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ABSTRACT

Auditory attention decoding aims at determining which sound
source a subject is “focusing on”. In this work, we address the
problem of EEG-based decoding of auditory attention to a target
instrument in realistic polyphonic music. To this end, we exploit
a stimulus reconstruction model which was proven to decode suc-
cessfully the attention to speech in multi-speaker environments. To
our knowledge, this model was never applied to musical stimuli
for decoding attention. The task we consider here is quite com-
plex as the stimuli used are polyphonic, including duets and trios,
and are reproduced using loudspeakers instead of headphones. We
consider the decoding of three different audio representations and
investigate the influence on the decoding performance of multiple
variants of musical stimuli, such as the number and type of instru-
ments in the mixture, the spatial rendering, the music genre and
the melody/rhythmical pattern that is played. We obtain promising
results, comparable to those obtained on speech data in previous
works, and confirm that it is possible to correlate the human brain
activity with musically relevant features of the attended source.

Index Terms— Auditory attention decoding, Polyphonic mu-
sic, EEG, Stimulus reconstruction model

1. INTRODUCTION

Auditory attention is the cognitive mechanism that allows human
beings to focus on a sound source of interest in every-day life en-
vironments. This allows the brain to extract and process high-level
sound content effectively and efficiently. The target may be a sound
source (a speaker, a siren, a musical instrument) and may carry spa-
tial information (sound source localization, environment geometry,
etc.). Auditory attention decoding aims at determining, from the
brain’s activity, which sound source a subject is “focusing on” while
listening to a complex auditory scene.

Previous studies on speech attention decoding based on con-
tinuous magnetoencephalographic (MEG) [1–3] and electroen-
cephalographic (EEG) signals [4–8] have shown that the neural ac-
tivity tracks dynamic changes in the speech stimulus and can be
successfully used to decode selective attention in a multispeaker en-
vironment. In all these works, a feature representation of the speech
stimulus is reconstructed from the multi-channel EEG recordings
through a stimulus reconstruction model, which is learned by solv-
ing a linear regression problem [8]. The authors of [6] were one
of the first to show that such reconstructed feature representations
(in this case spectrograms) were highly correlated with the salient
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time-frequency features of the attended speaker’s voice, and were
only weakly correlated with the unattended speaker ones. When the
stimulus consists of polyphonic music, one can recast this problem
as that of decoding the attention to a particular musical instrument.
However, this transposition is not straightforward since music rep-
resents a complex category of stimuli, entailing a variety of per-
ceptual cues, linking to not only musical timbre, but also rhythm,
harmony and melody.

A few attempts have thus been made at detecting and extract-
ing music information from the brain’s activity while the user is
listening to realistic music, but none has addressed the question
of attention decoding. Some studies aim at understanding how
the brain processes basic structural components of music such as
pitch [9–12], timbre [13–15] as well as sensory dissonance, high-
level melodic characteristics (e.g. melodic contour, key, mode,
scale) and music-syntactic congruity [16]. The most studied com-
ponents in the perception of music appear to be note onsets, beats,
rhythm and meter [17–20]. Usually, the brain’s reaction to such
kind of structural components is studied using the event-related po-
tential (ERP) paradigm, repeating the stimulus several times before
averaging the corresponding EEG responses, in order to keep only
the stimuli-relevant information and attenuate noise. This approach
relies on specifically selected or designed short stimuli, which are
appropriate to study only specific aspects of music (e.g. note onsets)
or the reaction to isolated sounds. A different approach is needed
to study the continuous brain response to a long and complex natu-
ralistic stimulus such as a musical piece in its entirety. Only a few
attempts have been made to track the dynamics of naturalistic mu-
sic stimuli in the EEG signal. The authors of [17] found evidence
that the time-domain audio envelope is consistently reflected in the
EEG. In [21] the Mel spectrogram of both perceived and imagined
naturalistic musical stimuli were reconstructed from the EEG while
in [22] and [18], the same was done for the note onset sequence.
However, these works were directly focusing on stimulus recon-
struction and not on attended source decoding. Two attempts have
been made for classifying the attended music [23] and the attended
instrument [24] but both of them focused on the elicited ERPs.

In this context, we have studied the problem of decoding au-
ditory attention to an instrument in realistic polyphonic music, i.e.
recorded music, featuring two or three instruments played concur-
rently. For this purpose we exploit a stimulus reconstruction model
successfully used for decoding attention to speech in multi-speaker
environments [4–8], which, to our knowledge, was never previously
applied to musical stimuli for attention decoding tasks. More partic-
ularly, we consider the challenging case of unaveraged EEG record-
ings (where the elicited responses are less visible) using polyphonic
stimuli. It is worth noting that these stimuli were not specifically
designed to elicit ERPs, and were played to the subjects using loud-
speakers instead of headphones. We have investigated how the de-



EEG Recordings

TRAIN
DECODER

FLUTE

20 electrodes
x

lags

FLUTE DECODER

FLUTE SOLO EEG Recordings

FLUTE

20 electrodes
x

lags

POLYPHONIC MUSIC

ISOLATED SOURCES

FL
UT

E
CE

LL
O

Pearson's
Correlation

Analysis

RECONSTRUCTED FLUTE

channels

features
time lags

FLUTE DECODER

channels

features
time lags

CLASS: FLUTE

Figure 1: A subject-specific model is learned for each instrument from its solo and the EEG response collected while listening to it. Then,
the same model is used to predict a representation of the attended instrument from the EEG response to a mixture containing that instrument.
The attended instrument is the one which is mostly correlated with the reconstructed stimulus in terms of Pearson’s correlation coefficient.

coding performance is influenced by the choice of audio represen-
tations as well as properties of the musical stimuli, such as num-
ber and type of instruments, spatial rendering, music genre, and the
melody/rhythmical pattern that is played.

The remainder of the paper is organized as follows. The dataset
is briefly discussed in Section 2. The audio stimuli representations,
reconstruction and classification procedures are described in Sec-
tion 3. Finally, the results are presented in Section 4 and future
research directions are discussed in Section 5.

2. DATA

Studying the problem at hand requires data of well-synchronized
musical stimuli and corresponding EEG responses which can only
be acquired in a controlled sensory stimulation. There are a few
publicly available music-related EEG datasets acquired in such a
way [25–27], but they were designed for a different purpose and the
subjects were not asked to attend to any particular instrument. The
only one where participants were asked to focus on an instrument
while listening to polyphonic music, is the music BCI dataset
used in [24]. However, it was specifically designed for studying
ERP-based attention decoding. Our focus is instead on single-trial
attention decoding techniques, targeting real music compositions.

Consequently, we acquired our own dataset, named MAD-
EEG1, consisting of 20-channel surface EEG signals recorded from
8 subjects while they were attending to a particular instrument in
polyphonic music, i.e. mixtures containing from two to three in-
struments. All subjects were non-professional/beginners musicians
with different experience levels. Each subject listened to 78 stim-
uli, each one consisting of 4 repetitions of the same 6-second long
music excerpt. This corresponds to approximately 30-32 minutes of
20-channel EEG recordings. Each attended instrument was previ-
ously heard in solo, as part of a training phase. The training excerpt
was either from the same musical piece or another, and was played
using either the same spatial rendering or a different one. Music
stimuli were presented using two speakers positioned ±45o along
the azimuth direction relative to the listener. The spatial rendering
was implemented by using conventional stereo panning. The elec-
trodes were placed according to the 10-20 international montage

1http://www.tsi.telecom-paristech.fr/aao/en/
2019/07/19/mad-eeg/

system and were referenced to left mastoid in an unipolar setting.
The sampling frequency was 256Hz. The acquired EEG data was
synchronized with each stimulus, the 50 Hz power-line interference
was removed using a notch filter and EOG/ECG artifacts were de-
tected and removed using independent component analysis (ICA).

3. METHODS

The goal is to determine the attended instrument in a single-trial
fashion based on 24-second long EEG excerpts aligned to corre-
sponding audio stimuli (of the same length). Our approach can be
summarized in two steps and is similar to the one commonly used
for decoding the attention to speech [4–8]. It is shown in Figure 1.
First we reconstruct an audio representation of the attended instru-
ment from the single-trial EEG response of the user exploiting a
decoder previously trained on solos of that instrument. Second,
given the isolated instrumental tracks, the attended instrument is
recognized as the one that has the highest correlation with the re-
constructed stimulus in terms of Pearson’s correlation coefficient.

3.1. Audio Feature Extraction

Three different audio representations were studied, one in the time
domain and two in the time-frequency domain, in order to inves-
tigate which audio features are best suited to decoding the atten-
tion from the EEG. This choice can actually significantly impact
the reconstruction quality and the decoding performance. In partic-
ular, we tested the time domain amplitude envelope computed using
the Hilbert transform (AE) and the magnitude spectrogram (MAG)
which have already shown good performance for speech stimulus-
reconstruction tasks [4–8]. A recent work explored auditory spec-
trograms modeling the peripheral auditory system [28] as they may
better model how the attended source is represented in the EEG.
We test instead the Mel spectrogram (MEL), a perceptually-scaled
representation commonly used for music analysis.

3.2. Stimulus Reconstruction

The stimulus reconstruction model reconstructs an estimate of the
stimulus representation ŝ from multi-channel EEG data r through a
model g which behaves like a multi-channel Wiener filter. This filter



can be seen as a spatio-temporal decoder which linearly maps the
neural activity back to the music representation, as a weighted sum
of activity at each electrode in a given temporal context, as follows:

ŝ(t, f) =
∑
n

∑
τ

g(τ, f, n)r(t+ τ, n) (1)

where ŝ is the predicted music representation at time t and fea-
ture f , r is the neural response of electrode n at time (t + τ) and
g is the linear transformation function that depends on the time lag
τ , feature f , and electrode n. The time lag τ ranges between 0
and τmax, i.e. the time interval where we assume to see the EEG
response to the stimulus.

Equation (1) can be solved by minimizing the mean squared
error between the actual and reconstructed stimulus representation,∑
t

∑
f [s(t, f) − ŝ(t, f)]2, which requires the calculation of the

normalized reverse correlation: G(f) = C−1
RR CRS, where CRR =

RRT is the auto-correlation of the EEG data and CRS = RST is the
cross-correlation of the stimulus and EEG data across all electrodes,
time-lags for a given feature f . Thus the reconstruction of each fea-
ture f of the stimulus representation ŝ(t, f) is independent from
the reconstruction of the other features and is obtained by convolv-
ing the relative multivariate impulse response G(f) with the EEG
signal. In the case of magnitude and Mel spectrograms where the
features correspond to frequency bins, the underlying assumption is
that a spectrogram is a time-varying representation of the amplitude
envelope at each frequency bin [5].

Since EEG signals are high-dimensional, autocorrelated, noisy
data with high trial-to-trial variability, the estimate of the covari-
ance matrices can be imprecise and subject to overfitting due to
the high number of parameters to estimate [29]. Thus, a shrink-
age regularization is used to constrain the model coefficients by
smoothly penalizing extreme eigenvalues [29]: the diagonal of the
autocovariance matrix CRR is then weighted as follows: C′RR =
(1 − λ)CRR + λνI, where I is the identity matrix, ν is the average
eigenvalue trace of CRR, and λ ∈ [0, 1] is the smoothing parameter.

4. EXPERIMENTAL RESULTS

All audio representations were time aligned to the EEG responses
acquired at 256Hz. Through a grid search over a set of reason-
able values for each parameter (λ ∈ [0.1, 1], τmax ∈ [250, 500]
ms, number of Mel bands ∈ [12, 60]), we found the best value
for the shrinkage parameter to be λ = 0.1, for τmax to be 250ms
post stimulus, and for the number of Mel bands to be 24, using
the following train/test splits: for each of the 8 subjects train on
14 solos, test on 40 duets and 24 trios. The results are reported in
Table 1 for different subsets of the test set corresponding to vari-
ants in the stimuli and different audio descriptors in terms of F1
scores. The considered variants consist of varying the number of
instruments in the mixture, the melody that is played, the music
genre and spatial rendering. Their statistical significance was as-
sessed using an adaptation of the computationally-intensive ran-
domization test [30], a non-parametric hypothesis test, comparing
to chance, which does not make any assumption on the score distri-
bution and can be used also for complex non-linear measures such
as F1 score [31]. The considered significance levels are 5%, 1% and
0.1% and the tests were performed over 104 iterations. Besides the
decoding performance, we also evaluate the reconstruction capa-
bilities of our system through the Pearson’s correlation coefficient
of the reconstructed stimulus representation with the attended in-

F1 score (%)

all ensemble melody/rhythm rendering genre
duets trios same diff mono stereo pop classic

AE 51 * 58 * 37 n.s. 48 n.s. 53 * 53 * 48 n.s. 54 * 48 n.s.
MAG 72 ** 74 ** 66 ** 76 ** 65 ** 73 ** 72 ** 64 ** 79 **
MEL 73 ** 79 ** 73 ** 79 ** 60 ** 74 ** 71 ** 60 ** 83 **

Table 1: F1 scores for different subsets of the test set: all for all
the test mixtures, duets and trios for those containing respectively
2 or 3 instruments, sm and dm for those which exhibit respectively
the same or a different melody/rhythmical pattern as the solo used
to train the model, mono and stereo for those rendered respectively
in mono or stereo.“**” denotes high (p < 0.001), “*” good (p <
0.01), and “n.s.” no (p > 0.05) statistical significance of the results.
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Figure 2: Pearson’s correlation coefficients of the reconstructed
stimulus with the attended source (blue), the unattended one (pink)
and the mixture (orange) for the three audio descriptors.

strument rattended, the unattended instrument runattended and the
mixture rmixture.

In all cases except for the amplitude envelope, the F1 scores
are statistically above chance (p < 0.001 on a randomization test
over 10000 repetitions). In fact, the decoding performance of this
feature and its correlation scores are drastically lower than the one
found for the two time-frequency descriptors (see Table 1 and Fig-
ure 2). Thus, the decoding seems to clearly benefit from the use
of a finer audio representation, highlighting amplitude modulations
in different frequency bands. Nevertheless, the rattended are com-
parable to the ones obtained in [7] for speech with the same audio
descriptor (median r = 0.054). However, our rattended values are
close to runattended and this led to a much lower decoding accuracy
than [7]. One reason may be that the music envelopes are signifi-
cantly different from the speech ones, as the complexity and mod-
ulations of music signals are higher, which makes it difficult to dis-
criminate between the envelopes of the attended and the unattended
instruments. Here the model is likely to account for effects more
related to the whole mixtures than individual instruments, causing
rattended and rmixture to be really similar. Moreover, we have to
consider that in our case the stimuli were polyphonic and rendered
through loudspeakers while in [7] two concurrent speech stimuli
were presented as monaural sources using headphones playing a
different source to each ear. In general, when both rattended and
runattended are low and similar, it means that the quality of the
reconstructed stimulus is bad, hence it is difficult to decode the at-
tended instrument. Since the performance of the AE are drastically
lower, in the remainder of this paper, we will only analyze those of
the time-frequency descriptors.

Also in the case of the linear spectrogram, the obtained cor-
relations are comparable in terms of magnitude order to the ones
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Figure 3: rattended and runattended scores for the all the stim-
uli variants. Only MAG and MEL descriptors are considered.
rattended and runattended distributions are significantly different
for all the variants (p < 0.001, non-parametric Wilcoxon test).
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Figure 4: rattended is plotted against runattended for each duet in
the test set (only MAG and MEL descriptors). Data points below
the red line rattended = runattended, are classified correctly. Data
points in the bottom-right corner are classified correctly with a large
margin. The instruments are marked with different colors.

obtained previously by [6] for speech in a different setting. Even if
MAG correlations with the attended instrument (median r = 0.215)
are in general higher than the MEL ones (median r = 0.119), the
gap between rattended and runattended is higher for MEL as can be
seen in Figure 2, leading to better decoding performances. Also in
this case, many misclassifications happen when the reconstructed
stimulus quality is low, i.e. when both rattended and runattended
coefficients are very low (r < 0.2) and close (see Figure 4). Here
the model is accounting for effects which are probably more related
to the whole mixtures than individual instruments. When rattended
is high, usually the corresponding runattended is low, meaning that
the model is discriminating the two instruments.

As expected, the number of instruments in the mixtures seems
to affect the performances, which are better for duets than trios.
This is reasonable, as the more sources we have, the more difficult
is the attention decoding task. The spatial rendering, i.e. whether
the stimuli are played in a mono or a stereo setting, does not signifi-
cantly influence the decoding performance and the correlations val-
ues, though surprisingly, mono playback seems to be more advan-
tageous than stereo in terms of F1 scores, with the differences not
being statistically significant (p > 0.05, non-parametric Wilcoxon
test). It seems that the subjects are not helped by a different spatial
localization of the instruments to attend to one of them or, at least,
the EEG is not linearly tracking any of the related information.

The genre, instead, is highly influencing the performances.
Both the time-frequency descriptors behave much better for the

Classical music mixtures compared to Pop ones as can be seen in
Table 1. This probably happens because the nature of the Pop ex-
cerpts used as stimuli is mostly repetitive musical patterns, which
are essentially rhythmical. In our dataset, this is particularly true in
mixtures with the Drums and the Bass, which usually have to guide
the rhythm and tempo. The Classical mixtures used are inherently
different: they exhibit long melodic lines which can be translated
in well-defined varying pitch contours. Thus, the very good perfor-
mances on the classical pieces can be explained by the fact that our
model is tracking well the pitch/harmonic contour of the attended
instrument. Usually, when one attends to an instrument one focuses
on following the melody line or rhythm played.

That is why we tested if our models are invariant to the
melody/rhythmical pattern that is played. In fact, the performance
clearly changes when we test the models on different musical pieces
from those which were used for training, and is better when the
melody/rhythmical pattern remains the same. It is worth clarifying
that even in this case, though the same solo excerpt is used during
training and testing, during the latter, that solo excerpt is played
as part of a mixture (duet or trio) and the EEG response is obvi-
ously completely different from that of the training with the solo-
only stimulus. This performance degradation observed when the
pitch contours varies between training and testing is coherent with
the explanation we gave before for the difference of performance
among the genres. However, this also means that the generalization
ability of the considered models is limited. Even if the models are
not invariant to the changing pitch contour, the performance still re-
mains significantly better than chance for the two time-frequency
representations. In this case, the linear spectrogram seems to be
more robust than the Mel one. The lower performance on the Pop
excerpts can be explained also by the fact that the Drums are always
misclassified as Bass. Our tentative explanation is that when the
subject is listening to the Drums and the Bass, the brain’s activity
is mostly tracking the rhythm. More experiments using recordings
with clearer distinction between melody and rhythm will be needed
to confirm these initial findings.

5. CONCLUSION

We have shown that EEG-based auditory attention decoding based
on a simple linear regression model yields promising results for
decoding the attended instrument in polyphonic music. Through
experimental evaluation we have shown that the EEG tracks
musically-relevant features which are highly correlated with the
time-frequency representation of the attended source and only
weakly correlated with the unattended one. Moreover, we have
shown that we are actually tracking attention since these features
are related with the attended source and not with the mixture in its
whole. However, it seems that the models are mostly tracking the
pitch contour that is played by the instrument, which reduces its
generalization capabilities.

The main limitation is that the proposed paradigm employs the
separate “clean” sources of each instrument present in the mixture
(to correlate their feature representation to the one predicted with
the EEG data). This condition is never met in realistic scenarios
where only the mixtures are available. Moreover, our linear model
is not tracking all the non-linearity of the EEG signals. Future work
will look into testing the proposed approach with non linear models
and without access to the clean sources. Moreover, we will extend
this approach to a music instrument classification problem, where
we assume the target instrument is not known in advance.
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