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Cette article présente une méthodologie pour le calcul d'une loi de commande pour un système soumis à des contraintes de fonctionnement et affecté par un retard variable. Dans une première phase, on construit une loi de commande prédictive "classique" qui garantie l'existence d'un ensemble positif invariant robuste (RPI) non vide. Deuxièmement, on proposera deux algorithmes itératifs pour l'approximation de cet ensemble RPI. Ce problème peut être traité dans le cadre des systèmes affines par morceaux dû à la formulation explicite de la loi de commande obtenue via la programmation multiparamétrique.

I. Introduction

L'interaction entre un système réel et un processus physique avec des excitations exogènes peuvent être difficilement caractérisée comme instantané. Une des façons classiques de modéliser ces situations et phénomènes est par l'utilisation de retard. Les retards (variables, distribués ou non) décrivent le couplage entre les dynamiques, propagation et phénomène de transport, hérédité et compétition dans les dynamiques de population. Plusieurs exemples peuvent être trouvés dans [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF], [START_REF] Gu | Stability of Time-Delay Systems[END_REF], [START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF]. Il y'a un consensus dans la définition du retard comme un paramètre critique dans l'analyse des comportements dynamiques et des performances des systèmes.

Indépendamment des problèmes mathématiques liés à la représentation, les systèmes à retard sont connus par leurs problèmes de commande due à l'instabilité introduite par des actions de commandes différées. Une façon naturelle pour neutraliser l'effet du temps mort est de prédire l'évolution du système avec une attention particulière pour la sensibilité de prédiction pour modèles instables.

La commande prédictive à base de modèle (MPC -"Model Predictive Control") est une technique de commande qui consiste à résoudre un problème de commande optimale à temps fini sur un horizon glissant. Cette formulation temporelle permet la prise en charge des contraintes dès le stage de conception [START_REF] Normey-Rico | Control of Dead-time Processes[END_REF] et se révèle d'être très populaire pour les praticiens. Plusieurs stratégies ont été pro-posées afin de renforcer la stabilité du MPC, [START_REF] Maciejowski | Predictive Control with Constraints[END_REF], [START_REF] Goodwin | Constrained Control and Estimation[END_REF] avait comme ingrédients principaux, la fonction coût terminale et contraintes terminales invariantes [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]. Malheureusement, considérer , les incertitudes introduites par l'existence d'un retard variable, mène à un problème d'optimisation minmax complexe. En plus, les garanties de stabilité nécessitent la description des contraintes terminales qui réduisent le domaine de faisabilité.

Dans ce papier on utilise la loi de commande prédictive obtenu en utilisant le modèle nominal. La loi de commande affine par morceaux correspondante transformera la dynamique en boucle fermée vers un système affine par morceaux. Quant au retard variable, il introduit un certain degré d'incertitude qui doit être analysé pour garantir le fonctionnement global. L'existence d'un ensemble invariant non vide peut être garantie sous certaines conditions et des procédures algorithmiques seront proposées dans ce sens.

Deux problèmes liés à la robustesse pour le calcul de la loi de commande seront traités en détail:

• réglage du MPC nominal en utilisant les arguments de l'optimalité inverse;

• caractérisation de l'ensemble positive invariant robuste maximal (MRPI). Notons que l'ensemble MRPI peut ne pas être déterminé avec un nombre fini d'itérations. Pour le deuxième point on propose la construction itérative par procédure duale expansive/contractive d'approximation garantie.

Le reste du papier est organisé comme suit: section 2 formule le problème de commande et définit le modèle qui sera utilisé dans le calcul de la commande MPC; section 3 traite la construction de la loi de commande explicite affine par morceaux et section 4 traite le problème des approximations pour l'ensemble positive invariant robuste maximal associé au système bouclé. La section 5 présente un exemple et les conclusions sont tirés dans la section 6.

Notations: Co {e 1 , . . . , e1} définis la combinaison convexe des éléments e 1 , . . . , e1. B 0 (ε) est la boule centrée à l'origine avec un rayon ε. Le symbole * dans la description matricielle est la transposé. Le reste des notations sont standards.

II. Formulation du problème

Considérons un système linéaire LTI suivant:

ẋ = A c x(t) + B c u(t -τ ) (1) 
affecté par un retard variable. Il est supposé que la variation du retard est bornée:

τ ∈ [0, τ max ] (2) 
Notons que les instants du temps discret

x k = x(t k ) = x(kT e ) (3) 
où T e est le temps d'échantillonnage. Considérons:

d = ⌈τ /T e ⌉ ǫ = dT e - τ (4) 
où τ est la valeur probable du retard (s'il n'y a pas d'information statistique sur la distribution du retard qui permettra d'extraire une valeur espérée, la valeur centrale de l'intervalle [0, τ max ] peut être choisie, i.e. τ = τ max /2). Maintenant, on peut décrire le modèle LTI discret affecté par le retard: 

x k+1 = Ax k + Bu k-d -∆(u k-d -u k-d+1 ) (5) 
A = e AcTe (6) 
obtenue en assumant que la commande u est maintenue constante entre deux instants d'échantillonnages,

u(t) = u k , ∀t ∈ [t k , t k+1 ).
Ce modèle LTI discret (5) sera considéré par la suite comme modèle nominal.

x k+1 = Ax k + Bu k-v -∆(u k-v -u k-v+1 ) ∆ ∈ Ω x Ω x = Co {∆ 0 , ∆ 1 , . . . , ∆ n } v ∈ {0, 1, 2, . . . , h} (10) 
où v c'est une variable entière qui décrit le retard en nombre de pas d'échantillonnage. La valeur maximale du retard est:

h = τ max T e (11) 
et les réalisations extrêmes ∆ i sont obtenues en utilisant la forme canonique de Jordan pour la matrice A c dans (9), calculée pour les valeurs extrêmes de ǫ, à savoir 0 et τ max . Il peut être montré que le nombre minimum des sommets caractérisant l'incertitude polytopique pour le système original à temps variable est n + 1 où n est la dimension du système d'état [START_REF] Olaru | Predictive control for linear systems with delayed input subject to constraints[END_REF].

Utilisant la présentation de l'espace d'état étendu basée sur l'équation [START_REF] Maciejowski | Predictive Control with Constraints[END_REF], on obtient en utilisant (A, B, ∆), le modèle de prédiction nominal:

ξ k+1 = F ξ k + Ḡu k (12) 
En effet en définissant:

ξ T k = x T k u T k-h u T k-h-1 . . . u T k-d u T k-d-1 . . . u T k-1 (13) 
les matrices F , Ḡ sont données par les équations [START_REF] Larin | About the inverse problem of optimal control[END_REF][START_REF] Benlaoukli | Computation and bounding of robust invariant sets for uncertain systems[END_REF]. Pour le même vecteur d'état ξ k , on peut décrire la variation structurelle provoquée par la variation du retard par l'existence d'un modèle affecté par une incertitude paramétrique :

ξ k+1 = F ξ k + Gu k (F, G) ∈ Ω ξ Ω ξ = Co {(F 1 , G 1 ), (F 2 , G 2 ), . . . , (F s , G s )} (18) 
En utilisant A, B et l'incertitude polytopique pour la matrice ∆, avec les réalisations extrêmes ∆ i , i = {1, . . . , n}, les matrices de transitions seront données par [START_REF] Furtmueller | Disturbance suppression for an industrial level control system with uncertain input delay and uncertain gain[END_REF](17).

Les variables δ i , i = 1, . . . , h sont telles que:

h i=1 δ i = 1; δ i ∈ {0, 1} (19) 
Le nombre de réalisations extrêmes est s = h(n + 1) (due au fait qu'il y'a h combinaisons de variables logiques admissibles). Cependant, n-1 de ces réalisations, correspondant à ∆ = 0 sont, en fait, générées par les combinaisons des variables logiques des blocs envoisinant tel que la complexité globale du modèle polytopique est donnée par s = nh+1 réalisations extrêmes.

L'évolution du système satisfera les limitations physiques sur la commande et les restrictions sur la région accessible dans l'espace d'état. Leurs descriptions seront regroupées dans un ensemble d'inégalités linéaires:

Cξ k ≤ W (20) 
En ce qui suit, l'objective de la commande est la régulation de l'état ξ k vers l'origine en satisfaisant les contraintes par l'approche de la commande optimale sur un horizon glissant. Le critère de performance est construit tel que la loi de commande obtenue garantie pour une région non vide au voisinage de zéro un comportement robuste en présence d'un retard variable.

III. Loi de commande explicite

Dans cette section le modèle de prédiction nominal [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] sera utilisé pour le calcul d'une loi de commande affine par morceaux. Chaque morceau sera associé à une sousensemble de contraintes saturées.

A. Commande prédictive

La stratégie de commande MPC pour le système à retard considéré ici, construit à chaque pas d'échantillonnage k la séquence de commande optimale: 

k * u = {u k|k , . . . , u k+N -d-1|k } (21) F =                              A h-d 0 0 . . . 0 B -∆ ∆ d-2 0 . . . . . . 0 h -d            0 . . .
I m 0 . . . . . . d -2              . . . . . . . . . 0 . . . . . . 0 I m . . . . . . . . . 0 . . . I m 0                              ; (14) 
Ḡ = 0 | 0 . . . . . . . . . | 0 0 | . . . . . . 0 I m T (15) 
F =            A δ h (B -∆) δ h-1 (B -∆) + δ h ∆ δ h-2 (B -∆) + δ h-1 ∆ . . . . . . δ 1 (B -∆) + δ 2 ∆ 0 0 I m 0 . . . 0 
           ; (16) 
G = δ 1 ∆ 0 . . . . . . 0 I m (17) 
pour l'index de performance 

k * u = arg min {u k|k ,...,u k+N -d-1|k } { ξ k+N |k T P ξ k+N |k + N j=1 ξ k+j|k T Qξ k+j|k + N -d-1 j=0 u T k+j|k Ru k+j|k (22) tel que:        ξ k+j+1|k = F ξ k+j|k + Ḡu k+j|k Cξ k+j|k ≤ W ; j = 1, . . . , N -1 u k+i|k = 0, i = N -d, . . . , N -1 ξ k+N ∈ X N ; qui évalue
u k = k * u (1) = u k|k (23) 
Utilisant les nouvelles mesures, le nouveau vecteur de commande est calculé par optimisation, ainsi une commande en boucle fermée est obtenue. La construction de la loi de commande prédictive sera influencée par le choix de l'horizon de prédiction N , les facteurs de pondérations sur la trajectoire de l'état Q = QT ≻ 0 et la commande R = RT ≻ 0. Pour la pénalisation de l'état terminal la matrice P est généralement construite tel que l'horizon de prédiction peut être étendu à l'infini par l'introduction du terme ξ k+N |k T P ξ k+N |k dans (22). Néanmoins ξ k+N |k doit satisfaire quelques conditions matérialisés par la contrainte terminale qui force cette prédiction d'atteindre un ensemble invariant prédéfini X N . Dans la sous section 3.3, le choix de l'indexe de performance sera discuté (en particulier les matrices Q, R et indirectement P ) tel que la loi de commande calculée présente certain degré de robustesse vis à via la variable de retard.

B. Programmation multiparamétrique

Après l'expression des prédictions comme fonctions de l'état présent et les futures commandes, le problème d'optimisation dans (22) peut être formalisé comme un problème quadratique multiparamétrique ( [START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF], [START_REF] Goodwin | Constrained Control and Estimation[END_REF], [START_REF] Dua | Multi-Parametric Model-Based Control: Theory and Applications[END_REF], [START_REF] Olaru | Avoiding constraints redundancy in predictive control optimization routines[END_REF])

k * u (ξ k ) = arg min ku 0.5k T u Hk u + k T u Gξ k subject to : A in k u ≤ b in + B in ξ k ( 24 
)
où ξ k est le vecteur des paramètres. La fonction coût est convexe et l'optimum est unique si H ≻ 0, l'ensemble des contraintes linéaires décrivent des polyèdres paramétrés tel que l'optimum sous contraintes peut être décrit par la combinaisons de sommets paramétrés ( [START_REF] Olaru | Avoiding constraints redundancy in predictive control optimization routines[END_REF]). Des procédures géométriques universelles existe pour partitionner l'espace paramétré selon l'ensemble des contraintes actives et exprimer analytiquement la valeur optimum comme une fonction affine par morceaux de ξ k pour chaque combinaison. Globalement l'optimum k * u (ξ k ) est une fonction affine par morceaux sur une partition polyédrale de l'espace d'état.

De plus, la solution explicite pour la loi MPC peut être obtenue en retenant la première composante de k * u (ξ k ), ainsi la commande prédictive est exprimé en terme d'une loi de commande rétroaction affine par morceaux:

u k = K M P C i ξ + κ M P C i , with i s.t. x ∈ D i , (25) 
pour D i , régions polyédrales dans ℜ n+hm . Remarque 1: Le modèle de prédiction est linéaire, l'origine est un point faisable (dans le cas générale placé à l'intérieur du domaine faisable) et représente un point d'équilibre pour le système [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Les problème (22), et (24), sont faisables et en plus de ça, l'optimum associé sera sans contraintes. La conséquence directe est que la loi de commande affine correspondant à la région D i0 contenant l'origine (0 ∈ D i0 ) n'a plus de partie affine (κ M P C i0 = 0) et la loi de commande locale correspond à la commande optimale sans contraintes (K M P C i0 = K LG ).

C. Réglage du MPC pour la robustesse

Considérons un problème de commande min-max sur un horizon infini pour le système polytopique (18):

min u k ,u k+1 ,u k+2 ... max F ∈Ω ξ J ∞ (26) où J ∞ = ∞ i=0 ξ T k+i Qξ k+i + u T k+i Ru k+i (27) 
u k = Kξ k (28) 
où Q > 0, R > 0 sont des matrices de pondération convenable a priori et K, le gain de retour jouant le rôle d'argument d'optimisation. Utilisons l'idée dans [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], et en notant

P = GS -1 et Y = KS, pour S ≥ I, l'LMI suivante peut être construite:     S SF T + Y T G T SQ 1/2 Y T R 1/2 F S + GY S 0 0 Q 1/2 S 0 GI 0 R 1/2 Y 0 0 GI     ≻ 0, (29) 
La loi de commande stabilisante est donnée par K = Y S -1 où Y , S et le scalaire G sont les solutions du problème LMI (similaire avec la construction dans [START_REF] Kothare | Robust constrained model predictive control using linear matrix inequalities[END_REF]):

min G,S, Y G     S SF i T + Y T G T i SQ 1/2 Y T R 1/2 F i S + G i Y S 0 0 Q 1/2 S 0 GI 0 R 1/2 Y 0 0 GI     ≻ 0,
for all i = 0, . . . , s S ≥ I (30)

Remarque 2: La LMI dans (30) n'est pas dépendante de l'état et ainsi la loi de commande correspondante est un gain de retour fixe. La loi trouvée u k = Kx k représente une commande robuste stabilisante dans le cas sans contraintes.

La procédure de réglage des paramètres MPC est la suivante: étant donné les matrices F , Ḡ et Y, S de (30), les matrices Q ≥ 0 et R > 0 (et indirectement P ≥ 0) seront construite tel que la solution optimale du problème sans contraintes (22) soit:

k * u =      Y S -1 Y S -1 ( F + ḠY S -1 ) . . . Y S -1 ( F + ḠY S -1 ) N -1      ξ k (31)
La solution (non-unique) ( Q, R) doit satisfaire:

Q = P -F T P F + Y S -1 T ( R + ḠT P Ḡ)Y S -1 (32)
RY S -1 + ḠT P ḠY S -1 + ḠT P F = 0 (33)

Ce problème peut être résolu dans le cas général en employant la formulation LMI [START_REF] Larin | About the inverse problem of optimal control[END_REF]:

min α P -F T P F + Y S -1 T ( R + ḠT P Ḡ)Y S -1 ≻ 0 Z RY S -1 + B T P BY S -1 + B T P A I ≻ 0 Z ≺ αI, P ≻ 0 (34)
Théorème 1: La loi de commande MPC nominale, calculée en utilisant l'index de performance obtenu comme probleme d'optimalité inverse en tenant compte d'une loi de commande linéaire robuste dans le cas sans contraintes, est robustement stabilisante pour le système (18) malgré les contraintes dans une voisinage (nondegeneré) de l'origine V .

La démonstration est constructive et suit les arguments décrits dans cette section.

IV. ENSEMBLE INVARIANT ROBUSTE

A. RPI maximale

Le problème de synthèse étant résolu, on dispose d'une loi de commande supposé stabiliser le système à retard variable. La question est: quel est l'ensemble invariant pour le système en boucle fermée?

Par la suite on va utiliser le fait qu'une approximation peut être obtenu par la construction de l'ensemble invariant robuste (MRPI) pour un système affine par morceaux (PWA) affecté d'incertitudes. En effet, un système PWA (avec incertitudes polytopiques) est obtenu par l'association du système LTI (affecté par des incertitudes polytopiques) en boucle fermée avec la loi de commande affine par morceaux:

ξ k+1 = f P W A (ξ k ) = (F + GK M P C i )ξ k + κ M P C i for ξ k ∈ D i (F, G) ∈ Ω ξ Ω ξ = Co {(F 1 , G 1 ), (F 2 , G 2 ), . . . , (F s , G s )} (35) où D i sont des partitions polytopiques D = ∪ i D i .
Les dynamiques reliées à une réalisation extrême des incertitudes polytopiques du PWA seront décrites par:

ξ k+1 = f j P W Ai (ξ k ) = (F j + G j K M P C i )ξ k + κ M P C i for ξ k ∈ D i , j ∈ {0, 1, . . . , s} (36) 
La description de l'ensemble MRPI pour un tel système PWA n'est pas immédiate parce que la détermination en temps fini de cet ensemble n'est pas garanti. Néanmoins, par le fait que la partition de l'espace d'état est donné par des régions polyédrales seront utilisées pour construire l'approximation appropriée.

Pour décrire cette construction géométrique, les opérateurs image et la préimage sur un ensemble Ψ ∈ ℜ n+hm définit comme:

Im fP W A (Ψ) = j ζ ∈ ℜ n+hm |∃ξ ∈ Ψ, s.t. ζ = (F j + G j K M P C i )ξ + κ M P C i for ξ ∈ D i ∩ Ψ} (37) P reIm fP W A (Ψ) = j {ξ ∈ D|∃ζ ∈ Ψ, s.t. ζ = (F j + G j K M P C i )ξ + κ M P C i for ξ ∈ D i } (38) 
B. Procédure contractive L'idée dans [START_REF] Benlaoukli | Computation and bounding of robust invariant sets for uncertain systems[END_REF] est de soustraire de la partition d'état D = ∪ i D i qui définit le système PWA, ces régions pour lesquelles une des dynamiques extrême évoluera en dehors de D. C'est une procédure itérative tel que après chaque itération, l'ensemble D est modifié, ainsi les évolutions possibles sont à revérifier.

La complexité de cette procédure réside dans le fait que la soustraction d'ensembles convexes n'est pas convexe. En d'autre terme, si D est convexe, il n'y a pas de garanties qu'il restera convexe après une itération de la procédure contractive. Indirectement, cela nous ramène à la déduction que l'ensemble MRPI set peut être non convexe.

Procédure 1: Algorithme Contractif V 0 = D k = 0 while (condition de précision)

V k+1 = P reIm fP W A (Im fP W A (V k ) ∩ V k ) k = k + 1 C. Procédure expansive
Dans ce cas, au lieu d'exclure graduellement les régions en dehors de l'ensemble MRPI, en commence par un ensemble RPI et en ajoute les régions qui évolue dans un pas à l'intérieur de l'ensemble RPI. L'ensemble résultant est RPI et il est croisant d'une façon monotone (dans le sens d'inclusion) et il est limité par MRPI.

Un avantage important de la procédure expansive et que, les résultats intermédiaires sont robustement invariant et peuvent être considérés comme candidats pour l'approximation de l'ensemble MRPI.

Procédure 2: Algorithme Expansif

find σ > 0 s.t. E(σ) ⊂ D i0 V 0 = E(σ) k = 0
while (condition de précision)

V k+1 = P reIm fP W A (Im fP W A (D) ∩ V k ) k = k + 1

D. Approximation intérieure

Notons l'ensemble invariant maximal Ψ et les itérations obtenus avec les procédures expansive et contractive Ψ e i et Ψ c i respectivement. La procédure expansive Ψ e i ⊂ Ψ et la procédure contractive Ψ c i ⊃ Ψ ne possèdent pas de mesure de convergence vers l'ensemble invariant maximale. Néanmoins, pour l'utilisation des deux procédures on obtient une approximation intérieur pour l'ensemble MRPI:

Ψ e i ⊂ Ψ ⊂ Ψ c i ( 39 
)
Considérons la distance de Hausdorff sur les polyèdres. La distance d H (Ψ c i , Ψ e i ) peut fournir une mesure de l'approximation de l'MRP donnée par Ψ e i et ainsi une condition de précision:

Ψ e i ⊂ Ψ ⊂ Ψ c i ⊂ Ψ e i ⊕ B 0 (d H (Ψ c i , Ψ e i )) (40) 

V. Exemple

Considérons le procédé reporté dans [START_REF] Furtmueller | Disturbance suppression for an industrial level control system with uncertain input delay and uncertain gain[END_REF]. L'objectif est la commande du niveau de coulée dans une cuve, le schémabloc est présenté dans la figure 1. Le système continu à contrôler est considéré comme un double intégrateur avec un retard variable:

ẋt = 0 0 1 0 x t + 1 0 u t-τ , τ ∈ [0s, 0.3s] (41) 
Le modèle discret est donné par:

x k+1 = 1 0 0.1 1 x k + 0.1 0.05 u k-i - ∆(u k-v -u k-v+1 ), with v ∈ {0, 1, 2} (42) 
Dans un premier temps on calcul la matrice ∆. Due au fait, que dans la représentation originale, le vecteur d'état x k est à deux dimensions, l'incertitude polytopique sera:

∆ ∈ Co 0 0 , 0.05 0 , 0 0.013 (43) 
Dans la représentation d'état étendue, le modèle nominal obtenu pour τ = 0.3 est: 

ξ k+1 =       1 0 1 0 0 0.1 1 0.05 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0       ξ k +       0 0 0 0 1       u k ( 

VI. Conclusion

Une loi de commande prédictive a été calculée pour des systèmes à temps de retard variable.

Les contraintes sont prises en charge dès le stage de conception et l'approximation itérative de l'ensemble invariant positif maximal offre l'information sur la région de l'espace d'état où la commande est viable. 

Fig. 1 .

 1 Fig. 1. Schéma général du procédé à controlé.

  compte, que le retard maximal est de 3 instants d'échantillonnages, on choisit un horizon de prédiction N = 5 afin d'avoir une solution explicite moins complexe (47 régions dans la partition de l'espace d'état, voir la figure2). Néanmoins, il est à mentionner, qu'en général, le domaine de faisabilité est d'autant plus grand si l'horizon de prédiction est grand.

Fig. 2 .

 2 Fig. 2. Projection de la partition de la solution explicite sur les deux premières composantes de l'espace d'état étendu.Le modèle polytopique dans la représentation d'état étendue qui englobe (utilisant 7 réalisations extrêmes) le système à retard variable, va nous permettre d'employer la procédure contractive pour l'approximation de l'ensemble invariant maximal. Dans la figure (3) l'approximation du MRPI est obtenue après 5 itérations.Finalement dans la figure (4) une simulation temporelle avec variation du retard est présentée (l'état initial à (0; -2)).

Fig. 5 .

 5 Fig. 5. Le signal de commande et la variation du retard.
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