new version must be employed [81].

4.2.4 Thermodynamic Consistency

One of the recurrent questions when studying data-driven

procedures in the framework of integrated computational

materials engineering (ICME) is that of noise in the data.

Eventually, this could led to inaccuracies that may have as

a consequence the violation of some first principles. For

instance, how do we guarantee energy conservation and

strict positive entropy generation in the presence of noise in

the data?

Recently, the authors have presented a method able to

incorporate noisy data and still guarantee the thermody-

namic consistency of the resulting simulations [15]. The

method is developed by resorting to the GENERIC for-

malism [82–84]. In a nutshell, the GENERIC (‘‘General

Equation for Non-Equilibrium Reversible-Irreversible

Coupling’’) formalism seeks for an expression of the time

evolution of the necessary variables to describe the mate-

rial at hand, _zt.

Basically, the GENERIC formalism assumes an evolu-

tion of the variables of the form

_zt ¼ LðztÞrEðztÞ þMðztÞrSðztÞ; zð0Þ ¼ z0; ð21Þ

where L is the so-called Poisson matrix, which is respon-

sible for the reversible (Hamiltonian) part of the evolution

of the system. E represents the energy of the system and M

represents the friction matrix, responsible for the irre-

versible part of the evolution of the system. S represents the

entropy of the system for the particular choice of variables

z. The choice of these variables is not particularly relevant,

since even if they result to be finally related, this will be

detected by the method.

Matrices L and M need to satisfy the following

relationship:

LðzÞ � rSðzÞ ¼ 0; ð22aÞ
MðzÞ � rEðzÞ ¼ 0; ð22bÞ

often referred to as degeneracy conditions. This is fulfilled

by simply choosing L skew-symmetric and M symmetric,

positive semi-definite. Then it is straightforward to verify

that

_EðzÞ ¼ rEðzÞ � _z
¼ rEðzÞ � LðzÞrEðzÞ þ rEðzÞ �MðzÞrSðzÞ ¼ 0;

ð23Þ

which is equivalent to the very basic principle of conser-

vation of energy in closed systems. In turn,

_SðzÞ ¼ rsðzÞ � _z
¼ rSðzÞ � LðzÞrEðzÞ þ rSðzÞ �MðzÞrSðzÞ 0;

ð24Þ

guarantees the satisfaction of the second principle of

thermodynamics.

The method consists, then, in the identification of

matrices L and M—something straightforward in the vast

majority of the cases—and the particular structure of the

gradients of energy and entropy (Hamiltonian and dissi-

pative parts of the constitutive equations, respectively).

In [15] this is done by a data fitting procedure that shows

very promising characteristics. Not only the particular

behavior of the material can be identified. The time dis-

cretization of Eq. (21) allows to develop as a byproduct a

very efficient time integration scheme with the right

properties in terms of conserving and dissipative magni-

tudes, see [85, 86] for more details.

4.2.5 Hybrid Methodologies

As just emphasized, a growing interest has arose on the

development of data-driven techniques to avoid the employ

of phenomenological constitutive models. While it is true

that, in general, data do not fit perfectly to existing models,

and present deviations from the most popular ones, we

believe that this does not justify (or, at least, not always) to

abandon completely all the acquired knowledge on the

constitutive characterization of materials. Instead, what we

recently proposed [87], by means of machine learning

techniques, to develop correction to those popular models

so as to minimize the errors in constitutive modeling.

Plenty of effort has been dedicated throughout history to

create very accurate models, however, we also know that

no model is perfect: it is always subjected to certain lim-

iting hypotheses. In [87], we provided an alternative route

by enhancing or correcting existing, well-known, models

with information coming from data, thus performing a sort

of data-driven correction. In that first work a special effort



was put on the correction of plastic yield functions, while

work in progress addresses more complex scenarios

involving hardening and damage.

The proposed data driven correction technique is con-

ceptually simple. Imagine that our departure point is a

given, well-known parametric model MðpÞ. It is important

to keep in mind that we are looking for an enhancement or

correction of the previous model based on the available

experimental results. Therefore, a discrepancy model DðcÞ,
which applies to the first model, needs to be defined. So to

speak, reality, R, is approximated as

R ¼ MðpÞ þ DðcÞ p

�� ; ð25Þ

where p represents the set of parameters governing the

model and c represents the set of parameters needed to

define the necessary correction.

Since our measurement capabilities will in general be

constrained to some experimentally observable quantities,

both our objective reality and the correction to the model

will be restricted to these experimental settings. In other

words,

R s � MðpÞ þ DðcÞj jp;s: ð26Þ

It is worth to mention that the way we define the observ-

ables s could have an important impact over the calibration

of the set of correction parameters, c and remains a

research field very active as discussed later.

4.3 Model Learners

In the last decades we have seen a tremendous develop-

ment of artificial intelligence (IA) techniques. Machine

learning (ML) and manifold learning, and, notably, deep

learning (DL) techniques, have assisted to an unprece-

dented growth in the wide range of applications they can be

envisaged for. With the eruption of data-enabled science

and engineering (the so-called fourth paradigm of science),

applied science is today a symbiosis of theory, experiments

and simulation.

In a changing scenario that goes beyond the industry 4.0

paradigm and moves towards the next generation, 5.0,

based on collaborative robotics, connected devices are

continuously producing huge amounts of data. These must

be stored, curated and processed so as to unveil trends, find

out hidden correlations, and, eventually, make decisions in

real time. Learning governing equations from data has thus

acquired an utmost importance in recent times.

In science, a model is no more than a mathematical

expression relating an input and its associated output. If

both, input and output, are expressed in a discrete form,

i.e., through vectors I and O respectively, then the model

can be expressed as the matrix K that allows computing the

output O as soon as the input I is specified. In other words,

the model expresses KO ¼ I. In this discussion, and

without loss of generality, we assume the same number of

components of the input and output vectors, but the dis-

cussion the discussion remains valid in a more general

case.

In mechanics usually input and outputs are loads and

displacement (or velocities) and the model is usually

known. The model consists of the combination of balance

equation (assumed universal) and constitutive equations

relating kinematic and mechanical variables (e.g. the

Hooke law in elasticity relating strain and stress or the

Newton law relating stress and its associated rate of strain).

When the model is assumed known, from the large

catalog or dictionary of material behaviors the only needed

thing is using experiments to calibrate the model, that is,

for identifying the parameters involved in those constitu-

tive equations. As it is well known, the choice is enormous,

and the final predictions depend on both the quality of the

chosen model and the quality of its calibration.

We could operate differently. We do not assume a

model from the so-called models dictionary; we are cre-

ating it from the scratch in a different way and using a quite

different representation. Both are being described in what

follows. Here, the model K is unknown, but in exchange

many input/output couples are available, i.e.

ðIi;OiÞ; i ¼ 1; . . .;M. In that case the problem becomes

the one of calculating the model K from the available

input/output data, assuming that all input/output couples

are related by the unknown model, i.e. KOi ¼ Ii; 8i.
A naive view on the problem, assumed linear, consists

of rewriting the problem in the extended matrix form

OK ¼ I, where K is the vector form of the unknown

matrix K, I the extended vector that concatenates all the

inputs Ii, 8i, and O an extended matrix constructed from

the outputs vectors (known assumed known) Oi, 8i. Now,
if sufficient data is available, one could imagine that the

model could be extracted by solving the extended linear

system, K ¼ O�1I (when O is not inversible, its pseudo-

inverse can be applied, among many other possibilities).

It is worth noting that the choice of inputs and outputs is

far from being a trivial task. When Galileo studied falling

bodies, he considered the distance travelled by the object

after every second, that distance being the difference

between its initial and present positions. Thus, by com-

paring these distances (5 meters travelled during the first

second, 15 during the next one, then 25, etc., he observed

that data followed the relation 15=5 ¼ 3=1, then

25=15 ¼ 5=3, …He thus affirmed that the consecutive

traveled distances follow the prime numbers series

(1; 3; 5; . . .). We must remember that at that time differ-

ential calculus was not available (it was waiting for the

arrival of Newton and Leibniz!). It was without any doubt



an excellent discovery—a predictive model—, but

expressed into an alternative form with respect to the

nowadays usual model formats. The most important point

in this discussion is not the law itself, is the fact that

Galileo considered the right variable, the travelled distance

and not the position itself. If he had decided to consider the

position itself, very probably the deduced law could have

violated the principle of Galilean invariance (frame

indifference).

Nowadays, after centuries of rigorous and fruitful the-

oretical and applied scientific accomplishments, for the

vast majority of the models employed by engineering and

scientists, input and outputs are well pre-defined. However,

in many other, less experienced contexts the choice is more

involved. This occurs mainly when nonlinearities become

history-dependent, such that they involve a number of state

variables able to replace time-trajectories.

In the field of data analytics and machine learning, there

are many options for constructing a model able to be used

to predict outputs for given inputs. The simplest possibility

consists in choosing the known output related to the closest

known input. Even if it seems a straightforward alternative,

it entails a major issue, the choice of the metric. This is

particularly delicate when the inputs are of different nature

and have very different characteristic values (strongly

dependent on the considered units), significantly impacting

the notion of neighborhood.

There are many other model constructors. Among them,

and without the aim of being exhaustive, we would like to

mention:

• Linear and nonlinear regression. Linear regression is

considered mainly because of its simplicity. Its main

advantage is that when P inputs (parameters) are

considered, P data suffice to construct it even if more,

or even less, data can also be employed. Non-linear

regressions considering higher-order approximation

require much more data. For example, the number of

monomials involved in quadratic approximations scale

with P2 and, in general, the complexity when consid-

ering degree D scales with PD. Thus, to circumvent the

curse of dimensionality P and/or D should be reduced.

As discussed previously, manifold learning allows

considering the strictly minimum number of explicative

parameters, p�D, whereas the use of separated repre-

sentations (in the context of the rPGD discussed in

Sect. 3) limits the effect of D [16].

Nonlinear regression can be efficiently replaced by

locally linear regression, in particular Hierarchical

Bayesian Linear Regression seems especially promising

[88].

In a similar way rPGD can be replaced by a multiple

local PGD-based nonlinear regression while ensuring

continuity thanks to its consideration within the parti-

tion of unity (PU) framework [26].

• Decision trees and its random forest counterpart [89]

have been traditionally intensively used for classifying

and for constructing regressions. The rPGD discussed

above aimed at conceiving a sort of fully-combinatorial

decision-tree within a variational framework.

• Deep-learning based on the use of neural networks

(NN) (see [90] among many others available papers and

books) is probably the most powerful and most

extensively used regression tool. NN employ a certain

number of neuron layers, in order to account for

existing couplings, and some ad hoc nonlinear behavior,

and then the system is trained with the available data to

finally generate a black-box model. Even if such a route

is an appealing alternative when nothing a priori is

known (e.g., e-commerce, sociology, psychology, mar-

keting, etc.) in the case of engineering such a route

makes it difficult to assimilate all the existing scientific

acquired knowledge in the form of models. Today,

significant efforts are being paid in order to render it

more comprehensible from the physical point of view.

A deeper understanding of its functioning is crucial to

improve its efficiency (reducing the training stage) and

addressing more complex phenomena and physically

based complex models.

Physics-informed Deep Learning was considered by

Karniadakis and coauthors [91, 92] for data-driven

solution of nonlinear PDE as well as for the discovery

of nonlinear PDEs.

• Dictionary learning [93] consists in, given many events

(vectors), constructing a matrix (called dictionary) so

that every event must be written as a sparse linear

combination of the columns in the dictionary. More

precisely, assume the pairs ðxi; biÞ collected into the

columns of matrices X and B respectively. The goal is

to compute A (the dictionary) and X from the knowl-

edge of B in such a way that the columns of X are

sparse. The job is successfully performed by using a

variety of techniques: method of optimal directions,

K-SVD or the matching pursuit algorithms, including

the orthogonal variant. In a more general sense Tensor

Learning is offering unexpected possibilities [94].

• Manifold learning, widely described in Sect. 4, the

tSNE [95] and other described in [38], complemented

with advanced clustering and classification techniques

(e.g. K-means [96], Support Vector Machines—SVM—

[97, 98] and the incipient powerful techniques based on

Topological Data Analysis [99, 100]) are becoming

unavoidable.

• Sparse identification [48] consists in assuming the

search model from a general form involving many

linear and nonlinear contributions (polynomial, cosinus,



exponentials, …and different combinations of them). It

is expected that not all these contributions will be

required for approximating the available data, and

consequently sparsity is invoked.

• Dynamic model decomposition [101] proceeds from a

given time series of data, by computing a set of modes

each of which is associated with a fixed oscillation

frequency and decay/growth rate. For linear systems

these modes and frequencies are analogous to the

normal modes of the system. Its extended framework by

using a data-driven approximation of the Koopman

operator [102] is also attracting a growing interest.

• Data-driven operator inference for nonintrusive projec-

tion-based model reduction was considered by

Peherstorfer and Wilcox [50]. It infers approximations

of the reduced operators from the initial conditions,

inputs, trajectories of the states, and outputs of the full

model, without requiring the full-model operators.

Similar procedure was considered in [15] while ensur-

ing a thermodynamic consistency.

4.4 Rationalizing the Need of Data: From Big-
Data to Smart-Data

Data-driven engineering requires a huge amount of data.

This constitutes one of its main drawbacks and, at the same

time, one of newest and powerful characteristics. For many

engineering applications, such an amount of data is

sometimes not available (as opposed to many other sci-

ences where data is often cheap to acquire but difficult to

curate). In the sequel, we assume without loss of generality

an elastic behavior. Thus, constructing the constitutive

manifold by carrying out a sequence of homogeneous tests

with the purpose of activating every possible strain states,

seems out of reach for today’s capabilities (hopefully it will

not be so in a near future).

In our recent works, we considered an alternative

approach, widely considered in the community of image

correlation [103]. In this field, complex stress states are

invoked during experimental campaigns. Thus, for

instance, by determining the strain state in a region of the

specimen we could, by applying inverse identification,

unveil a large region of the constitutive manifold. The

concept of constitutive manifold has been established in

some of our latest works in the field [69, 72]. In them we

analyzed two alternative pathways. In the first one we

unveiled gradually the manifold from loading data.

Therefore, at each load increment, the elastic tensor for a

new strain value is determined. It should be noted, never-

theless, that such an approach revealed to be complex,

partly due to the use of the elastic tensor as the main

mechanical variable. It also revealed to be complex in the

case of nonlinear constitutive equations. The second route

consisted of constructing a polynomial approximation of

the elastic energy, whose second derivative results in an

elastic tensor, and whose identification from collected data

seems simpler and more robust.

The establishment of the smart-data paradigm is in

progress. All of us will probably agree in that, to describe

the filling process of a balloon, for instance, the specifi-

cation of position and momentum of every molecule is not

required. It is enough to specify some macroscopic, ther-

modynamic variables: volume, temperature, pressure, …to

describe the system. In our opinion, the big-data paradigm

is analogous to fully characterize every atom. The right

approach appears now clear: there is a need to create a

multi-scale theory of data, that should work at equilibrium

and off equilibrium. The former consists of a sort of ther-

modynamics of data (knowledge) and the last focuses on its

transport mechanisms (information). Some attempts exist

on this field [104] and researches should continue

progressing.

Thus, one could expect that smart data should inform

physics on the type of data to collect, where and when to do

it, with the main objective of acquiring maximum infor-

mation and knowledge. The era of collecting every possible

datum to curate only a small percentage of them should be

replaced by acquiring the right data, the one of highest

quality. Collecting and treating data is expensive and takes

time. It compromises real-time feed-back, which is needed

for decision-making, and is indeed mandatory in many

applications like video-surgery, robotics or autonomous car

driving, to cite but a few.

Data rationalization can be efficiently performed by

considering smart-sampling strategies. When no prior exist,

Latin Hypercube techniques can be used to obtain a rea-

sonable representation of the whole multidimensional

space. This technique has been commonly considered in

design of experiments—DoE—as well as to construct

meta-models (surrogate models).

In the field of a posteriori MOR (POD or RB) the issue

of performing better samplings was addressed to correctly

drive the greedy constructor. Thus, the so-called ‘‘magic

points’’ were proposed in the context of Reduced Based

based MOR [17]. In a stochastic framework the issue of

better placing the measurement points has also extensively

been considered.

When using reduced basis, data assimilation easily

allows data-completion. To make it simple, imagine that a

given field uðxÞ in a domain X, i.e., 2X, can be expressed

from a linear combination of functions /iðxÞ, i ¼ 1; . . .;M,

according to



uðxÞ ¼
XM

i¼1

ai/iðxÞ: ð27Þ

If this field is known at M particular locations Xj,

uj ¼ uðx ¼ XjÞ, we could compute the M alpha coefficients

ai. The choice of those M points should ensure the

invertibility while reducing the numerical errors.Then, with

those coefficients already calculated, Eq. (27) allows us to

complete the solution, that is, to predict the solution at

every point x 2 X from the mere knowledge of it at

M locations.

Another family of techniques growing rapidly are rela-

ted to sparse sampling [105], closely connected with

compressed sensing that we summarized in what follows.

Most of nonlinear dimensionality reduction techniques

consider least-squares fitting of the data, however com-

pressed sensing is based in the use of the L1 norm instead.

As described in [106], there is a subtle link between

sparsity and the use of the L1 norm. When considering

curve fitting, the use of standard L2 norms magnifies the

influence of outliers, because of the squared norm. Then

the impact of those outliers in the fitted curve can thus be

significant.

In the same spirit, the solution of underdetermined

algebraic systems is a tricky issue, because they contains

an infinite number of solutions. As illustrated in [106], the

use of the pseudo inverse produces a fully populated

solution vector whereas when considering the ScilabTM or

MatlabTM backslash the solution contains a lot of zero

entries, and then results sparse. When solving the problem

with L2 and L1 optimizations (trying to obtain the minimum

norm solution), the former becomes much less sparse than

the last. In the case of overdetermined systems the same

tendencies can be observed.

Thus, from a purely engineering viewpoint, L1 can be

associated to sparsity. For this reason the L1 norm was

considered as an appealing candidate for addressing signal

reconstruction problems. This alleviates the Nyquist–

Shannon sampling theory, that states that for recovering a

signal, one must sample at twice the rate of the highest

frequency involved in the signal.

Imagine a vector f in the usual space or time domains,

and its counterpart in a domain in which it should accept a

sparse representation, i.e., its vector counterpart c contains

many zeros. Imagine for a while a single-frequency har-

monic function in the time domain. Its sampling requires a

number of its solution at different time instant as stated by

the Nyquist–Shannon sampling theory. However, if we

express it in the frequency domain, a single information

suffices, the amplitude at the given frequency.

Those appealing spaces of representation, when they

exist, remain unknown. Thus, in general, different choices

are considered: the ones related to frequency (Fourier or

discrete cosines transform) or the ones related to multi-

resolution wavelets, among many other possible choices.

If we denote by T the matrix making the discrete

transformation between both representations, the original

one and the one in which the representation is expected to

be sparse,

Tc ¼ f; ð28Þ

since vector c is expected to have many zero entries (as

soon as it corresponds to a space in which the signal

becomes sparse), one could expect that its solution could

be computed from some rows of matrix T and vector f,

after solving the resulting underdetermined system by

making use of a L1-norm based optimization.

The choice of such rows can be made in different ways.

However, the most usual one consists in a random selec-

tion, even if nowadays many works are addressing this

issue. From a matrix perspective such extraction simply

consists in the definition of a diagonal matrix, with unit

entries at the rows to extract. If the set of rows to extract is

denoted by S, the extraction matrix E is defined from

Eii ¼ 1 if i 2 S
Eij ¼ 0 otherwise

�
:

The solution of problem defined by Eq. (28) can be

approximated by the solution of the underdetermined

system

ETc ¼ Ef; ð29Þ

using a L1-norm based optimization.

Thus, the two main ingredients are: (1) the use of an

adequate space in which the solution of the problem at

hand is expected to exhibit sparsity, and (2) the solution of

the underdetermined problem by using a L1 norm.

Compressed sensing is at the origin os the so-called

‘‘single pixel camera’’, where instead of acquiring the

global image information, i.e., the vector f, to be then

compressed, only few entries of it are acquired, i.e., Ef, and

as soon as vector c is calculated by solving Eq. (29), the

whole field (image) can be reconstructed from Eq. (28).

5 Conclusions and Prospects

The hybrid twin, that perfectly encompasses the function-

alities of its two predecessors, the so-called virtual and

digital twins, consists of:

1. the pre-assumed physical contribution, efficiently

addressed by using Model Order Reduction techniques;

2. a data-based modeling of the gap between predictions

and measurements;



3. external actions to drive the model solution towards the

desired target (control and decision making);

4. the unbiased noise filtering;

where sufficient data is required with three main aims: (1)

to calibrate the physical model; (2) to construct the data-

based model; and (3) to make decisions to keep the system

under control and progressing to the wished target.

Control and decision making is efficiently performed by

using artificial intelligence and machine learning tech-

niques, as soon as the learning state is successfully

accomplished. On the other hand, the data-based model

construction can be performed:

• from the use of machine learning techniques (data-

mining, regression, deep-learning, manifold learning,

…as previously described);

• by expressing the deviation in a parametric form within

the PGD framework by using the regression PGD—

rPGD—discussed before. In this framework, data-

science could be used offline to define the smartest

data so be considered, and in particular, what data, and

when and where they should be collected, defining the

new smart-data paradigm.

It is important to note that in some circumstances the

physical model is almost unattainable. Thus, the only

possible contribution concerns the data-based model that is

constructed from scratch by using any of the available

techniques discussed in the present paper, but requiring a

larger amount of ‘‘smart’’ data.

From the discussion addressed in the present work, some

actions seem urgent to us:

1. In what concerns model order reduction, one of the

main challenges is that of constructing consistent

interpolations of pre-computed solutions (non-intrusive

PGD) on the solution manifold so as to be able to

proceed even when solutions exhibit localization. The

parametric solutions of models exhibiting bifurcations

is another major issue.

Many engineering problems involve trajectories:

processes (incremental forming, additive manufactur-

ing, …), agent trajectories, etc …The issue of

parametrizing a trajectory remains an open issue of

major interest nowadays. Finally, reduced models of

components should be integrated at the system level,

and consequently efficient ROM-interfaces defined.

2. Concerning tests, the issue of unbiased and biased

noise must be addressed, as well as its collection at

different scales. Inverse techniques must be developed

in order to have access to non-measurable variables,

because of its nature or accessibility.

In the same way that a single test is able to offer a

rich amount of data (e.g., image correlation) one could

imagine replacing the test machine by a computer, and

expecting that by solving a problem that activates as

many parametric values as possible, one could expect

having access to the parametric solution from a single

(few) numerical simulation(s).

3. Regarding the incipient smart-data paradigm, efforts

must be paid to create a multi-scale theory of data, a

sort of data-thermodynamics, that should work at

equilibrium and off-equilibrium, to offer a response to

four key questions: (1) what data should be collected?

(2) where? (3) when? and (4) at which scale(s)?

4. For model learners and data-driven modeling, different

questions arise. One of them concerns the nature of

state variables (able to encapsulate all the history-

dependent present state) and the way of identifying

them from collected data. Another extremely exciting

topic concerns the similarities between deep-learning

based on neural networks and more physically based

model learners as the ones discussed previously.

Finally addressing noise and outliers, and differentiate

them from multi-scale physically events remains also

an open crucial issue.

5. Finally, concerning data and manifold learning (PCA

and its nonlinear counterparts and variants), they are

most of the times is based on Euclidean distances. It

seems that the extraction of uncorrelated parameters

from data needs alternative metrics. Looking at two

trees, even a child is able to conclude on their

similarity (both are recognized as trees in real-time)

even if the Euclidean distance among them could be

very large. In this regard, TDA (Topology Data

Analysis) is attracting interest because of its appealing

properties and spectacular capacity of classifying.

Topology persistence, persistent homology, mappers,

computational geometry, …are opening a field of

unimaginable opportunities.

Moreover, the use of persistence diagrams allows us

to define metrics based on topology (of major interest

when addressing shape and topology optimization) and

its associated persistent images (eventually combined

with sparse sensing) allows defining interpolation, a

crucial aspect when addressing reduced order model-

ing.

Very often, similarity must be judged and stablished

outside a vector space. Imagine establishing similarity

between traffic signals or color words (yellow, red,…).

Identifying the similarity of words referring to color

requires their transcription to a vector in a given

vectorial space that allows for applying standard tools.

This transcription can be successfully accomplished

using Word2Vect techniques [107].



It is at this point the dilemma of data versus models totally

loses it sense. Both are not concurrent, they should be

considered together, one enriching the other and vice-

versa. Physics allows determining what observations

should be considered when establishing a predictive data-

based model while avoiding major risks, as for example,

the violation of the frame invariance or thermodynamical

consistency (energy conservation and entropy production).

On the other hand, data-science could drive physics

towards the most pertinent data offering the maximum

amount of pertinent information (smart-data versus big-

data). The model-data circle is definitively closed as sket-

ched in Fig. 12.
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79. Latorre M, Peña E, Montáns FJ (2017) Determination and finite

element validation of the wypiwyg strain energy of superficial

fascia from experimental data. Ann Biomed Eng 45(3):799–810
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