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ABSTRACT

Non negative matrix factorisation (NMF) coupled to di-
vergence measure has been investigated in the frame of an
application to polluant source identification. It relies on
receptor modelling which considers the data matrix as the
result of cumulative effects of p sources.
NMF aims at finding a contribution matrixG and a pro-
file matrix F by minimizing a specific cost function. The
focus is made here on the Kullback-Leibler divergence
(KL) cost function. Linear equality constraints are incor-
porated into parts of the decomposition and general mu-
tiplicative like expressions, which take into account these
constraints, are derived.
This method is applied in the frame of source apportion-
ment of particulate matter.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a well known
algorithm used in blind sources separation [11].
The method is based on the approximation of non-negative
data matrixX by the product of two non-negative matrices
G andF . Equation (1) called receptor model expresses
the error between the data and the approximated product:

X = GF ◦ E (1)

where the operator◦ is element wise product and :

• X stands for then x m data matrix. In the case of
environmental studies,X involves chemical species
concentrations for all samples. They are expressed
in ng/m3. Each elementxij accounts for the con-
centration of the jth chemical specie coming from
the ith sample.

• G stands for then x p contribution matrix. The gen-
eral termgik is referred to the mass contributions

from sourcek to samplei. They are expressed in
µg/m3.

• F is ap x mmatrix of profiles. The general termfkj
corresponds to the percentage of thejth chemical
specie coming from sourcek.

• E is then x m error matrix in ng/m3, whereE is
assumed to be log-normal distributed matrix.

Non-negative matrix factorizations depend on the cost func-
tion used in order to measure the dissimilarity between the
initial dataX and the productGF . Lee and Seung [10]
has studied two of the most popular cost functions, the
Frobenius norm and the Kullback-Leibler divergence.

In environmetrics, measurements are corrupted with
a wide range of uncertainties. Ho [4] proposed an effi-
cient way to incorporate a weight matrix which enables to
lower the effects of large uncertainties. Up to now, few
works have been done in the field of constrained NMF.
The specificity ofG andF enables to include for exam-
ple orthogonality constraints [7] or sparseness constraints
[6]. Concerning our approach, we propose to define linear
equality constraints directly on some components of the
profile matrix and to take them into account in a Kullback-
Leibler divergence cost function. The aim of this paper
is to derive general rules for constrained weighted multi-
plicative NMF (KL-CWNMF). This matrix factorization
is applied in the field of source apportionment in order to
identify airborne particulate matter sources and their rela-
tive contribution.

2. KULLBACK-LEIBLER NMF

Divergence is similar to distance in the sense that it checks
positivity. Unfortunatly, triangle inequality and symmetry
property are generally not satisfied.



2.1. Kullback-Leibler divergence

Kullback-Leibler is widely used in information theory and
probability. It is used as an information gain, relative en-
tropy or an information divergence [8]. At the beginning,
it measures the difference between two probability distri-
butions and it has been generalized to evaluate the differ-
ence between two non negative vectorsp andq.

D(p ‖ q) =
∑

(

p ◦ log(p
q
)− p + q

)

i
wherei is the index of the resulting vector inside brackets
and the operator◦ is element wise product whereasp

q
is

element wise division.
Some basic properties are recalled:
D(p ‖ q) = 0 =⇒ p = q

D(p ‖ q) 6= D(q ‖ p)
It turns out from these properties that a specific divergence
has to be minimized.

2.2. Classical NMF

Matrix factorization is often used to search parts based
decomposition. It have been extensievely studied in the
literature, pca and singular value decomposition may be
some of the classical examples. NMF requires in the con-
trary, the positivity of all of its components. It emerged in
the 90s under the name PMF, then it has been more widely
used with the work of Lee and Seung [10] in 1999 where
they defined two classical cost functions: The Frobenius
norm and the Kullback-Leibler divergence. They were the
first ones to propose the update rules called multiplicative
NMF updates. Other technics may be encountered such as
ALS or projected gradient [11].

2.3. The weighted KL-NMF

To our knowledge, the weighted NMF associated to KL
divergence has only been developped by Ho [4]. Main re-
sults are reported below.
The data matrix factorization leads to minimize the appro-
priate divergenceDW (X ‖ GF ) with respect toGF such
as:

DW (X ‖ GF ) =
∑

i,j

[W ◦ (X ◦ log
[X]

[GF ]
−X +GF )]i,j

(2)
where,X◦Y andX

Y
account for respectively component-

wise product and element-wise division between two ma-
trices.

W is the weight matrix defined byW = 1n×m
∑

◦
∑ where

∑

is the uncertainty matrix associated toX.
The proof below is only devoted to the search of the

profile matrixF . The divergence is split into partial di-
vergences with one column ofF ,W andX respectively
denotedf ,w andx. The divergence in (2) is the sum of
partial divergences of vectorsx andGf :

C(f)= Dw(x ‖ Gf) =
∑

i wi(xi log xi−xi+
∑

j Gi,jfj−
xi log

∑

j Gi,jfj) (3)

This partial divergence is approximated by the following
auxiliary function which is a majorant function of the cost
C(f) (3):

H(f,fk) =
∑

i wi[xi log xi − xi +
∑

j Gi,jfj

− xi

∑

j

Gi,jfk
j

∑

l Gi,lf
k
l

(log Gi,jfj − log
Gi,jfk

j
∑

l Gi,lf
k
l

)] (4)

The majorization-minimization theorem implies thatfk+1

checks :

C(fk) ≥ min(H(f, fk)) = H(fk+1, fk) ≥ C(fk+1)
(5)

So, minimizingH instead ofC ensures that the cost func-
tion C is decreasing according to iterations. This mini-
mization with respect tof leads to solve:

∂H
∂fj

=
∑

i wiGi,j −
fk

j

fj

∑

i wixi
Gi,j

∑

l Gi,lf
k
l

= 0

and the minimum is given by:

fk+1 = fk

GT W
◦

(

GT (X◦W )
(Gfk)

)

The whole update may be found by putting together all
the columns of the profile matrix. The same thing may be
done for the contribution matrix G [4]:

F =
F

GT W
◦

(

GT (X ◦W )

(GF )

)

(6)

G =
G

WFT
◦

(

(W ◦X)

(GF )
FT

)

(7)

2.4. Solving an equality constrained NMF problem

Practically, profiles recovery is never completely blind. In
some cases, information on components are available and
some values can be set to zero if some species are absent
from a source profile. This kind of knowledge should be
included as constraints in our algorithms. Up to now and
to our knowledge, no contribution supports weighted cri-
teria with constraints.

2.4.1. Introduction of equality constraints

Linear equality constraints on the profile matrix are solely
taken into account. They simply reflect the presence or
absence of some compounds in a source profile. In the
contrary, no knowledge on the contribution matrixG is
provided.

The global formulation of equality constraints is done
through two matricesΩ (p ×m) andΦ (p ×m):

F ◦ Ω− Φ = 0 (8)

Ω is a binary matrix reflecting the presence or absence of
constraints on the source and the species :



Ωij =

{

1 if Fij has to be set.
0 otherwise.

(9)

Φ is the matrix of set values. Some profiles may be set to
zero or to a positive value.

Let f k
i be theith column of the F matrix andϕi be

the ith column of theΦ matrix. Let alsoMi (li × p) be
the constraint matrix issuing from theith column of theΩ
matrix containingli constraints. It checks the following
relation :

Mifi − δi = 0 (10)

whereδi is the extraction of set values issued fromΦ :
Miϕi − δi = 0
andϕi is theith column of theΦ matrix.
For example, a 5 sources and two constraints case where
the2nd and the4th component are set to values :

[

0 1 0 0 0

0 0 0 1 0

]

[

fi

]

=

[

80
30

]

(11)

Let Span(Γi) be the supplementary space to the rows of

Mi such that rank

[

Mi

ΓT
i

]

= p.

Γi is (p × (p − li)), it checks the following normalization
relation :

{

MiΓi = 0li×(p−li)

ΓT
i Γi = I(p−li)×(p−li)

(12)

Let us consider the vectorial form of the model restricting
to the search of one column of the profile matrix. Equa-
tions (10) and (12) show that a column of the profile ma-
trix may be expressed :

fi = ϕi + Γiθi (13)

whereθi is (p− li)× 1 vector of free parameters.
This is the general form used for solving constrained prob-
lems in next sections. We shall use also the following for-
malism∆F for matrix or∆fi for the associated column
vector :

∆fi = fi − ϕi or ∆F = F − Φ (14)

2.4.2. KL-CWNMF formalism

We try in this section to extend the approach to the case
of Constrained weighted NMF. In the case of Frobenius
norm, the work has already been investigated by Delmaire
[1]. Usually, the Kullback-Leibler divergence is related to
the data matrix and the unknown matrix factorization. The
second part of the divergence is generally devoted to un-
known variables.

minF DW (X||GF )⇒ X ≈ GF

Equation (14) enables to write an approximated formu-
lation of X − GΦ so that another minimization may be
investigated:

min∆F DW (X −GΦ||G∆F )⇒ X −GΦ ≈ G∆F

It may be seen that both minimizations lead to an approx-
imated factorization. We chose to develop the second one
under the principle that the unknowns remains in the sec-
ond part of the divergence. We focus on a column of the
data since the divergenceDW (X − GΦ||G∆F ) may be
split into partial divergences.
For sake of simplicity, the column indexi is dropped in
next equations.

Let x be a column of the data matrix,ϕ one column
of theΦ matrix,△f one column of the△F matrix where
△F= F − Φ.

Let U = GΓ and
Ai = (xi − (Gϕ)i) log(xi − (Gϕ)i)
Bi = xi − (Gϕ)i Ci =

∑

j Ui,jθj

andDi = (xi − (Gϕ)i) log(
∑

j Ui,jθj)
The partial divergence of one column vector may be ex-
pressed :

Dw(x−Gϕ ‖ Uθ) =
∑

i

wi [Ai −Bi + Ci −Di] (15)

Let:
Ei = (xi−(Gϕ)i)

∑

j

Ui,jθk
j

∑

l Ui,lθ
k
l

(log Ui,jθj−log
Ui,jθk

j
∑

l Ui,lθ
k
l

)

Using the property that(− log X) is convex, the majorization-
minimization theorem enables to define a majorant func-
tion that checks the property ( 5):

H(θ, θk) =
∑

i

wi [Ai −Bi + Ci − Ei] (16)

Free parameters are gathered in theθ vector so that the
minimization has to be made with respect toθ. Derivating
with respect toθj leads to:
∂H
∂θj

=
∑

i wiUi,j −
θk

j

θj

∑

i wi(xi − (Gϕ)i)
Ui,j

∑

l Ui,lθ
k
l

= 0

Putting together the unknown parameters:

θk
j

θk+1

j

=
∑

i wiUi,j
∑

i wi(xi−(Gϕ)i)
Ui,j

∑

l Ui,lθk
l

Rearranging into a vectorial form:

θk+1 = θk

UT w
◦

(

UT (x−Gϕ)◦w)
(Uθk)

)

Computing△f for the ith column of the profile matrix,
denoted from now∆fi, leads to multiply each terme by
Γi (the column indexi is from now taken into account):

△fk+1
i =

△fk
i

ΓiΓT
i

GT wi
◦

(

ΓiΓ
T
i GT (x−Gϕ)◦w)

(G△fk
i
)

)

(17)

Given thatΓiΓ
T
i = diag(1p×1 − ωi), with ωi theith col-

umn of theΩ matrix, it may be noticed that this operator
only selects active components among the profile vector
in (6). The previous expression may be summarized into
matrix formulation :



△F k+1 ←
△F k

GT W
◦ (1− Ω) ◦GT W ◦ (X −GΦ)

G△F k

(18)

and the following update of the profile matrix F is:

F − Φ←
F − Φ

GT W
◦ (1− Ω) ◦

[

GT W ◦ (X −GΦ)

G(F − Φ)

]

(19)

In order to prevent divisions by 0, the previous expression
may be modified according to the following one :

F−Φ←
F − Φ

GT W
◦(1−Ω)◦

[

GT W ◦ (X −GΦ)

G(F − Φ + ǫΩ)

]

(20)

It may be noticed that(X −GΦ) are considered as equiv-
alent data, as a result, it has to be non negative, otherwise
the negative component has to be replaced by 0. Practi-
cally, the case is very rarely encountered. It turns out also,
that if the initial value△F 0 is positive, then△F k is al-
ways non negative.

2.5. Summary of the algorithm

Non negative matrix factorization is an iterative algorithm
based on the successive estimation of the contribution ma-
trix G with a fixed profile matrix F and then the estimation
of F with a fixed G. The iterative procedure is outlined be-
low:
•While the stoppping rule is not checked
{
Check for positivity of (X − GΦ) and project it if neces-
sary
Search for F at constant G
Search for G at constant F
Normalizing F and G}
At the end of every iteration, a normalization step is ap-
plied to the rows of the profile matrix F. The contibution
matrix G is then updated to keep unchanged the product
GF .

3. INDUSTRIAL SOURCES IDENTIFICATION BY
NON NEGATIVE MATRIX FACTORISATION

The application proposed in this work concerns a series of
airborne particulate matter sampled from a coastal city in
Northern France close to an integrated steelworks (Figure1).

Fig. 1. Location of the area under study: Dunkerque -
North of France

A number of 92 valid samples corresponding to air-
borne particles with size lower than 10µm were consid-
ered. Sampling was performed under various meteorolog-
ical conditions so that particles could be collected under
the influence of several emission sources. The chemical
composition of samples was determined focusing on metal
elements (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sn,
Ti, V, Zn) and ionic species (Cl−, NO−

3 , SO2−
4 , NH+

4 ).
A previous work dedicated to the identification of poten-
tial sources [1] enabled to identify source profiles con-
tributing mainly to the atmospheric particulate background:
sea salts, aged sea-salts, secondary inorganic aerosols and
crustal particles. Their respective profiles were in good
agreement with results from literature [2] [12] [5]. 5 in-
dustrial expected sources are considered: blast furnaces,
steel slag, ores sintering plant, sintering chimney and fer-
romanganese plant.

To sum up,X is made with 92 samples and 19 chemi-
cal species,G is a 92 samples and 9 sources matrix andF

is a 9 sources and 19 chemical species matrix.
Moreover the

∑

matrix involves uncertainties provided
by chemical analysis methods.
Our first tests concern the Kullback-Leibler weighted NMF
(KL-WNMF) without equality constraints.
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Fig. 2. Secondary inorganic aerosols

The KL-WNMF applied to our data allows us to rec-
ognize some sources such as sea salts, aged sea salts and
the secondary inorganic aerosols. The latter are typically
identified by the presence ofNO−

3 SO2−
4 and NH+

4

(Figure 2).
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Fig. 3. Intermediate profile between crustal source and
blast furnaces-steel plant source.



However, results of the algorithm are ambiguous in
the case of extra profiles coming from industrial emis-
sions. According to experts, some profiles do not show
the source separation. For instance, Figure 3 shows a pro-
file in which the separation of crustal particles (natural
emissions) and blast furnaces-steel plant source (industrial
emissions) could not be obtained. The contribution of the
industrial source is evidenced in this case by the amount
of Fe, Ca and Zn much higher than the one expected for
the crustal source. The same ambiguity is noticed with
other profiles.

The use of constraints appears as an interesting way
to get better fits for profiles compared to characteristics
known for emission source samples. The next step of our
tests is to add some equality constraints to our algorithm.
As previously mentioned, the four sources contributing
the particulate background are in agreement with litera-
ture results so that we have considered that their profiles
could be considered as known.

The Ω matrix specifies which elements are fixed to
some constraints. In this case, corresponding cells are set
to 1 (table 1).

Table 1. Ω matrix
Al Ca Cr Cu Fe K Mg Mn Na Ni Pb Sn Ti V ZnCl− NO−

3
SO2−

4
NH+

4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1
0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1

The zeros in theΩ matrix corespond to elements for
which estimates are computed by the algorithm.
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Fig. 4. KL-CWNMF: Blast furnaces - steel plant profile

According to chemical composition data available for
reference samples of industrial particulate emissions [9]
[3], each source may be recognized from the relative abun-
dance of elements and ions appearing in profiles. The first
industrial source profile given in figure 4 is characterized
by a high amount of iron and in lower proportions cal-
cium, zinc and manganese. Such features are encountered
in the case of particles emitted by blast furnaces or by the
steel plant, these two sources showing similar profiles.
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Fig. 5. KL-CWNMF: Steel slag profile

The profile of figure 5 is characterized by the presence
of a large amount of calcium and the presence of iron,
aluminium, manganese and magnesium. This profile can
be ascribed to particulate matter from steel slags emitted
in the form of fugitive emissions.
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Fig. 6. KL-CWNMF: Ores sintering profile

The profile described on figure 6 shows a large amount
of Fe, Ca, Al and Mg and small quantities of Mn, K and
Na. This can be attributed to fugitive emissions due to
handling of the sintered ores inside the steelworks site.
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Fig. 7. KL-CWNMF: Sintering chimney profile

The profile of figure 7 corresponds to the sintering



chimney point source. It is characterized by the pres-
ence ofCl−, K, Fe, Ca,NH+

4 and Pb. From figures
6 and 7, it can be noticed that compositions of particu-
late from the ores sintering either as fugitive emissions or
point source emissions unit are different. The separation
of both sources appears to be clearly obtained.
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Fig. 8. KL-CWNMF: Ferromanganese alloys profile

Moreover, the ferromanganese alloys emissions may
be easily recognized (figure 8) with the presence of the
Mn, Fe, Ca, Zn, Al and Pb.

Finally, identification without equality constraints provides
ambiguous results due to mixture of multiple sources while
constrained NMF algorithm enables to identify sources
correctly.

4. CONCLUSION

This article is devoted to the introduction of simple linear
equality constraints into the NMF algorithm. Particularly,
the focus is only made on the weighted KL divergence.
Then, general mutiplicative rules are derived (20) which
enable to directly update the profile matrix and the contri-
bution matrix (KL-CWNMF). This technic is used in the
frame of particulate matter source identification. Tests are
made on the available data with and without constraints. It
turns out clearly that constraints enable a better identifica-
tion of source profiles which are in good agreement with
chemical literature.
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dans les particuleśemises dans l’atmosphère depuis
un site sid́erurgique: Etude spectroscopique et car-
act́erisation de composés de ŕeférence et de particules
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