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Abstract

Thanks to nonparametric estimators coming from machine learning, microlevel

claim reserving has become more and more popular in actuarial sciences. Recent re-

search has focused on how to integrate the whole information one can have on claims

to predict individual reserves, with varying success due to incomplete observations.

In this paper, we introduce three extensions to comparable existing works: how to

deal with censoring and truncation present in such type of data, how to cope with

inflation when the inflation factor is unknown, and how to implement an adequate

strategy leading to robust personalized reserve estimates. Using independent test

sets, our results - on guarantees with typical long development times - indicate the

importance of using the total claim development time to predict the reserves with

acceptable accuracy. To remain close to reality, our applications are based on two

open portfolios based on real-life datasets.

Keywords : reserving, censoring, truncation, CART, Kaplan-Meier weights.

1 Introduction

In non-life insurance, the final cost is rarely known when the claim occurs. In some cases,

many years may pass before the amounts are settled. Standard procedures to predict the

related reserve, typically Chain-Ladder (CL) approaches, rely on aggregated cumulative

claim amounts. These techniques have the disadvantage not to exploit additional infor-

mation one may have on the claims, and that may help to improve the prediction. Our
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paper aims at using this information so as to improve the prediction of claim amounts for

still open claims, the so-called Reported But Not Settled (RBNS) claims. We propose a

regression-tree approach based on a particular weighting scheme in order to compensate

the presence of censoring and truncation, naturally present in such data.

Right-censoring and left-truncation are known to have a significant impact when there

is an underlying time phenomenon, see e.g. Fleming and Harrington [2011a]. In our

framework, the claim lifetime (i.e. the difference between the occurence date and the

date at which the claim is fully settled) plays a crucial role to explain the final claim

amount. Typically, claims that take a lot of time to be settled are more likely to be

expensive, as pointed by Lopez [2019], Maegebier [2013], Spierdijk and Koning [2011],

Pitt [2007], or Bluhm [1993]. Hence, calibrating a model only based on closed (or fully

observed) claims usually conducts to an underestimation of the average amount. Indeed,

such procedure is based on a set of observations in which there is an overrepresentation

of claims with low lifetime, and therefore of claims with low value. The link between

unsettled claims and censoring has been considered, for example, by Lopez et al. [2016],

Albrecher et al. [2017] or Lopez et al. [2019]. We here extend such existing works to

the estimation of claim amounts, and determine proper weights to be attributed to each

observation to cancel the bias caused by censoring and truncation. A weighted regression

tree is fitted, adapted from the CART algorithm initially developed by Breiman et al.

[1984]. This algorithm has gained much popularity in actuarial sciences in the last decade

due to its flexibility; see for instance Wüthrich [2018a] and Baudry and Robert [2017] for

recent papers related to CART and reserving (note that other interesting works based

on other machine learning techniques were recently published, see for instance Duval and

Pigeon [2019] and Wüthrich [2018b]). CART easily allows to deal with data heterogeneity

and nonlinearities between responses and explanatory factors, while preserving a relative

simplicity of interpretation in the obtained model. The last step then consists of using

the model to predict the claim reserves for RBNS claims.

The rest of the paper is organized as follows. Section 2 describes the structure of

the observations, the general setting, and necessary treatments to be made on the data.

Section 3 is devoted to the description of our approach to make the predictions, including

the bias correction that removes the impact of censoring and truncation. Real data

analyses are then performed in section 4 to assess the robustness of our technique. Results

are compared to two widely used competing approaches in the industry, namely Chain

Ladder and Cox modelling.
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2 General framework

2.1 Observations

Consider n claims, with deflated amounts (Mi)1≤i≤n. For some of them, the final amount

Mi is not observed, since the claim is still open. Indeed, the (random) time before the

claim i is fully settled (the so-called claim lifetime), denoted by Ti, is censored. Introducing

some censoring variables (Ci)1≤i≤n, define (Yi, δi, Ni,Xi) as i.i.d. replications of
Y = inf(T,C),

δ = 1T≤C ,

N = δM,

X = (X(1), ..., X(d)) ∈ Rd,

where X are the claim features.

Moreover, let us denote by di the date at which the i−th claim occurs, si the date at

which it is fully settled, and fi the date at which the claim stops being observed. We have

Ti = si − di,

Ci = fi − di.

In practice fi is often the same date whatever the claim, since most of time the cause

of censoring is the database extraction. However, if some claims have been transferred

to another company, information is lost at the transfer date, and fi may vary between

claims. Notice also that the database only contains claims that have been communicated,

the Incurred But Not Reported (IBNR) claims being absent. This phenomenon is linked

to left truncation. Introducing

τi = ri − di,

where ri is the reporting date of claim i, only claims such that Ci ≥ τi are observed.

We assume that (τi)1≤i≤n are i.i.d., with the same distribution as a random variable τ .

This truncation phenomenon is not completely standard, compared to the classical left-

truncation model in survival analysis. Indeed, it is often assumed, in the literature, that

observation only occurs when T ≥ τ (see e.g. Tsai et al. [1987]) or when Y ≥ τ (see e.g.

Sellero et al. [2005]). Here, the situation is slightly different: T < τ means that the claim

has been solved before reporting - which is the case, for example, if the indemnity has

been fixed in advance - and the claim is present in the database.
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To sum up, the observations are made of (Yi, δi, Ni, τi,Xi)1≤i≤n i.i.d. with the same

distribution as (Y, δ,N, τ,X) conditionally to C ≥ τ . We assume hereafter that τ is inde-

pendent from the other variables and, additionally, that C is independent from T,M,X.

As already mentioned, censoring and truncation induce bias in the analysis if they

are not taken into account. The former leads to under-represent claims with large times

before settlement (large values of Ti) among the observations such that δi = 1. Due to the

positive correlation between T and M, this also has consequences on the distribution of M .

The latter (left-truncation) clearly impacts claims that occur just before the extraction.

In this paper, our aim is twofold: first, we want to understand the impact of Ti and Xi

on Mi. Typically, we aim to approximate the final cost of a claim with characteristics Xi

and lifetime Ti, that is E[Mi|Ti,Xi]. Second, we would like to predict the final amount of

unsettled claims. This consists, for one given claim with current observed duration Yi, to

estimate E[Mi|Ti ≥ Yi, δi = 0,Xi].

Remark 2.1. In many cases, one may have a preliminary idea on Mi even in the situation

when the claim is still open (δi = 0). A first way to take this information into account is

to consider that the last evaluation of the claim is contained in the covariates Xi. If partial

payments have already been made, another possibility is to consider bivariate censoring.

This leads to modify Ni: instead of taking Ni = δiMi, Ni is the cumulated amount already

paid, and we know that Mi ≥ Ni (see also Remark 2.1 in Lopez [2019]).

2.2 Preliminary step: removing inflation

Recall that classical statistical techniques rely on the assumption that observations are

i.i.d. Hence, Mi must be corrected from inflation. Various methodologies can be used for

such a task. Among them, using external data sources may be useful. Otherwise, another

possibility is to follow the procedure by Lopez [2019].

Let M
′
i denote the claim amount before removing inflation. In general, the data reports

M ′
i instead of Mi. We assume that

logM ′
i = βdi + logMi, (2.1)

where di is the date at which the i−th claim occurred, and β is a drift coefficient that is

going to be estimated using our data. We assume that (Mi)1≤i≤n are i.i.d. and independent

from (di)1≤i≤n. The dates di take their value in {0, ..., D} (where D+1 years are observed).

We then proceed in the following way:
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• Compute m
′
i,j, defined as the average of the fully observed claims that occurred on

the fiscal year di, and which are settled after j years (for (i, j) such that di + j ≤ t1,

where t1 is the last observed date). Let ni,j denote the number of such claims.

• Under (2.1), we know that logm
′
i,j ≈ βjdi + αj, where αj = E[logMi|Ti = j]. For

each j, we compute β̂j the weighted least-square estimator of the slope β based on

the points (m
′
i,j, di)i:di+j≤t1 . More precisely, one solves

(α̂j, β̂j) = arg min
αj ,βj

∑
i:di+j≤t1

ni,j(logm
′

i,j − αj − βjdi)2.

• It yields to our final estimator of β, given by β̂ =
∑

j n
1/2
j β̂j∑

j n
1/2
j

, with nj =
∑

i ni,j.

Finally, for each claim i such that δi = 1 (settled claims), we consider M̂i = M ′
ie
−β̂di as

an estimator of the final claim amount Mi, once removed the inflation effect. In practice,

one will use this amount in applications.

3 Weighted regression-tree procedure

3.1 Statistical issues: technical details and useful references

From a statistical viewpoint, the main difficulty when dealing with censored and truncated

data is the fact that the classical empirical means are biased. If one wishes to estimate

qφ = E[|φ(T,M,X)|] <∞, one may write qφ as an integral, that is

qφ =

∫
φ(t,m,x)dF (t,m,x),

where F (t,m,x) = P(T ≤ t,M ≤ m,X ≤ x), and plug a consistent estimator of F . In

absence of censoring and truncation, a natural estimator of F is the empirical distribution

function, leading to an estimation of qφ through an empirical mean.

Consider first the simplest problem of estimating the marginal distribution function

FT (t) = P(T ≤ t) = 1− S(t), where S(t) is the survival function. We propose to use the

following estimator

F̂T (t) = 1−
∏
Yi≤t

(
1− δi1τi<Yi∑n

j=1 1τj<Yi≤Yj

)
,

where we assumed that there is no ties among the variables (Yi)1≤i≤n (an alternative

formula in case of ties is proposed in Appendix A). This estimator slightly differs from
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the classical one proposed by Tsai et al. [1987] under left-truncation, since, in our case,

truncation occurs when C ≤ τ. The legitimacy of using F̂T is shown in section A.

Note that F̂T is piecewise constant, and can therefore be rewritten as

F̂T (t) =
n∑
i=1

wi,n1Yi≤t,

where

wi,n =
δi1τi<Yi∑n

j=1 1τj<Yi≤Yj

∏
Yk<Yi

(
1− δk1τk<Yk∑n

j=1 1τj<Yk≤Yj

)
. (3.1)

Practically speaking, wi,n equals 0 when the observation is censored. The quantity wi,n

can be thought as the weight to be put at observation i to correct the bias caused by

censoring and truncation in our setting. Based on the idea of Sellero et al. [2005], one

could use the same weight when it comes to estimate the joint distribution function F.

Hence, we define

F̂ (t,m,x) =
n∑
i=1

wi,n 1Yi≤t,Ni≤m,Xi≤x.

A natural estimator of qφ thus yields

q̂φ =

∫
φ(t,m,x)dF̂ (t,m,x) =

n∑
i=1

wi,nφ(Yi, Ni,Xi).

3.2 Combination of our weighting scheme with CART algorithm

We here explain how to modify CART to suit our needs, i.e. the prediction of the in-

dividual claim amount M given the corresponding lifetime T and features X. For the

paper to be self-contained, we follow the description by Lopez et al. [2019]. However, the

weighting scheme slightly differs, mostly because of the presence of truncation.

CART is a convenient way to estimate a regression function. Suppose that we want to

estimate π(t,x) = E[φ(M) |T = t,X = x]: at each step of the algorithm, one determines

”rules” z = (t, x(1), ..., x(d)) → Rj(t,x) to split the data and create partitions of the

covariate space. That is, for each possible value of (t,x), Rj(t,x) equals 1 or 0 depending

on whether some conditions are satisfied by z = (t,x). In addition, Rj(t,x)Rj′(t,x) equals

0 when j 6= j′ and
∑

j Rj(t,x) equals 1 to guarantee that created subsets of the partition

are exhaustive and disjoints.

Our weighted CART algorithm can then be expressed as follows, where T and M are

respectively replaced by their observed version Y and N .
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Algorithm: weighted CART (denoted further by wCART)

Step 1: R1(z) = 1 for all z = (y,x), and n1 = 1 (corresponds to the root node).

Step k+1: Let (R1, ...Rnk
) denote the rules obtained at step k. For j = 1, ..., nk,

• if all observations such that δiRj(Yi,Xi) = 1 have the same characteristics, then

keep rule j as it is no longer possible to segment the population;

• else, rule Rj is replaced by two rules Rj1 and Rj2 determined in the following way:

for each component Z(l) of Z = (Y,X) (l = 1, ..., d + 1), define the best threshold

z
(l)
? to split the data, such that z

(l)
? = arg minz(l) m(Rj, z

(l)), with

m(Rj, z
(l)) =

n∑
i=1

wi,n(φ(Ni)− n̄l−(z(l), Rj))
21

Z
(l)
i ≤z(l)

Rj(Zi)

+
n∑
i=1

wi,n(φ(Ni)− n̄l+(z(l), Rj))
21

Z
(l)
i >z(l)

Rj(Zi),

where

n̄l−(z,Rj) =

∑n
i=1 wi,nφ(Ni)1Z

(l)
i ≤z

Rj(Zi)∑n
k=1 wk,n1Z

(l)
k ≤z

Rj(Zk)
, n̄l+(z,Rj) =

∑n
i=1 wi,nφ(Ni)1Z

(l)
i >z

Rj(Zi)∑n
k=1 wk,n1Z

(l)
k >z

Rj(Zk)
.

Then, select the best component to consider, that is l̂ = arg minlm(Rj, z
(l)
? ).

Define the two new rules Rj1(z) = Rj(z)1
z(l̂)≤z(l̂)?

, and Rj2(z) = Rj(z)1
z(l̂)>z

(l̂)
?
.

• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.

A binary tree structure underlies this algorithm, since it is based on successive decom-

positions into two groups. The final obtained tree is called the maximal tree. Compared to

the classical CART algorithm by Breiman et al. [1984], the splitting criterion (minimized

at each step to split the population) is a weighted quadratic loss (instead of a quadratic

loss) so as to compensate for censoring and truncation, as explained in section 3.1. Each

set of rules R = (R1, ..., RK) is associated with an estimator of the regression function,

that is π̂R(t,x) =
∑K

j=1 π̂jRj(z), where

π̂j =

∑n
i=1wi,n φ(Ni)Rj(Zi)∑n

i=1wi,nRj(Zi)
.

Of course, the maximal tree is not satisfactory to estimate the regression function π(t,x).

Indeed, the terminal nodes of this tree define clusters which are trivial (for one given leaf
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Rj, there is either only one observation i such that δiRj(Zi) = 1, or all of the observations

are associated to the same value of z). A pruning step must then be performed to extract

an appropriate subtree (the so-called optimal tree), in order to achieve some trade-off

between adequacy and complexity. This can be understood as a model selection procedure.

Let K(R) denote the number of leaves of a subtree: the pruning approach proposed by

Breiman et al. [1984], adapted to our framework, consists of minimizing

n∑
i=1

wi,n (φ(Ni)− π̂R(Zi))
2 + α

K(R)

n
,

where α > 0 is a tuning parameter, usually chosen through cross-validation. Theoretical

consistency properties of these building and pruning strategies are straightforward thanks

to the properties of Kaplan-Meier estimators, and were shown in Lopez et al. [2016].

Remark 3.1. Sometimes, the amount M may be a deterministic function of the lifetime

T . The algorithm is thus easily adapted by replacing M by T , and Z by X. In this sim-

plest situation where only one single censored and truncated variable has to be predicted,

competing approaches include survival trees and survival forests, see e.g. Ishwaran et al.

[2008] and Molinaro et al. [2004].

3.3 Strategies to predict the final cost of RBNS claims

In absence of censoring or truncation, classical regression tree techniques can be used.

Otherwise, extensions such as wCART should be considered to estimate quantities like

π(t,x) = E[φ(M) |T = t,X = x] (or E[φ(M) |X = x]). From the selected tree estimator,

it is then possible to deduce a predictor of φ(M) for claims where both T and X are

fully observed. Unfortunately, in our framework, we are interested in predicting the final

amount (φ = id) of RBNS claims, for which T is not fully observed. Say that the current

observed duration equals y, we therefore need to adapt the algorithm:

• the best prediction (in terms of quadratic loss) of M given the available information

is E[M |T ≥ y,X = x], which can also be written as

E[M |T ≥ y,X = x] =
E[M1T≥y |X = x]

E[1T≥y |X = x]
. (3.2)

Hence, two trees built using wCART can be used to estimate the numerator and the

denominator of (3.2). This is the strategy described in Lopez et al. [2016], which

requires the computation of a large number of trees (two trees per open claim). We

refer to this procedure as strategy (A).
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• build one single tree π̂ by wCART to estimate π(t,x) = E[M |T = t,X = x]. Then

fit a model for T |T ≥ y,X = x, from which a prediction T̂ (y,x) can be computed,

and predict M by π̂(T̂ (y,x),x). Let us denote by (B) this strategy.

In the second approach (B), several prediction models for T can be used. A weighted

regression tree is a possibility, with no obligation. A classical (semi)parametric model, or

any machine learning prediction model adapted to censoring and truncation, can be used

instead. In the sequel, we consider three different cases, among which weighted regression

trees for the conditional distribution of T , and a simplified prediction of T assuming that

T does not depend on X. In the latter case, the prediction of T knowing that T ≥ y can

be performed using

T̂ =

∫
t1t>ydF̂T (t)∫
1t>ydF̂T (t)

=

∑n
i=1wi,nYi1Yi≥y∑n
j=1wj,n1Yj≥y

. (3.3)

We respectively refer to these methods as strategies (B)a), (B)b), and (B)c); summarized

below. First estimate π by wCART to obtain π̂, then

(B)a) : Build two trees r̂1,y(x) and r̂2,y(x) to estimate r1,y(x) = E[T1T≥y|X = x] and

r2,y(x) = E[1T≥y|X = x] using wCART, and compute T̂ = r̂1,y(x)r̂2,y(x)−1; or

(B)b) : Predict T by T̂ from (3.3); or

(B)c) : Predict T by T̂ from the Cox model.

Finally, the prediction of M follows M̂ = π̂(T̂ ,x).

3.4 Expectations and comments on these strategies

Strategy (A) looks computationally intensive, but reveals quite simple to implement. The

main pitfall appears for high thresholds of duration: indeed, when y gets high, the tree is

built on very few events. As every classification technique, it becomes tricky to get robust

estimators in this case, which does not ensure an accurate prediction of the denominator

of (3.2). As this quantity tends to zero, predictions might overestimate the reality.

Concerning the procedure (B)b), it is obviously faster than (B)a). The computation

of the weights (wi,n)1≤i≤n is done once for all at the beginning, then the computation of

(3.3) is very fast for each threshold y. However, strategy (B)b) is expected to be biased.

Indeed, M is supposed to depend on X, and T and M are expected to be dependent.

Thus, assuming that T is independent from X does not really make sense. Here, T is not

predicted using all the information, but only through approaching E[T |T ≥ y], instead of
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trying to estimate E[T |T ≥ y,X = x]. Nevertheless, when summing the predictions over

all open claims, one may hope that the bias vanishes, since E[E[T |T ≥ y,X] |T ≥ y] =

E[T |T ≥ y]. We do not know by advance the bias amplitude for such a prediction, but

due to the simplicity of the estimation technique compared to competing ones, one may

expect a gain in terms of estimation variance. Hence, although asymptotically incorrect,

this approach may lead, in some particular cases, to some accurate prediction.

Using Cox modelling (strategy (B)c)), one has to check the validity of the proportional

hazards assumption. The latter is not fulfilled for most of covariates in our application.

We thus expect to have mixed results. Finally, we challenge the previous strategies with

two (biased) competitors, where the input information on T as a covariate is not realistic:

(C) : estimate π by π̂ using wCART ; then predict M by M̂ = π̂(y,x).

(D) : estimate π by π̂ using wCART ; then estimate r(x) = E[T |X = x] by r̂(x) based

on the wCART algorithm and predict M by M̂ = π̂(r̂(x),x).

In the first situation, T is replaced by Y . Hence, compared to (A) and (B), the time

before settlement is under estimated. This may lead to underestimations of M , if T is

positively correlated with M. On the other hand, (D) uses a prediction of T given the

available information, but does not take into account that T ≥ y. Hence, some of the

predictions will be smaller than y, and the overall result should also be underestimated.

4 Applications: reserve estimate for RBNS claims

We compare here the methodologies proposed in section 3.3 with benchmarks techniques,

widely used for reserving purpose. Concretely, the global reserve is also estimated thanks

to Chain Ladder on the one hand (on aggregated data), and Cox modelling on the other

hand (as recommended for some life insurance risks such as short-term disability).

4.1 Context of our studies

To be in line with regulatory constraints (disclosure of regular reports) and current prac-

tices in insurance companies, the estimations of claim amounts and reserves are made on

a quarterly basis. Building the database and running the estimation procedure is thus

performed many times (every quarter), with updated policyholders’ features and claim

characteristics (in particular if it is open, closed, or new). Each time, we split our data
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into two independent subsamples to assess the prediction power of the methods: the learn-

ing set which represents two third of the initial dataset, and the test set containing the

remaining observations (from which the predictions are made). Moreover, we backtest

our reserve predictions: only the claims closed at the last observed date are considered.

This way, the whole information is known a posteriori, and one can compare predictions

to the actual reserves finally needed.

Remark 4.1. We also tried to change the time step between estimations (from quarterly

to annually, bi-annually, monthly and weekly). We do not present the results for the sake

of conciseness, but the conclusions were similar to those obtained hereafter.

4.2 First application: income protection

Short-term disability insurance was designed to protect the policyholders against the

loss of some revenue. In our context this coverage can last up to three years, meaning

that the duration of payments is capped. In this application, predicting the final claim

amount is thus similar to predicting the residual lifetime in the disability state (given the

individual features X). For the sake of simplicity, let us say that the insurer has to pay

1AC for each insured day, i.e. M = T with our notations. We wish to predict the global

reserve at various settlement dates (each quarter between 01/01/2008 and 10/01/2009)

by aggregating individual predicted remaining claim lifetimes, using strategy (A) and

Remark 3.1. Other strategies suggested in section 3.3 are useless since there is no need

to plug in estimators for T , since T is not an explanatory variable in this case.

4.2.1 About the database

Our database reports 65 670 claims related to income protection guarantees over six years,

from 01/01/2006 to 12/31/2011. For each claim, we know the gender of the policyholder

(14 455 males, 51 215 females), her socio-professional category (2 406 managers, 62 799

employees and 465 others), her age when the claim occured, the duration in the disability

state (sometimes right-censored), the commercial network (three kinds of brokers: 28 662

“Net-A”, 4 890 “Net-B” and 32 118 “Net-C ”), and the cause (57 131 sicknesses, and 8

539 accidents) that triggered the coverage. The overall censoring rate equals 7.2% on

12/31/2011. The mean observed duration in the disability state is 100 days (beyond a

deductible of 30 days), with a median of 42 days and a standard deviation of 162 days.

If necessary, more details about the data can be found in Lopez et al. [2019], section 3.
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4.2.2 Claim lifetime predictions

All the results are stored on the top part of Table 2. Let us analyze and comment them.

First notice that the global reserve is strongly underestimated for all quarters of year

2008, with both Chain Ladder (CL) and strategy (A). On 01/01/2008, CL’s error approx-

imates 60%, whereas (A)’s error is roughly about 44%. CL does not take into account the

censoring phenomenon, meaning that the method considers that all the claims are fully

observed. Not surprisingly, this causes large underestimations of the final claim amounts.

Although (A) is supposed to appropriately deal with censoring, largest observed lifetimes

only equal two years at the beginning of 2008. The asymptotic properties of our tree

estimator are guaranteed provided that observations (almost) entirely map the domain of

possible values for T , which is not the case here. Indeed, some of the claims will last up

to three years in practice, naturally resulting in an underestimation of the global reserve.

Second, the errors of CL and (A) decrease as time flies. This is coherent, as more

and more information becomes available. One year later (on 01/01/2009), (A)’s error

strongly lowers to reach 0.5%, whereas it still equals 39% with CL. The estimation of the

global reserve thus improves much faster using (A) than in the CL case. Strategy (A)

benefits from the fact that larger observed lifetimes (up to 3 years) are now included in

the learning set, allowing to significantly improve the quality of our estimator. On the

contrary, CL still suffers from the proportion of censored lifetimes (almost 11.9%).

Third, when looking at most recent settlement dates, (A) tends to overestimate the

global reserve whereas underestimation by CL persists (but lowers). This makes sense

since the portfolio is observed until 12/31/2011: getting closer to this date, the percentage

of fully observed claims increases (for instance, the censoring rate equals 8.25% in the

learning sample on 10/01/2009). On the one hand, this is good news for the CL approach,

even though the underestimation remains high (-24%). However, such improvements for

CL would not be experienced in reality: recall that the observation period terminates

on 12/31/2011, and that backtesting implies that all considered claims are closed at

this date. On the other hand, strategy (A) faces a selection bias when predicting the

reserves, due to an overrepresentation of claims with short developments (whatever the

features X). There are RBNS claims to pay for, but the backtesting procedure leads to

lower the actual global remaining lifetime, and thus the reserve. Indeed, our estimator is

based on past information, and thus anticipates longer developments on average for the

considered claims. Hopefully, this overestimation is therefore a non-issue since this is due

to backtesting, and is thus artificial. To make sure about that, we ran the estimations
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on the whole database (without only selecting closed claims on 12/31/2011) and ensured

that the prediction error remained low and stable, whatever the settlement date.

Cox modelling globally shows better performance, especially for earliest settlement

dates. Despite some constraints related to the semiparametric relation between the life-

time T and the covariates X, Cox’s error never exceeds 7.3% (except for the last settlement

date where the selection bias plays the same role as previously). Still, these outstanding

results should be moderated since they originate from very favourable circumstances: low

censoring rate, no particular indication that the proportional hazard assumption may not

be reasonable, and bounded lifetimes that cover a somewhat narrow interval.

To sum up, (A) seems to be as efficient as Cox to estimate the reserve, provided that

the main underlying characteristics of the insured risk have been observed. Concretely, the

insurer needs at least three years of historical data in order to apply it with high accuracy

(because short-term disability can last up to three years). Moreover, it is important to

mention that both Cox model and (A) accord with designating the policyholder’s age as

the most discriminant risk factor to explain T , and that weighted tree estimators remain

consistent when the censoring rate gets much higher (see section 4 in Lopez et al. [2016]).

4.3 Second application: Third Party Liability (TPL) insurance

The first application focused on predicting remaining claim lifetimes, it is now time to

move to the prediction of residual claim amounts for RBNS claims. To this aim, we use

the strategies introduced in Section 3.3, and see whether the results significantly differ.

Such a problem is more complex than the former, since there is an additional stochastic

layer impacting the prediction (represented by the random claim lifetime). We consider

an open source non-life insurance dataset providing claims in motor insurance, named

ausautoBI8999 and available in the R package CASdatasets1. A lot of claims have long

development times, causing specific claim management processes and atypical triangles

(see Appendix B.2) when applying loss triangle techniques (like Chain Ladder).

4.3.1 Brief description of the database under study

The dataset is made of 22 036 settled automobile bodily injury claims in Australia. These

claims arose from accidents occurring from July 1989 to January 1999. The database

contains event dates (accident, reporting, closing), operational time (indicator of claim

1See the following webpage: http://dutangc.free.fr/pub/RRepos/web/CASdatasets-index.html
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Figure 1: Distribution of dates of events in ausautoBI8999 dataset.

management difficulties), type of injury, number of injured people, potential legal rep-

resentation of the policyholder, and aggregated settled claim amount. Table 3 in Ap-

pendix B.1 summarizes descriptive statistics on these variables, as well as other created

by-hand variables useful for our study (e.g. reporting delay, or claim duration). Figure 1

shows that the data is highly skewed in terms of reporting and closing dates, which is

very likely due to data collection. In particular, note that there is no settled claim before

01/01/1993. Knowing that the mean claim lifetime equals 558 days and that accident

dates start in 1989, it looks necessary to omit the data before 01/01/1993 in our study to

avoid issues related to data quality. Finally, our database thus reports 16 822 claims.

4.3.2 Estimation of reserves for RBNS claims

First, claim amounts have to be inflated to the most recent date (01/01/1999). The

annual inflation rate, estimated considering the whole observation period (see section 2.2),

equals 0.39%. Recall that we wish to estimate the expected cost of RBNS claims, i.e.

E[M |T > y,X], where the claim lifetime T is now a censored explanatory variable. We

use the six strategies (A), (B)a), (B)b), (B)c), (C) and (D) to do so; which obviously

lead to different estimators of the individual reserves. Strategies (B)a), (B)b), (B)c), (C)

and (D) give the same tree estimator π̂, but reserve predictions will differ for one simple

reason: rebuilding the information on T is not considered in the same way. The estimator

π̂ highlights that the claim lifetime has rightly been detected as the risk factor with the
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Figure 2: Optimal tree following strategy (D). The claim lifetime (’EndObsW’) clearly

appears as the most important explanatory variable to predict claim amounts.

strongest impact on the settled claim amounts, for all settlement dates considered. As

an illustration, on 03/31/1997, Figure 2 shows that the most discriminant threshold for

claim duration slightly exceeds three years, meaning that claims that last more than three

years before being closed are expected to cause significantly higher final claim amounts.

Let us furthermore point out that this threshold is stable, whatever the settlement date.

Concerning the reserve predictions, they are globally in line with the expectations

given in section 3.4. The bottom part of Table 2 shows that the assessment error of

the global reserve never falls down 0.5%, whatever the strategy and the settlement date

considered. However, our reserve estimates are more stable and accurate than insurance

practice (Chain Ladder and Cox), especially when looking at strategy (B)a). Chain

Ladder always underestimates the reserve, as it does not take into account the censoring

phenomenon (improvements related to the last settlement dates are fictive, as already

explained at the end of Section 4.2.2).

To go further and detail our results, let us start with strategy (C). It considers the

claim lifetime as a fully observed input in the modelling, yet it is not the case for censored

claims in reality. Combined to the fact that the backtest sample is only made of censored

cases, and due to the positive correlation between lifetimes and amounts (Kendall’s tau

equals 0.36), reserves are therefore always underestimated. The quality of predictions

improves as time flies, which makes sense since the estimator is based on information

containing lower bias for more recent settlement dates. For example, on 06/30/1998, the

censoring rate decreases to 22% and the estimator error reaches about 15%.

With (D), we still have huge underestimations but the reason is different. We replace

15



T by T̂ = Ê[T |X] to make the predictions, where T̂ comes from the wCART algorithm.

The predicted lifetime T̂ underestimates E[T |T ≥ y,X], because it does not integrate

the information on elapsed time. Knowing that this strategy is used for all individuals in

the backtest sample, (D) obviously underestimates the individual reserves. However, no

improvement is observed here for most recent settlement dates, which is not surprising

because getting more and more experience does not guarantee that T̂ better estimates T .

Strategy (D) is thus worse than (C) to make predictions when the censoring rate is low.

Strategy (B)a) seems to be reasonable: in terms of computation power, it is slightly

more demanding than (A). However, it is easier to estimate E[T |T > y,X = x] than

E[M |T > y,X = x], since T is a low-dispersed random variable as compared to M . As

expected, strategy (A) tends to overestimate the global reserve because it suffers from the

lack of data related to high values of y (added to the high dispersion of M). This effect is

even more pronounced for the last settlement dates, where there are fewer claims whose

lifetimes exceed high threshold of y (due to backtesting).

On 09/30/1996, (B)a) strongly underestimates the actual reserve needed. This is due to

the distribution of the claim lifetimes in the created subsets: Table 1 shows that r2,y(x)

(Section 3.3) is greater in the learning sample than in the validation one (for a given value

of y), which should lead to underestimate T̂ = E[T |T > y,X = x] when applying the

model to the backtest sample, and thus to underestimate the individual reserves. The

same story applies for strategy (B)b). Hopefully, the distributions of observed durations

are similar between learning and validation samples for other settlement dates.

The overestimations of the global reserve in 1998 are caused by the selection bias

due to our backtesting approach, see the discussion in Section 4.2.2. For other settlement

dates, (B)a) seems to be more accurate than (B)b). As already mentioned, (B)b) is biased

since it considers that T does not depend on X. In this case, this assumption seems to be

too strong to get robust estimates of the reserve. Concerning (B)a), the mean error rate

is about ±7%. Unless this may seem substantial, the explanation is threefold : i) learning

samples are of limited size, ii) the censoring rate is huge (between 30% and 55% depending

on the settlement date), and iii) there is an additional stochastic layer (represented by T

as an explanatory variable) impacting predictions of M .

Quantile level: 0 10% 15% 20% 25% 30% 35% 40%

Learning set 0 91 121 152 181 212 242 273

Validation set 0 61 92 123 153 184 214 244

Table 1: Quantiles of claim durations between learning and validation sets on 09/30/1996.
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Looking at the results from Cox modelling (strategy (B)c)), they are very unstable.

The quality of the predictions for the overall reserve can reveal either very good or very

bad. As compared to the application of Section 4.2, the Cox model strongly deteriorates

when applied to predict T̂ (before plugging it into the model on M , built by wCART).

Looking more deeply to the results of the Cox step, we understand that the Cox estimator

is affected by both a higher censoring rate and the violation of the proportional hazards

assumption. Besides, T is a random variable with higher dispersion than in the previous

application, which is suspected to make its modelling more complex.

In a nutshell, we recommend to use the strategy (B)a) to make the reserve predictions,

as it outperforms all other methods and shows stable results in terms of prediction error.

Once the claim lifetime T is consistently estimated for RBNS claims, running the wCART

algorithm to predict M (based on T̂ and X) seems to be acceptable to predict the claim

amounts with reasonable accuracy.

5 Conclusion

We proposed different methodologies to perform individual claim reserving, based on

regression trees. The main features of these approaches are the possibility to use all

available information on a claim to predict its final state; the nonlinear and flexible

structure of regression trees; and the correction of truncation and censoring phenomenons.

In other words, the information on the time since occurrence of the claim is appropriately

and fully integrated in the model in our framework. Our applications are mainly a picture

of the reserve at some point of time. In particular, no dynamic readjustment of the reserve

- due to new information or events that affect the claim - is considered. Nevertheless, our

technique may be easily modified to incorporate this, as long as the required information

is available. Among other possible improvements, let us mention the possibility to use

random forests (i.e. aggregations of regression trees) to stabilize the results, since the

CART algorithm is known to be sometimes sensitive to the introduction of new data.

The drawback would be a loss of intelligibility of the obtained model.
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A Estimator of S(t) in our censoring-truncation model

Let us recall that, for a discrete variable A taking value at point {a1, ..., ak}, its survival

function SA(t) = P(A ≥ a) can be written as

SA(t) =
k∏
j=1

(1− λA(aj)) , (A.1)

with

λA(t) = −dSA(t)

SA(t)
.

A way to determine an estimator of SA hence reduces to replace λA in (A.1) by a con-

sistent estimator obtained from the data. If the variable A is not discrete, it can still

be approximated by a discrete distribution where the (aj)1≤j≤k are replaced by the value

of the complete observations (in our case, the uncensored observations). This is the ba-

sis of the construction of Kaplan-Meier and other product-limit based estimator, see for

example Fleming and Harrington [2011b].
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Hence, our aim is to determine a consistent estimator of λT (t) = −dST (t)

ST (t)
.

Let L(t) = P(τ ≤ t), SC(t) = P(C ≥ t), α = P (τ < C), and

S1(t) = E [δ1τ≤Y 1Y≤t|τ < C] .

By basic computations, we obtain dS1(t) = −α−1SC(t)L(t)dST (t).

Indeed,

S1(t) = α−1E
[
1τ≤t1T≤TE[1max(τ,T )<C |τ, T ]

]
= α−1E [1τ≤T1T≤tSC(max(τ, T ))]

= α−1E [1τ≤T1T≤tSC(T )]

= −α−1

∫ t

0

SC(y)L(y)dST (y),

where we used that (T, τ) is independent from C for the second line, and the independence

between T and C for the last line. On the other hand, let

S2(t) = E [1τ<t<Y |τ < C] .

We have S2(t) = α−1ST (t)SC(t)L(t). Since

S2(t) = α−1E
[
1τ<t1t<T1max(t,τ)<C

]
= α−1E

[
1τ<tE

[
1t<T1max(t,τ)<C |τ

]]
= α−1E [1τ<tST (t)SC(max(t, τ))]

= α−1E [1τ<tST (t)SC(t)] ,

hence

−dST (t)

ST (t)
=
dS1(t)

S2(t)
.

The quantities S1 and S2 can be estimated consistently by

Ŝ1(t) =
1

n

n∑
i=1

δi1τi<Yi1Yi≤t and Ŝ2(t) =
1

n

n∑
i=1

1τi<t≤Yi .

This leads to the following estimator of the survival function,

ŜT (t) = 1− F̂T (t) =
∏
Yi≤t

(
1− dŜ1(Yi)

S2(Yi)

)
,

when there is no ties. In case of ties, let (t1, ..., tk) denote the distinct values taken by

(Yi)1≤i≤n, leading to

ŜT (t) =
∏
ti≤t

(
1− dŜ1(ti)

S2(ti)

)
.
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B Application on TPL insurance

B.1 Descriptive statistics for the motor insurance dataset

Depending on the type of the variable, we give different classical indicators: for categorical

variables, exposure for each category is provided. Concerning numerical variables, the

minimum, the maximum, the median, the mean, and the standard deviation are given.

Variable: Type Min. Median Mean Std. Max.

AccDate date 07/01/1989 10/01/1994 08/02/1994 01/01/1999

ReportDate date 09/01/1990 03/01/1995 05/12/1995 02/01/1999

FinDate date 07/01/1993 01/01/1997 10/11/1996 03/01/1999

Reporting delay numerical 0 59 113 173 1 430

Claim duration numerical 0 486 558 381 2 069

Operational time numerical 0.1 45.9 46.33 27.1 99.1

InjNb numerical 1 2 2.13 1.37 5

AggClaim numerical 10 13 854 38 367 90 981 4 485 797

Legal boolean No: 8 008 Yes: 14 028

InjType1 categorical Fatal: High: Medium: Minor: Severe: Small: Not recorded:

frequency 256 189 1 133 15 638 188 3 376 1 256

Table 3: Descriptive statistics on available information for ausautoBI8999 dataset.

B.2 Loss triangle: non cumulated payments for RBNS claims

on 12/31/1996 (settlement date)
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