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Estimation of characteristic coagulation time based on Brownian
coagulation theory and stability ratio modeling using electrokinetic

measurements

K. Lachin, N. Le Sauze, N. Di Miceli Raimondi”, J. Aubin, M. Cabassud, C. Gourdon

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

HIGHLIGHTS

The characteristic time of coagulation of colloidal suspensions is studied.
The rate of coagulation is estimated using Brownian coagulation theory.
The collision efficiency is taken into account through a stability ratio.
Electrokinetic measurements are used to model the stability ratio.

ABSTRACT

The method is applied to a latex: coagulation times and mixing times are compared.

Coagulation is a key process particularly in the field of polymer production. Controlling this phenomenon at
industrial scale is a significant challenge because it is highly dependent on the operating conditions and the
equipment used for the coagulation process. Poor control of coagulation may strongly affect the quality and the
reproducibility of the final aggregates. In the objective of facilitating the choice of both adequate operating
conditions and suitable devices for coagulation processes, this paper presents a method to estimate characteristic
coagulation time of colloidal suspensions as a function of pH, ionic strength and volume fraction of particles.
This method is based on Brownian coagulation theory, assuming very small initial particles. The collision effi-
ciency is taken into account by the introduction of a stability ratio. This ratio is calculated using models that
have been adjusted using electrokinetic measurements. The developed methodology is then applied to an in-
dustrial latex in order to estimate the operating conditions to fully destabilized the latex. Orders of magnitude of
characteristic coagulation time are also obtained. Since perfect mixing of the colloidal suspension and the
coagulant is necessary to obtain satisfactory aggregate properties, the characteristic coagulation time is com-
pared with the mixing time for different mixing technologies, providing useful information for process design.

1. Introduction

Synthetic latexes are commonly used suspensions in polymer in-
dustries, and typically results from batch emulsion polymerization
synthesis [1,2]. Depending on the end product to be manufactured,
coagulation of the latex particles may be a desired process, typically
occurring after polymerization, or it may be undesired, in which case it
occurs during the polymerization process or other post-processing op-
erations. However, regardless of the context, coagulation needs to be
perfectly controlled to avoid quality and safety issues related to the
Particle Size Distribution (PSD) and the morphology of the aggregates
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[3].

Two main collision mechanisms can lead to coagulation. The first is
orthokinetic coagulation in which case coagulation is controlled by the
hydrodynamics in the reactor and industrially occurs in batch vessels.
Consequently, significant literature on orthokinetic coagulation in
batch tanks can be found [4-7]. When the particles are large enough,
the fluid motion will have an impact on the trajectory of the particles
forcing them to collide. However, another phenomenon can also in-
tervene: Brownian motion will make the particles oscillate around their
equilibrium position. In this case, the term perikinetic coagulation is
used. This collision mechanism is generally predominant for particles in
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Nomenclature

a Initial particle radius (m)

[A7]s A™ number concentration per surface unit (m™?)

[AH], AH number concentration per surface unit (m~?

afry Surface activity of the protons (m~2)

A Hamaker constant (J)

Cio Molar concentration of the specie i (mol.m~3)

d particle diameter (m)

e Elementary charge constant (C)

h Interparticular distance (surface to surface) (m)

I Ionic strength (mol.m™3)

Linie Initial ionic strength (mol.m™3)

Liim Ionic strength beyond which the desorption is fully
reached (mol.m %)

K, Surfactant dissociation constant (-)

Kacaciay ~ Acid dissociation constant (-)

kg Boltzmann constant (J.K™1)

kg, Brownian coagulation kernel (m3.s™1)

kg, Brownian coagulation kernel including the stability ratio
(m3s™ Y

m Drag coefficient (-)

n Bulk ion number density m~®

N Particles number concentration (m~2)

Ny Avogadro number (mol™1)

Ny Initial particles number concentration (m~3)

t Time (s)

T Temperature (K)

t, Characteristic coagulation time (s)

tm Mixing time (s)

V, Attractive potential (J)

Vacid Experimental volume of acid added to the latex (m®)

Vadd Calculated volume of acid added to the latex (m®)

Vinic Initial volume of the solution (m®)

V. Electrostatic repulsive potential (J)

A Total interaction potential (J)

Wp, Brownian stability ratio (-)

Xy Distance between the surface of the particle and the shear
plane (m)

z charge number (-)

Greek letters

€ Vacuum permittivity (F.m %)

e Water relative permittivity (-)

Gion Surface density of chargeable sites due to the adsorbed
ions (m~2)

Tt Total surface density of chargeable sites due to the sur-
factant (m~2)

K Debye-Huckél parameter (m ™~ D)

u Dynamic viscosity (Pa.s)

UE Electrophoretic mobility (m2.V~!.s™1)

bo Surface potential (V)

@ Volume fraction (-)

g Surface charge density due to the chemical functions
(m~?)

0y Surface charge density at the surface of the particle in the
diffuse layer (m~?2)

o Additional surface charge density (m %)

4 Zeta potential (V)

the colloidal size range (between 1nm and 1um) [8]. Melis et al.
suggested a modified Péclet number (ratio of shear rate to particle
diffusion rate) as a criterion to establish if coagulation is affected or not
by hydrodynamics [9].

Beyond the hydrodynamic or Brownian motion which causes the
particles to collide, their adhesion can only take place under favorable
physicochemical conditions. Indeed, latexes are composed of colloidal
particles, displaying charges on their surface either provided by che-
mical functions (monomer, surfactant...) or ions, which are adsorbed at
the surface of the particles. These charges grant the metastability of
latex. For most cases, coagulation does not occur naturally and must be
triggered by a coagulant to modify the charge density at the surface of
the particles. Among the different coagulants, salts and acids are widely
used. A major challenge in coagulator design lies in physically con-
tacting the coagulant and the colloidal suspension. Indeed, good mixing
between both is required prior to coagulation in order to control the
early stages of the coagulation process. Mixing should be relatively fast
in order to avoid heterogeneities in coagulant concentration in the
coagulator that may degrade the quality of the final product. Therefore
understanding how a colloidal suspension evolves in the early stages of
the coagulation process as a function of the operating conditions is
essential to adequately design a coagulator. Population balances,
eventually coupled with Navier-Stokes continuum equations, are gen-
erally used to predict Particle Size Distribution and coagulation time
[10-17]. However, these approaches can be time-consuming and their
reliability and genericity highly depends on the models used to describe
the coagulation and breakage kernels, the hydrodynamics and the
complex rheology of colloidal suspensions. In the present article, an
approach using characteristic times is proposed to aid process design. A
characteristic time is not directly related to the time to complete an
operation but is relevant to the dynamics of a fundamental phenom-
enon. The approach of characteristic times is very useful to provide
insight into the relative rate of basic phenomena (e.g. reaction vs.

mixing; advective transport vs. diffusive transport). Therefore, char-
acteristic times are of great utility in chemical engineering for under-
standing and modeling processes, as well as equipment design and
scale-up [18,19]. In the literature, characteristic times of orthokinetic
coagulation can be obtained with simple models, which are a function
of shear rate and initial particle size [20,21]. For Brownian coagulation,
simple models exist to predict the time of coagulation but they assume
fully destabilized colloidal suspensions. More realistic approaches
should take into account partial destabilization and require the mod-
eling of interparticulate forces that are complex to express as a function
of the operating conditions.

The aim of the present paper is to present an original methodology
for estimating the characteristic coagulation time of a latex suspension
as a function of ionic strength, pH of the medium and solid volume
fraction. Brownian coagulation theory is considered. The influence of
the stability of the colloidal suspension is taken into account in the
coagulation kernel, using electrophoretic mobility measurements to
model this stability. The strength of this work is to propose an adequate
experimental protocol and data analysis to lead to the modeling of the
colloidal solution stability. The methodology is illustrated with an in-
dustrial latex coagulation stabilized by carboxylic acid surfactants,
where the obtained characteristic times of coagulation at different op-
erating conditions are finally compared with characteristic times of
mixing in diverse technologies.

2. Theory
2.1. Interparticular interactions

2.1.1. DLVO theory

The simplest, yet widely used theory explaining colloidal stability is
called DLVO theory and was simultaneously proposed by Derjarguin
and Landau [22] and Verwey and Overbeek [23]. This theory stipulates



that the colloidal stability can be interpreted as a balance at the particle
scale between the Van der Waals attractive forces and the electrostatic
repulsive forces such that:

Vi=Ve+ V, )

where V, stands for the total potential energy of interaction between
two particles, V, the attractive potential energy and V, the repulsive
potential energy. A suspension is usually considered stable if the max-
imum value of V, (the energy barrier) exceeds 15kgT [24] where kg is
the Boltzmann constant and T the temperature. Despite its relative
simplicity (some forces, such as solvation forces are here not taken into
account), there has been successful use of this theory in the literature
[25].

2.1.2. Van der Waals attractive forces

The literature distinguishes between two main approaches for cal-
culating the Van der Waals attractive forces: the Lifschitz approach [26]
and the Hamaker approach [27]. To be fully relevant, the Lifschitz
approach requires the knowledge of optical properties of the materials
considered over the complete electromagnetic spectrum, and these are
available for only a restricted number of materials. In the case of
polystyrene latex, examples of the application of this theory can be
found in [28]. The Hamaker approach is more widely used. Whereas
this approach does not take into account the retardation forces that can
possibly be present, it approximates the Van der Waals attractive forces
with an accuracy of about 10-20%, which is suitable for most cases
[29]. The most widely used expression for V, when considering two
particles of same radius a is given by Eq. 2:

_Aa
12h 2

where h is the interparticulate distance and A the Hamaker constant.
While it is an approximation of the full Hamaker expression, this for-
mula can reasonably be used for h values when h < a [30]. Theoretical
expressions [31,32] allow the calculation of A in vacuum for a con-
sidered material, and tabulated values for Hamaker constants of
polymer materials immerged in water can easily be found in literature.
The order of magnitude for A for polymer materials is 10~ 2°J [33].

a

2.1.3. Electrostatic repulsive forces

When a particle is immerged in a liquid medium, a charge density
can appear at its surface. This charge density can either be due to the
dissociation of chemical functions located at the surface of the particle,
or be related to the adsorption of some species like surfactants or ions.
When the immersion medium contains dissolved electrolytes, this sur-
face charge will generate an uneven ion and counter-ion distribution
near the surface of the considered particle. This physical statement is at
the core of the theory formulated by Gouy and Chapman [34-36] that
was later modified by Stern [37] to formulate the theory of the elec-
tronic double layer.

When two colloidal particles approach, the recovery of their elec-
tronic layers will generate an electrostatic repulsive force, which can
prevent particles from colliding if the repulsive force is strong enough.
The electrostatic potential energy of a particle depends on a parameter,
K, also called Debye-Huckél parameter as shown by Eq. 3.

oo [22NAI
\/ &eokgT 3

x depends on the temperature T and the ionic strength I of the medium,
which can be calculated from Eq. 4:

1 2
I=—- Cio<j
2 20 @

« is often introduced under its inverse form, !, which is called the
Debye-Hiickel length and is an essential parameter when studying
colloidal interactions as it approximately quantifies the thickness of the

particle electronic atmosphere. The value xa is thus widely used in
order to compare the range of repulsive forces to the radius of the
considered particle. The knowledge of « is of great use to calculate the
repulsive potential. For identical spherical particles of radius a im-
merged in a symmetrical electrolyte of valence 2z, and assuming that x a
is large enough (x a > 1), it is possible to express the potential repulsive

energy V, such that [23,30]:
64manks T
v, = 2y 2exp(—xh) -

(6)

where n denotes the bulk ion number density and ¢, the surface po-
tential.

2.1.4. Particle charge balance

As V, depends on the surface potential of the particle ¢, it is es-
sential to access this value. It can be obtained from a charge balance at
the particle surface as follows. If we consider a colloidal particle, the
chemical functions at its surface will grant a surface charge density o;.
When these chemical functions obey a dissociation equilibrium (for
example acid-base equilibrium like it is the case of the studied latex), o ;
will depend on the concentration of the species that intervene in the
equilibrium and pH will thus have a significant impact on o ;. When
considering particles stabilized by acid functions A~ (with an ion
number concentration per surface unit [A7],), 0 ; can be expressed as
follows:

o= —e[A]; )

The dissociation constant K, can be expressed as a function of [A7];,
[AH]; and the proton activity at the surface of the particle aj;, such that:

_ @ (AT
¢ AH), ®

Using a Boltzmann equation, it is possible to express af, as a
function of the surface potential ¢:
—e. ¢

@it = “P(k—T)“’"’H
B!

©)

The total density of chargeable sites per surface area, assuming that
only the acid function considered grants charges, can simply be ex-
pressed as:

Lot = [Ai]s + [AH]S (10)

Combining Egs. 7-10, the following expression for o ; is obtained,
being a function of the pH of the suspension and the surface potential of
the considered particle ¢,:

_er;‘o[
10~PH

—edg
Ka exp(kBT) (11)

The Poisson-Boltzmann equation relates the charge density granted
by the counter-ions in the diffuse layer to the electrostatic repulsive
potential. By integrating this charge density over distance, from the
particle surface to infinity, it is possible to write a relationship between
the electrostatic repulsive potential and the charge per surface unit in
the diffuse layer. The surface charge density at the surface of the par-
ticle is o . For a symmetrical electrolyte, the following expression can
be used:

0, = _ 2k Tk | o, o + Ztanh e,
ze 2kg T xa 4kg T

o=
1+

(12)

Eq. 14, proposed by Loeb et al. [38] and later used in other studies
[39], takes into account the surface curvature of the particle considered
and is thus particularly suitable to the study of latex stability.



Using a simple charge balance, the following relation is then ob-
tained:

o+ 0= 0 (13)

By solving this balance, it is thus possible to calculate ¢, as a
function of the pH and the ionic strength (through the calculation of «)
of the medium. However, the total surface density of chargeable sites
Lo is unknown. The originality of the current work is to determine this
data by comparing calculated electrophoretic mobilities pig, which de-
pend on [},;, and experimental values obtained at different pH and ionic
strength conditions, as described in the following section.

2.2. Brownian coagulation theory

For small particles with a diameter less than a few hundred of
nanometers, Brownian motion will cause the particles to move around
their equilibrium position and will ultimately lead to particle collision
and thus coagulation. Smoluchowski [40] was the first to theorize
coagulation kinetics in analogy with chemical kinetics. When con-
sidering a monodisperse suspension of spherical particles, the following
relation was proposed to describe the early stages of perikinetic coa-
gulation:
dN 4k T

= = —kp N2 = N?
dt 3u a4

where kg, is the Brownian coagulation kernel and N the concentration
of particles in number. It is worth mentioning that this theory supposes
that the collisions are binary, and thus is not valid for concentrated
suspensions.

The kernel introduced above is strictly valid when all the collisions
are efficient, that is to say leading to coagulation. However, this

situation is only valid when the suspension is fully destabilized, which
means that the magnitude of repulsive forces is too low to prevent
coagulation from occurring. In order to take into account the efficiency
related to the physicochemical properties of the suspension, Fuchs [41]
was the first to introduce the Brownian stability ratio, Wg,. The ex-
pression was further improved to take into account the attractive forces
in the rapid coagulation regime and the hydrodynamic interactions, as
given by Eq. 15 [30,42]:

. L)
2a [ B(h). reny dh
WBr = 0
2a [ B(h p(kBT)dh
a{ (h). (h+2a)2 (15)
B(h) = 6(h/a)® + 13(h/a) + 2
6(h/a)? + 4(h/a) (16)

where h is the distance between two particles, and B(h) a function
taking the hydrodynamic interaction into account. Wpg, can be con-
sidered as the inverse of a collision efficiency, which is related to the
physico-chemistry of the medium. Its value ranges between 1 for totally
destabilized suspensions and + e for stable suspensions. By con-
sidering the DLVO theory (Eq. 1) and the expressions for V, and V,
introduced by Egs. 2 and 3, Ohshima [30] proposed an analytical ex-
pression for Eq. 15 to estimate Wp,:

Gxa Axam
_1+—
bt Bt

11 A A 9 A A
qy = —exp E - —exp| —— |E
8 24k T 24ksT) 8 "\ 8kgT 8kyT 18)

Io¢ initialization

[0+ adjustement

Operating conditions:
land pH

Temperature is set:

¢ calculation by charge
balance resolution

f(¢0'[‘tot’l'pH) =0

T=20°C

Theoretical calculation
of ug = f(¢o, 1, pH)

Experimental
determination of fig ey,

UE = HEexp

NO

?

of Wg,

Theoretical calculation

= f(¢o, 1, pH)

Theoretical calculation
of t¢ = f(Wgy, 90)

Fig. 1. Flowsheet describing the method to determine t..



Table 1
Summary of the model parameters.

Parameter type Symbol Value
Fixed Xz 0.2nm
Ka 107°
T 20°C
Adjusted I —
Calculated Po Eq. 13
g Eq. 22
UE Eq. 23
3847 (y,)2er 0k T
G =-—
e2x 19)

where E; is the 1st order exponential integral and K, the Oth order
modified Bessel function of the second kind.

As a consequence, it is possible to express a new Brownian kinetic
kernel taking into account the inter-particulate forces for suspensions
that are not fully destabilized through the use of Wp,:

! kBr
W, (20)

kg, =

Eq. 14 is analogous to second-order chemical reaction kinetics and
can be used to estimate a Brownian characteristic coagulation time
(here assimilated to a half-life time) expressed as follows:

1 Wemuad®
ke No k5T, 1)

L

where Ny is the initial number concentration of particles and ¢, the

volume fraction of the suspension (¢, = NOMTaa). Due to the simplifi-
cations used to establish such a model, Eq. 20 should be considered
qualitatively and not quantitatively; however, it can be of a great use to
estimate whether a latex can be considered stable through time or not.

3. Materials and methods
3.1. Strategy

The strategy developed in this work to access the characteristic time
of Brownian coagulation from pH and ionic strength values is sum-
marised in Fig. 1. The surface potential ¢, is estimated by solving the
charge balance equation (Egs. 11-13) using MATLAB with the FSOLVE
function where the surface potential is taken as the variable. The the-
oretical and experimental determinations of the electrophoretic mobi-
lity are described in the next sections.

3.2. From surface potential ¢, to theoretical electrophoretic mobility uy

The theoretical electrophoretic mobility can be calculated from the
value of ¢,. More precisely, the zeta potential is calculated for a given
surface potential with Eq. 22, giving access to the corresponding elec-
trophoretic mobility in Eq. 23.

¢= 4kBT‘ arctanh | exp (—xx;)tanh <y
ze 4kBT

(22)
where x, represents the distance between the shear plane and the sur-
face of the particle. Eq. 22 is strictly valid for plane surfaces, however
Behrens et al. [39] considered the precision of this equation satisfactory
when ¢y is estimated using Eq. 12, which takes the surface curvature
into account. For this study, x, is taken equal to 0.2 nm, which is a
physical order of magnitude for this distance [24].

3 6@ 2
36{ kpT 4 [1 exP(kBT):I

Uy = sz TSrE() _
E 3ue 2kgT e (z_kzei )m
1+ 23)

m is the drag coefficient equal to 0.184 [43]. Eq. 23 is proposed by
O’Brien and Hunter for xa = 30 and |¢| < 250 mV. The modeling
proposed in this study relies on equations strictly valid for symmetrical
electrolytes. Even if a 1:2 electrolyte is added in the experiments in-
troduced in this work, it has to be mentioned that in most of the ex-
perimental cases presented here, the ionic strength is mainly due to the
symmetrical background electrolyte, explaining this choice. Other
modeling approaches can however be found in the literature. Ohshima
et al. [44] proposed an approximate expression of electrophoretic mo-
bility in the case of symmetrical electrolytes successfully applied [42]
and valid for xa = 10, that however comes with a more complex
analytical expression. Also, in the case of mixed solutions (1:1 and 2:1
or 1:1 and 3:1 electrolytes), Nishiya et al. [45] proposed a modeling
strategy from the surface potential to the electrophoretic mobility based
on Ohshima approximations. As the electrolytes used in this study are
1:1 and 1:2, this approach was not considered here.

Table 1 summarises the parameters considered in this study. The
surfactant used to stabilize the latex is a carboxylic acid with a dis-
sociation constant K, equal to 10>,

3.3. Electrophoretic mobility measurements

3.3.1. Set-up and coagulant

In order to measure the impact of both pH and I on the electro-
phoretic mobility measurements, acid titrations are performed on latex
with different initial ionic strengths. Measurements are performed using
a Malvern Nanosizer ZS® and a MPT-2 titrator is used to ensure reliable
pH adjustment. pH is monitored using a Malvern pH-probe (SEN0106).
Each measurement is performed in a Malvern DTS1060 folded capillary
cell. Industrially, pH-sensitive latex is often destabilized using sulfuric
acid. For this reason, titrations are performed using H,SO,4 at a con-
centration equal to 0.05M. Measurements are performed from
pH = 7.5 to pH = 1.5.

3.3.2. Latex

The latex used in this study is a core-shell PMMA/PABu copolymer,
stabilized by a carboxylic acid surfactant. All the experiments are car-
ried out using a suspension at initial concentration 1.375 X 1073% (w/
w), obtained after initially diluting an industrial latex (33% w/w) using
ultrapure water (Purelab® Option-Q). The volume-average radius of the
latex particles is a = 141 nm (d = 282 nm), measured using a Malvern
Nanosizer ZS®. The measured monomodal distribution is presented in
Fig. 2.

Four samples of 12 mL are used for the study. With the use of KCl as
a background electrolyte, the initial ionic strength of the suspension is
adjusted at four different values: 0 mM, 10 mM, 50 mM and 100 mM.

3.4. Ionic strength variation through the titration

While adding H,SO4 to the latex, both the dilution and the addition
of an electrolyte will change the ionic strength of the suspension. For a
volume of acid added V,q44, the ionic strength, I, can be expressed as
follows:
‘/znit

1= g + g ——1——
T Ay e+ Vaad (24)

H,S0,4 is a dibasic acid (pKg; = —3, pKg2 = 1.9). Since the pH
ranges from 1.5 to 7.5, only the weakest acidity is taken into account in
order to propose an expression of V44 and I, as a function of the pH.
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Fig. 2. Particle size distribution of the initial latex obtained with Nanosizer ZS®.

Using a straightforward balance, it is possible to write the following
relations to calculate I.q and Vg

1 10PH 10~PH
Iia = —| 107PH + 4 — ———
2 24+ 10! 14 210 PKq (acid)
10~PKa(acid) 10-PH (25)
_ Vinie 107PH
- [H2504] _pH
Z[HZSO4] - 1 + 10~ PKa(acid) +PH - 107 (26)

A comparison between the calculated V.43 and experimental Vg4
(given by the NanoZS software) for the titration at I; = 10 mM is
presented in Table 2. The results show good agreement and allow to
better calculate I, and thus «.

4. Results
4.1. Determination of T,

The model introduced earlier is firstly used in order to adjust T,
using the titration performed at I;;;; equal to 100 mM. Good agreement
between experimental and theoretical results is obtained for
Lo: = 0.15nm ™2, with a maximal relative difference between the the-
oretical and experimental electrophoretic mobilities of less than 1%.
The comparison between the theoretical and experimental results can
be seen in Fig. 3.

The adjusted model (Model 1) is then used to predict the evolution
of the theoretical electrophoretic mobility with pH for the four ionic
strengths studied experimentally (I;,;; = 0, 10, 50, 100 mM). The results
are presented in Fig. 4.

At the highest ionic strengths studied (50 and 100 mM), the model
and the experimental results are in good agreement over the whole pH
range. For I;;;; = 0mM and 10 mM, however, the model clearly fails at
representing the electrophoretic mobility, particularly at low pH values
(pH < 4). The model supposes that all the charges are brought by the
carboxylic surfactant. Below pH = 3, almost all the surfactant mole-
cules are thus in their acid form, i.e. without charges, and in this case
the electrophoretic mobility should be null. However, especially at low
ionic strength, the mobility is far from being null, which means that
other species are very likely to be present on the surface of the particles.
As a consequence, the theoretical model needs to be corrected to take
into account this experimental fact.

4.2. Modification of the charge balance solved

To prepare the latex, the polymerization is triggered using sodium

formaldehyde sulfoxylate. In an aqueous medium, hydro-
xymethanesulfinate ions will thus be present and in large majority
compared with the other ionic species composing the latex. These ions
are known to be unstable and to generate sulfoxylate ions in acidic
mediums. As the ionic strength is increasing, these adsorbed ions will
desorb further from the surface, in analogy with the desorption of ionic
species in soils while increasing the ionic strength [46]. Several studies
[42,45,47] compute the adsorbed charge density using a Stern layer
model. However, this approach needs data (notably the ion bulk con-
centration) that is not given by the industrial latex provider. For this
reason, a more straightforward model is used in this study.

The experimental results presented in Fig. 4 show that for
Linir = 100 mM the results seem to be independent of the presence of an
additional surface charge since the experimental and the theoretical
results are in good agreement. However, they are slightly dependent for
Iinie = 50mM since the model slightly underestimates the electro-
phoretic mobility for pH values lower than 2.5. o, denotes this addi-
tional surface charge. Since no further data is provided on the possible
desorption mechanism, the following expression, which assumes linear
desorption with increasing ionic strength, is taken:

Ilim -1
Tiim (27)

I;m, stands for the ionic strength value beyond which the desorption is
totally achieved and is chosen equal to 70 mM (order of magnitude for
which the second surface charge seems to be absent). Eq. 27 is con-
sidered for I < I, If this is not the case, cri is set to 0. The following
balance is thus solved:

o0 = _erion

01+0i+02=0 (28)

By adjusting I, to 0.03nm ™2, the results given in Fig. 5 are ob-
tained. At the lowest pH, it can clearly be observed that the behavior
observed with this model (Model 2) is in better agreement with the
experimental results. However, for I;,;; = 0 mM, a significant difference
between the model and the experiments for pH values ranging from 2.5
to 5 is observed. This discrepancy can be interpreted as a limitation of
the O’Brien and Hunter approximation at these pH values. Indeed, as
mentioned before, Eq. 23 is proposed for xa = 30 and |¢| < 250 mV.
These conditions are fulfilled in the present study except for
Linie = 0mM and pH > 2.4.

For Ij; = 10 mM, the model deviates from the experimental data
considerably for pH > 5 due to the increase in mobility granted by the
ion adsorption at low ionic strength. As the sulfoxylate ions appear in
the acidic medium, at the highest pH, the effect of its adsorption at the
particle surface on the charge balance should not be taken into account.
This discrepancy therefore confirms that the extra surface charge is due
to the presence of sulfoxylate ions.

The agreement of the model with ion adsorption (Model 2) with the
experimental data was checked calculating the root-mean-square de-
viation (RMSD, Eq. 29) given in Table 3.

| N
1
RMSD = | = D" (t — g 0y,)2
\/N P (29)
It can be seen that except in the case I;;;; = 10 mM, the deviation is
lower using Model 2, confirming an improved agreement of the model
as observed visually.

Table 2
Comparison of experimental and calculated V,q4q.

pH () Experimental V.44 (mL) Calculated V,qq (mL)
1.66 4.67 5.34

1.76 3.38 3.69

2.27 0.776 0.786

2.72 0.272 0.247
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Fig. 5. Comparison between the experimental electrophoretic mobility (dots)
and the adjusted calculated electrophoretic mobility (line) for Iy = 0, 10, 50
and 100 mM.

Table 3
RMSD calculations.

RMSD(Model 1) (m%V~1s~!)  RMSD(Model 2) (m%V~1.s™ 1)

Iinic = 0mM 7.76E—09 5.96E—-09
Iinie = 10mM 7.83E—09 7.53E—09
Tinic = 50 mM 1.77E-09 2.02E—-09
Tinie = 100 mM 1.05E-09 1.05E—-09

Despite these limitations, the model reproduces the experimental
electrophoretic mobility trends fairly well and is therefore used to es-
timate the surface potential as a function of pH and I. Indeed, for the
purpose of developing a coagulation process (including the determi-
nation of optimal residence times, stirring characteristics etc.), the
conditions where the model of electrophoretic mobility does not fit
with the experimental data (Ij;;; = 0mM, pH > 2.4; [;; = 10mM,
pH > 5) should not be considered. It will be seen in the next section
that characteristic coagulation times that are higher than 1000s are
estimated under these conditions, signifying that the suspension is only
slightly destabilized.

4.3. Estimation of Wp, using the surface potential model

The optimized surface potential model obtained can be used in the
analytical Wp, expression proposed by Ohshima. The value chosen for
the Hamaker constant, A, is 10~2°J, which is a common order of
magnitude for polymers (Ottewill [33] proposes A = 1.05%¥10~2°J for
PMMA, and A = 0.95%102° J for PS). Fig. 6 represents the evolution of
log(Wg,) as a function of pH for different initial ionic strengths (0, 10,
50 and 100 mM). The model considers that pH is adjusted using sulfuric
acid and takes into account the variation in ionic strength introduced by
the addition of the acid and its dissociation. As mentioned before, when
Ws, equals 1 (log Wpg, = 0), the colloidal suspension is fully destabi-
lized. As expected, Fig. 6 shows that the stability of the studied latex
decreases with the pH. Moreover, it is observed that the maximum pH
required to obtain full destabilization increases with the initial ionic
strength of the solution. This is due to the fact that the presence of
positive charges in the salt weakens the surface potential of the parti-
cles, thereby reducing the repulsive potential energy. Therefore, de-
stabilization is obtained with a lower amount of acid in the presence of
salt.

While these calculated stability ratios can be used for further kinetic
modeling, it is also possible to extract very practical information for the
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Fig. 6. Log (Wg,) as a function of pH for Iy, = 0, 10, 50 and 100 mM.



experimenter. As we can see in Fig. 6, it is possible to obtain for a
specific initial ionic strength the pH at which the suspension is fully
destabilized. By representing this data on a master curve as presented in
Fig. 7, it is possible for the experimenter to identify the minimum pH-
value to be reached to ensure full destabilization at a given value of [;;.
This information can be of great use if the objective is not to obtain
specific Wp, values but simply to ensure full latex destabilization.

4.4. Coagulation characteristic time vs. mixing time

Using Eq. 21, it is possible to convert the values of Wj, into
Brownian coagulation times. The results are presented in Fig. 8. As Eq.
21 depends on the volume fraction of the suspension ¢, the coagulation
times are presented under the form ¢.¢,, which allows the calculation of
the coagulation time over a wide range of ¢,. Eq. 21 is obtained as-
suming the collisions between particles are binary, which is no longer
the case at high volume fractions: Fig. 8 can therefore be reasonably
used for ¢, values that are lower than 0.01 [48]. At higher volume
fractions, as multiple collisions can occur simultaneously, ¢, is likely to
be lower than that predicted by the proposed model. Depending on the
physicochemical properties of the medium and the volume fraction of
the suspension considered, the evolution of the coagulation time versus
I and pH represents an interesting tool for an experimenter who re-
quires information about the stability of the considered suspension in a
more practical way than the stability ratio calculation. It is also inter-
esting to see that for this specific latex, even considering a very low
initial ionic strength, the coagulation time is minimal for pH values
<1.8, thus indicating that the suspension is fully destabilized regard-
less of the background electrolyte concentration. This information can
be very useful for studying coagulation when full destabilization is most
of the time desired. The methodology developed in this paper is thus
useful for a scientist who is wants to estimate the lifetime of a specific
latex as a function of the physicochemical properties of the medium and
the conditions ensuring full latex destabilization.

The knowledge of the characteristic time of the coagulation process
can be of great help for engineers. Indeed, such a methodology can be
used to wisely choose the experimental conditions (pH, ionic strength
and volume fraction) and the design of the coagulator so that the
characteristic time of coagulation is greater than the mixing time, thus
ensuring reproducible experiments and good quality products. Indeed,
poor mixing of the colloidal suspension and the coagulant may cause
zones with high concentration of coagulant, leading to very fast particle
coagulation and thus degrading the global morphology of the final
aggregates and product quality. Fig. 8 shows the orders of magnitude of
mixing times in different mixing devices. For stirred tanks, mixing time
ranges from few seconds (for the mixing in turbulent flow regime of
non-viscous fluids using effective stirrer technologies and baffles) to
several minutes (particularly when the viscosities of the fluids to mix
are very different) [49-53]. Although stirred tanks are the most widely
used technology to carry out coagulation processes at industrial scale,
experiments of coagulation in Taylor-Couette reactors are very often
carried out for data acquisition. Indeed, these reactors generally pro-
vide homogeneous shear rate fields in the fluids (except close to the
walls where edge effects appear) and so the modeling of the coagulation
mechanism is simplified. Mixing times observed in Taylor flow devices
range from 2 to 60 s [54]. Tubular reactors in the laminar flow regime,
which favors the formation of spherical aggregates, are also used
[55-60]. However, the laminar flow regime typically does not provide
effective mixing and a mixing device should be used before the coa-
gulator to mix the colloidal suspension and the coagulant. Intensified
mixing technologies — predominantly continuous and miniaturized re-
actors — have also emerged over the last decades and provide very short
mixing time as represented in Fig. 8 [61,62].

As for example, a suspension of the studied latex at pH = 3 and
Iine = 10mM will have a t.¢, value equal to 0.1s. If we consider a
volume fraction of 0.01, the Brownian coagulation time of the latex will

be equal to 10s. In this case, it is very likely that performing coagu-
lation in a stirred tank may lead to poor PSD control as it corresponds to
the order of magnitude of mixing time in very efficient stirred tanks. On
the other hand, if the volume fraction of the suspension is 0.0002, the
Brownian coagulation time equals 500s, which is greater than con-
ventional mixing times expected in stirred tanks. It is thus reasonable to
perform coagulation in this type of device under these conditions.

5. Conclusion

Using theoretical considerations related to the Brownian kinetics of
coagulation and the short-range interactions between particles, this
paper presents an original methodology based on electrophoretic mo-
bility measurements to ultimately estimate a characteristic coagulation
time as a function of the ionic strength and the pH of the medium
considered. The methodology is applicable to colloidal suspensions
with very small initial particles (with diameters less than a few hundred
nanometers) where coagulation is initiated by Brownian motion. The
methodology is illustrated with an industrial latex that has a pH-sen-
sitive stability. Whilst difficulties were encountered in modeling the
electrophoretic mobility due to the probable presence of adsorbed ions
at the surface of the particles, the electrophoretic model proposed re-
produces the experimental trends relatively well, thereby suggesting
that both the modeling approach and the estimation of the surface
potential are sound. The charge model was then used to calculate the
total interaction potential and ultimately the Brownian stability ratio
and the Brownian coagulation time as a function of the pH and the
initial ionic strength of the medium. This was performed assuming
DLVO theory.

The overall methodology presented provides a tool for scientists
providing a simple means to estimate the time required to obtain an
observable coagulated state of a colloidal suspension as a function of
the physicochemical conditions of the medium and the volume fraction
of the particles. For engineers, knowledge of characteristic times is
necessary to adequately choose the experimental conditions and the
equipment to obtain an effective coagulation process. For industrial
coagulation, it is necessary to perform the process without mixing
limitations (between the coagulant and the colloidal suspension) in
order to obtain aggregates of desired and constant quality. For the
purpose of data acquisition, it is also important that mixing time is
shorter than the characteristic coagulation time in order to avoid
fouling of the reactor and to obtain a reliable estimation of coagulation
kernels, as well as reproducible experiments.
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