N

N
N

HAL

open science

Containment of UC2RPQ: the hard and easy cases

Diego Figueira

» To cite this version:

Diego Figueira. Containment of UC2RPQ: the hard and easy cases. International

Conference on Database Theory (ICDT),

Mar 2020, Copenhagen, Denmark. pp-9:1-9:18,

10.4230/LIPIcs.ICDT.2020.9 . hal-02291888v2

HAL Id: hal-02291888
https://hal.science/hal-02291888v2
Submitted on 30 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02291888v2
https://hal.archives-ouvertes.fr

Containment of UC2RPQ: the hard and easy cases

Diego Figueira
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

—— Abstract

We study the containment problem for UC2RPQ), that is, two-way Regular Path Queries, closed
under conjunction, projection and union. We show a dichotomy property between PSPACE-c and
EXPSPACE-c based on a property on the underlying graph of queries. We show that for any class
% of graphs, the containment problem for queries whose underlying graph is in % is in PSPACE if
and only if ¥ has bounded bridgewidth. Bridgewidth is a graph measure we introduce to this end,
defined as the maximum size of a minimal edge separator of a graph.

2012 ACM Subject Classification Information systems — Graph-based database models; Inform-
ation systems — Resource Description Framework (RDF); Mathematics of computing — Graph
theory; Theory of computation — Formal languages and automata theory

Keywords and phrases Regular Path Queries (RPQ), 2RPQ, CRPQ, C2RPQ, UC2RPQ, graph data-
bases, containment, inclusion, equivalence, dichotomy, graph measure, bridge-width (bridgewidth),
minimal edge separator, minimal cut-set, max-cut, tree-width (treewidth)

Funding ANR DéLTA (grant ANR-16-CE40-0007) and ANR QUID (grant ANR-18-CE40-0031)

Acknowledgements Thanks to Guillaume Lagarde, Matthias Niewerth and anonymous reviewers
for helpful comments.

1 Introduction

Graph databases is a prominent area of study within database theory, in which the use of
recursive queries is crucial [4, 2]. A graph database is a finite edge-labeled directed graph.
The most basic navigational querying mechanism for graph databases corresponds to the
class of regular path queries (RPQs), which test whether two nodes of the graph are connected
by a path whose label belongs to a given regular language. RPQs are often extended with
the ability to traverse edges in both directions, giving rise to the class of two-way RPQs, or
2RPQs [9]. For example, an regular expression like (a + a~)* states that there is a path that
can traverse a-labelled edges either in the forward or reverse direction. The core of the most
popular recursive query languages for graph databases is defined by conjunctive 2RPQs, or
C2RPQs, which are the closure of 2RPQs under conjunction and existential quantifications
[7]. As an example, a C2RPQ could be described as a formula ~ like

v(z) = (Fy) xi>y A y%y A yiaz. @%@ (a+a”)"
Here «y is a unary formula that outputs all vertices v, of the graph database from which there
is an a labelled path to some vertex v, contained in some undirected a-cycle, and so that
there is a directed b-path from v, to v,. Note that the query can also be depicted as a graph
(on the right), edge-labelled with languages and with some highlighted vertices representing
free (output) variables. We also consider unions of C2RPQs, or UC2RPQs.

The containment problem is arguably the most basic static analysis problem on monotone
query languages. In our case it is the problem of, given two UC2RPQ ~,~’, whether
v(G) € +'(G) for all graph databases G.

The “four Italians” [7] have long ago shown that the containment problem for UC2RPQ
is decidable, EXPSPACE-complete (in particular generalizing a prior EXPSPACE upper bound
for CRPQ [11]). On the other hand, Barcelé et al. [6] have shown that on the class o of

Containment of UC2RPQ: the hard and easy cases

acyclic multi-graphs', there is a measure of ‘width’ so that for every acyclic class € C o of
bounded width, the containment problem on UC2RP(Q whose underlying graph is in % is in
PSPACE.

Contribution. Here we lift their notion of width to arbitrary multi-graphs. We call our
measure ‘bridgewidth’ and we obtain that for every class € of multi-graphs:

If € has bounded bridgewidth, the containment problem for UC2RPQ whose underlying

graph is in € is in PSPACE;

If ¢ has unbounded bridgewidth, the containment problem for UC2RPQ whose underlying

graph is in € is EXPSPACE-complete.

Further, the lower bound hold also if we replace UC2RPQ with CRPQ or even with Boolean
CRPQ), and the upper bounds hold also if we allow any arbitrary UC2RPQ in the left-hand
side of the containment problem.

But what is bridgewidth? It is a rather intuitive measure of graphs. A bridge is a
minimal edge separator, that is, a minimal set of edges whose removal increases the number
of connected components of the graph. The bridgewidth of a graph is the maximum size of a
bridge therein. As it turns out, on the class of acyclic graphs <7, bridgewidth and [6]’s width
measure coincide.

Another related static analysis problem is the boundedness problem (i.e., whether a
UC2RPQ is equivalent to one whose languages are all finite). We have recently shown
that, similarly to the containment problem, this problem is EXPSPACE-complete and that
on acyclic UCRPQ queries of bounded width it is in PSPACE [5]. We conjecture that an
adaptation of bridgewidth may also characterize the complexity for this problem for UCRPQ
(see Section 7).

Organization. We start with necessary basic definitions of graphs, bridges, graph
databases, automata, and UC2RPQ in Section 2, and we formally state the main result in
Section 3. Section 4 contains some technical lemmas needed for the upper bound algorithm.
Finally, Sections 5 and 6 spell out the details of the upper and lower bounds of the main
theorem, respectively. We conclude with some remarks in Section 7.

2 Preliminaries

Graphs

A multi-graph M = (V, E, n) is a finite set of vertices V and edges E together with a function
n: E — V xV associating each edge with the source and target vertices. For convenience we
will sometimes use 71 (¢) and 72(e) to denote the vertex in the first and second components
of n(e). For economy, we will henceforth write ‘graph’ to denote a multi-graph. For any set
of edges E' C FE and set of vertices V' C V', we write E'[V’] to denote the set of all edges of
E’ incident to V', that is E'[V'] = {e € E’ : n;(e) € V' for some i € {1,2}}; for a vertex
v €V, we write E'[v] as short for E'[{v}]. A connected component of M is a non-empty
minimal set of vertices V' C V so that n(e) € (V' x V)U((V\ V') x (V\ V")) for every e € E.
A graph is connected if it has only one connected component. Henceforward, whenever
we write ‘minimal’ it is with respect to set-containment. An isomorphism between graphs
M = (V,E,n) and M' = (V',E',n’), noted M = M’, is a pair of bijections vy : V — V’
and vg : E — E’ such that n(e) = (u,v) if and only if #'(vg(e)) = (vv(u),vyv(v)). We

! In this context, by acyclic we mean any directed multi-graph such that every cycle of its underlying
undirected simple graph is a self-loop.

Diego Figueira

will henceforth always work modulo graph isomorphism. Given a set W C V| the graph
induced by W, written M|w, is (W,{e € E:n(e) e W x W}, {e n(e):n(e) e W x W}).
Similarly, for E' C E, M|g = (V,E',{e = n(e) : e € E'}). Given an equivalence relation
~ CV xV, the quotient graph M/~ is defined as (V’, E,n') where V' has one vertex [v]..
for every ~ equivalence class, and 7' (e) = ([v]~, [v']~) for every e € F such that n(e) = (v,v’).

Bridges

A bridge (a.k.a. minimal edge separator) of a graph M is a minimal set B C F of edges
(minimal in the sense of set-containment) whose deletion induces an increase on the number
of connected components of M. The bridgewidth of M, which we note bw(M), is the

41§ i

bridge of size 4 associated not a bridge not a bridge not a bridge
&4 minor (not a separator) (not minimal) (not minimal)

Figure 1 Examples of bridges.

maximum size of a bridge of M, or 0 if M has no edges. The bridgewidth of a class of graphs
¢, which we write bw (%), is defined as sup ;e bw(M). If bw(€) < co, we say that € has
bounded bridgewidth; otherwise, it has unbounded bridgewidth.

Two-way alternating automata

The upper bound algorithm makes use of automata, we give here our sui generis definition
of 2AFA: a simplified weaker version of the usual 2AFA which fulfills our needs. A 2-
way alternating finite state automaton (2AFA) is a tuple A = (A, Q, I, F,) where
A is a finite alphabet of letters; @ is a finite set of states; I, F C @ are sets of initial
and final states respectively; and 6 : Q@ — By(BA({+1,-1} x A x Q)) is the transition
function, where By (Ba(X)) stands for a disjunction of conjunction of elements from X
(e.g., “(+1,a,9) V ((+1,a,p) A (—=1,b,p)) V (—1,a,p)”). A non-deterministic two-way
finite automaton (2INFA) is a 2AFA that has no conjunctions ‘A’ in d, that is, § : Q —
By ({+1,—1} x A x Q). If further § has no ‘=1’ elements (i.e., if 6 : Q — By ({+1} x A x Q)),
it is a non-deterministic finite automaton (NFA). An run from position i on a word
w € A* (where 0 <14 < |w|) is a finite non-empty tree whose vertices are labelled by elements
from {0,...,|w|} x @ such that the root is labeled by some element from {i} x I, and for
every vertex x labelled (7, ¢) there is a disjunct of 6(¢) such that for every conjunct (n,a, p)
thereof we have: (i) 0 < j+n <|w|, (ii) (n,a) € {(+1,w[j + 1]), (=1,w[j])}, and (iii) there
is a child of x labelled (j + n,p). If the automaton is an NFA, note that the run has only one
leaf (4, qr), in which case we say that the run starts at position ¢ and ends at position j. A
run is accepting if every leaf is labeled by an element from {|w|} x F'. In the sequel it will be
convenient to use these automata as unary querying devices on finite words; that is, for any
given word w € A*, the evaluation A(w) of the automaton on the word, outputs the set of
positions A(w) C {0,..., |w|} of w from which there is an accepting run. The language of
A is the set of all words w such that 0 € A(w). For a word w, we will write w € A to denote

Containment of UC2RPQ: the hard and easy cases

that w is in the language recognized by A. For any given ¢ : Q — By (BA({+1,—1} x A x Q))
and I, F C @Q we denote by §[I, F] the 2AFA having I and F as initial and final state sets
and ¢ as transition function (the alphabet and statespace being implicit).

Oftentimes 2-way automata are defined to have also “word delimiters”, in order to
recognize when we are at the leftmost or rightmost position of the word. We do not need
this feature in our construction (and its absence simplifies, albeit slightly, some definitions);
we therefore prefer to leave the definition as simple as possible.

Graph databases and UC2RPQ

A graph database is an edge-labelled finite graph, where labels come from some fix, finite
alphabet A. Formally, a graph database over an alphabet A (henceforth graph db)
G =(V,E,n,\) is a graph (V, E,n) equipped with a function A : E — A.

We work with query languages that can traverse edges in both directions: in the direction
of the edge as represented in the graph db (i.e., in the forward direction), or in the opposite
direction (i.e., in the reverse direction). Given a finite alphabet A we represent the instruction
of traversing an a-labelled edge in the forward direction by reading the letter a € A, and the
instruction of traversing an a-labelled edge in the reverse direction by reading a~. Hence,
let A~ be the set of all letters a~ where a € A, and let A* be AUA™. For every a € A,
let (a7)” =aand a” = a~. A C2RPQ is the closure under conjunction and existential
quantification of 2RPQ queries, which are of the form L(x,y) where L is any regular language
over AT and x,y are free variables ranging over vertices of graph databases. Here, we prefer
to define C2RPQ directly in a graph form. Let us first define informally what a C2RPQ is

—we will later deal with all boring details. A C2RPQ +y is a graph whose edges are labelled
with regular languages over AT, equipped with a vector of ‘output’ vertices. An expansion
of a C2RPQ is the result of replacing every edge from z to y labelled by L with a path
corresponding to some word w € L, respecting the directions imposed by the alphabet A*.
As a result, we obtain a graph db and a vector of vertices. For example if w = a-b~ - b, then
the path looks like z = o FLASLN y; and if w = € then the path is empty, and it forces the
collapse of x and y. Some examples are shown in Figure 2. Observe that each expansion is

out = (@@,@) out = (@,@@) out = (@,@@) out = (@,7)

Figure 2 A C2RPQ (left) and three possible expansions. Highlighted vertices are output vertices.

essentially a Conjunctive Query (CQ). A tuple of vertices of a graph db G is in the output
v(G) of a UC2RPQ v evaluated at G iff it is in the output Q(G) of the CQ @ corresponding
to some expansion of .

Formal details follow. A C2RPQ over the alphabet A is represented as

Y= <‘/,E,’I'],Q,6,I,F,6>

where
(i) (V.E,n) is a graph,

Diego Figueira

(ii) Q is a finite set of states,

(iii) 0:Q — By({+1} x A* x Q) is the transition relation of an NFA over A,

(iv) I,F : E — 29 are functions indicating the set of initial and final state for each edge,

and

(v) 0 is a (possibly null-ary) vector over V, called the output vector.
We henceforth write @) to denote the null-ary vector. We often write v(a), whenever o # 0, to
make explicit the output vector of v. If 0 = 0, we say that v is a Boolean C2RPQ. The
arity of v is the dimension of o (hence, 0 if 0 = @) The underlying graph of v is (V, E, n).
We denote by |v| the size of any reasonable representation of ~.

For an equivalence relation ~ C V' x V, the quotient (G, 0)/ ~ of a C2RPQ is defined as
for graphs, that is, the result of replacing every vertex v by a representative element [v].
from its equivalence class.

For every word w € (A*)* of length n, let w[i] denote its i-th letter. The graph db
associated to w contains n + 1 distinct vertices vg, ..., v, and n edges ey, ..., e, so that for
every i: if w[i] € A, then A(e;) = w[i] and n(e;) = (v;—1,v;); if w[i] € A, then A(e;) = (w[i])™
and n(e;) = (vi, v;—1). We call this graph db the semipath for the word w that starts in
vo and ends in v,,. We will also refer to the i-th vertex of the semipath for w to denote
the vertex v;. Note that if w = € then vy = v,,, and in this case we say that the semipath is
empty. By § we denote transition function of a 2-way NFA having () as statespace, defined
as ¢ — V{(+1, . ¢), (=1,a7,¢) : (+1,a,¢) in 6(¢)}. The intuition is that 6 ‘implements’
the notion that by reading a~ we traverse a-edges in the reverse direction. More concretely,
for a semipath G,, for w € (A*)*, consider P, the graph db obtained by adding to G,, an
edge labelled ¢~ from u to v for every edge labelled a from v to u. Observe then that a run of
& between states p and ¢ on w corresponds to a run of § between p and ¢ on a directed path
of P, and vice-versa. A semipath for an edge e of a C2RPQ as above is any non-empty
semipath for a word w € §[I(e), F(e)] which starts in 71 (e) and ends in 72(e) (note that, in
particular, w # € and 7 (e) # n2(e)).

(X,) is an expansion of v(0) (a.k.a. a canonical database for v(0)) if X is a graph db
over A, x is a vector of vertices of X’ of the same arity as o, and there exists a partition of F
into Ey, By (i.e., E = EoUFE}) so that

for each e € Ey, I(e) N F(e) # 0; and

for each e € Fy, there is a semipath 7, for e,
and X is the union of all these semipaths, collapsing all pairs of vertices of Ey. Formally,
(X, 7) is defined as ((U.ep, 7e),0)/ ~, where ~ is the equivalence relation induced by the
connected components of X| Eo-

A UC2RPQ is a finite union vy =1 U - - - U7y, of C2RPQ with the same arity. The set
of expansions of 7 is the union of the sets of expansions of the v;’s.

A vector v of vertices of a graph db G is in the output v(G) of UC2RPQ ~ evaluated
on G iff there is some expansion (X, Z) of v and a homomorphism h : X — G such that
h(Z) = v. If is Boolean, we say that it is true in G iff 0 € v(G), that is, if there exists a
homomorphism X — G for some expansion X'.

The bridgewidth of a UC2RPQ is the maximum bridgewidth of its underlying graphs,
and the bridgewidth of a graph db is the bridgewidth of its underlying graph.

Containment problem for query fragments

Given two UC2RPQ ~1,v2 we say that v, is contained in 75 (and we note it 41 C v2) if
~v1 and 2 have the same arity (possibly 0) and v1(G) C ~2(G) for all graph databases G.
For any fragment F of UC2RPQ, the F-containment problem is the problem of deciding,

Containment of UC2RPQ: the hard and easy cases

given 1,72 € F, whether ; C 9. Given a class of graphs %, the query class CRPQ(%)
[resp. C2RPQ(%), UC2RPQ(%)] is the set of all CRPQ [resp. C2RPQ, UC2RPQ] whose
underlying graph is in %.

3 Main result

Let us say that a class of graphs is non-trivial, if it contains at least one graph with at
least one edge. The main result is the following.

» Theorem 1 (containment dichotomy). For every non-trivial class € of graphs,

1. if € has bounded bridgewidth, the UC2RPQ(%)-containment problem is PSPACE-complete;

2. if € has unbounded bridgewidth, the UC2RPQ(%)-containment problem is EXPSPACE-
complete.

Further, the lower bounds hold also for the fragment of Boolean CRPQ(€).

Proofs for lower and upper bounds build upon known results and techniques in the area.
Although technical details are somewhat lengthy, they do not bring original ideas other than
verifying that bridgewidth is the ‘right’ notion for a dichotomy result. In particular, Barcel6
et al. [6] have already shown the result for the restricted case where % is any class of ‘acyclic’
graphs (meaning that the only allowed cycles in the underlying undirected simple graphs are
self-loops). They use a notion of ‘width’ which coincides with bridgewidth on this class of
graphs. The lifting of this result to bridgewidth is considerably more involved, but it follows
the same philosophy.

4 A bridge maintenance toolkit

We state here some properties of bridges and definitions which shall be of use in the next
section.

For a graph M = (V, E,n), we say that a set of edges S C F separates X C V and
Y C V if all elements of X UY are in the same connected component of M, and for every
r€ X and y €Y, z and y are in different connected components of M|g\ g. In this case we
say that S is a separator of X and Y’; and if it is minimal with respect to this property, we
say that it is a minimal separator. Observe that a set of edges is a bridge if and only if it
is a minimal separator of two singleton sets {x}, {y}. However, minimal separators need not
be bridges in general; for example, the rightmost picture in Figure 1 (page 3) is a minimal
separator of {®,®,®} and {®,®, @}.

For a bridge B C E we say that X C V is a side of B if X # () and there is a connected
component Y of M \ B such that X = {y € Y : Bly] # 0}. Note that there are exactly
two sides for each bridge, and every bridge separates its sides. For example, the bridge in
the leftmost picture of Figure 1 has {®,®,®} and {®, ®} as sides. For some set of vertices
Z CV we say the Z-side of B to denote the side of B that intersects Z (assuming there is
exactly one).

Bridgewidth can be also understood in terms of graph minors, as we show next. Given an
edge e € E of M = (V, E,n) with n(e) = (u,v) for some u # v, an e-edge contraction of M
is the graph M’ obtained by collapsing the endpoints of e. Formally, M" = (M|g\¢c})/ ~ for
~ the finest equivalence relation such that u ~ v (i.e., ~ = {(z,2) : 2 € V} U {(u,v), (v,u)}).
A minor of M is any graph M’ obtained from M by contracting edges and removing edges
and vertices. In particular, minors preserve boundedness of bridgewidth, so do subdivisions
and, as a consequence, so do expansions (since graphs corresponding to expansions are
subdivisions of minors).

Diego Figueira

bridge separating X and V' \ X minimal separator of Y and V' \'Y separator as union of bridges

Figure 3 Illustration for Lemma 5 (first two pictures) and Lemma 4 (last two pictures).

» Lemma 2.
For every graph M and minor M’ thereof, bw(M) > bw(M').
For every UC2RPQ ~ and expansion 4 thereof, bw(y) > bw(¥).

Let us call & the class of graphs containing two distinct nodes u, v and k edges between
these nodes. That is, the set of all graphs M = ({u, v}, {e1,...,ex},n) for any n such that
n(e;) € {(u,v), (v,u)} for every i. Note that [€,] = 2* (actually, there are just [%] many
graphs up to isomorphism). It is easy to see that the presence of some & minor witnesses a
bridge of size at least k and vice-versa (see first two pictures of Figure 1).

» Lemma 3. A graph M has bridgewidth at least k if and only if it contains some graph
from & as minor.

» Lemma 4. If S C E is a minimal separator of Y and V\Y in a graph M = (V, E,n) such
that M|y is connected, then there is a partition {Y;}icr of V\Y and a pairwise disjoint set
of bridges {B;}ic1, computable in polynomial time, so that

Uier Bi = S; and

B; separates Y; and V' \'Y; for every i € I.

Proof. Let {Y;}ier be the partition of V'\ 'Y in the connected components of M|y . For
every i, let B; C S be the set of edges between Y and Y;. It follows that every B; is a bridge
separating Y; from V' \ Y;, no edge can belong to two distinct B;’s, and every edge of S is in
some B;. See last two pictures of Figure 3 for an example. <

» Lemma 5. If B C E is a bridge of a graph (V, E,n) separating X and V\X, andv € V\ X
is a vertex incident to B (i.e., so that Blv] # 00), then there is a (possibly empty) partition
{Xitier of V\ (X U{v}) and a pairwise disjoint set of bridges {B;}icr such that

Uier Bi = (BUE[v]) \ B[v]; and

B; separates X; and V' \ X; for everyi € I.

Proof. Consider Y = X U {v} and observe that M|y is connected. Then apply the previous
Lemma 4 to the minimal separator S = (B U E[v]) \ B[v] of Y and V' \ Y. See first two
pictures of Figure 3. <

» Lemma 6. For every graph M = (V, E,n) there is a vertex v € V so that E[v] is a bridge.

Proof. Suppose wlog that M is connected. Observe that if there is a bridge separating X
and V'\ X and |V \ X| = 1 we are done: the singleton set V' \ X yields the vertex v to choose.
Otherwise, we proceed by induction on the size of V' '\ X. Take any bridge B separating
X from V' \ X, and take any v € V' \ X incident to B. By Lemma 5, (B U E[v]) \ B[v] is
a disjoint union of bridges. Take any such bridge B and observe that it separates X’ and
V\ X' for some X’ DO X U {v}. Since |V \ X'| < |V \ X|, we apply inductive hypothesis and
we conclude that there must be a vertex in V' \ X’ verifying the property. <

Containment of UC2RPQ: the hard and easy cases

» Lemma 7. Given a connected graph M and a partition X U Xy, UXpg of the set of vertices
therein, and given a bridge B of M separating X and X U Xg; there is a partition {X:}ier
of X1, UXpg and a set of bridges {B;}ic1 of M, computable in polynomial time, such that
(i) every B; separates X; and V' \ X;;
(ii) for every i there is Z € {X,XRgr} such that B; contains only edges between Z and
V\Z;
(iii) for every i, B; N B|XL] =0 if and only if B; N B[XRr] # 0;
(iv) for every e € B, there is exactly one i € I with e € B;.

Proof. Consider the partition {Y;};cs of X U Xg given by all the connected components
of M|x, and M|x,, and consider the set of sets of edges {E;};c; where E; is the set of
edges between Y; and V' \ Y. If follows that {Y;};cs and {E;};cs satisfy all items above,
but some E;’s may not be bridges. We show how to produce a partition into bridges from
this initial partition. If there is some Y; from which there is no edge to X but there are
edges to Y;,,...,Y;,, then remove all ¥;,Y;,,...,Y;, from the partition and replace them with
Y =Y,UY;, U---UY;,. Similarly, remove E;, F;, , ..., E;, and add the set of edges between
Y and V' \ Y. Note that this results in a strictly coarser partition of X U Xg which still
satisfies all items with respect to its associated set of sets of edges. Repeat this operation
until all sets of the partition have at least one edge to X. It follows that for each set Z of
the partition obtained, the edges between Z and V' \ Z are a bridge B of M, and that the
set of all these bridges verify the conditions with respect to the partition. See Figure 4 for a
picture. <

~ A

Figure 4 We amalgamate connected components that do not have incident edges with X. We
end up with a partition whose every element induces a connected subgraph, and a bunch of bridges
between partition elements. Each of the ovals shows a bridge and the component that it separates.
Left bridges (in blue) use some edge from B[X], and right bridges (red) use some edge from B[XR],
but notice that no bridges use both an edge from B[X] and an edge from B[Xg].

5 Upper bounds

We show an algorithm to solve the containment problem for UC2RP(Q which uses space
exponential only in the bridgewidth of the underlying graph. Hence, if the bridgewidth is
bounded, the algorithm runs in polynomial space, and otherwise in exponential space.

No self-loops assumption. To simplify some developments, we will assume that the
C2RPQs we work with have no self-loops, that is, there are no edges e with 1, (e) = n2(e).
Any C2RPQ can be transformed into a self-loop-less C2RPQ by adding, for every self-looping
edge e on a vertex v a new vertex v, and edge €', redefining n(e) = (v,v.), n(e’) = (ve,v) and
I(e') = F(¢') = F(e). Note that this is a linear time procedure that does not increase the
bridgewidth unless the bridgewidth is 1, in which case it becomes of bridgewidth 2. Hence,
this assumption is without loss of generality.

Diego Figueira

5.1 Proof strategy

We use the same proof strategy as in [6], which we review briefly here:

R1 By a result from [14, Theorem 4], there is a polynomial time reduction of this problem
to the containment of a Boolean single-edge C2RPQ +' into a Boolean UC2RPQ ~, and
it is easy to see that this reduction preserves bridgewidth —in fact, bw(y’) = 1 and the
underlying graph of « is left unaltered in the cited reduction.

R2 We can reduce, in turn, this problem to the non-emptiness of a NFA A, c. of size
0(2‘7/““'7'“1””)), which can de done in deterministic space O(|y/| + |y|***()). The
NFA runs over the exponential alphabet A* ULoops, where Loops = 29*? and Q
is the statespace of . This NFA is obtained from three automata Acq, Aioop, Ay as

£ __
Ayrcy iy Ajoop N Ay where:

(i) A.q is a singly exponential size NFA (with a polynomial number of states) depending on
7/, recognizing all words LoaiLi - - -a,L, € Loops - (AT - Loops)* such that a; - --a,, €
d'[I(e), F(e)] for e the sole edge of 4’ (i.e., ay - - - a,, represents an expansion of 7).

(ii) Ajoop is a singly exponential size NFA depending on 7, recognizing all words of the
form Loai Ly ---anL, € Loops - (AT - Loops)* such that, for every i, (¢,q') € L; if and
only if there is a 2-way run of §[{q},{q'}] on a; ---a, that starts in position i with
state ¢ and ends in the same position ¢ with state ¢’.

(iii) A, is a 2AFA of size O(|y|***(")) for some constant ¢ with the property that for every
word w = Loay - - - an Ly, € Ajoop, we have that w € A, if and only if v holds true in
Gw, where G, is the semipath for a; - - - a,,. Remember that this is equivalent to asking
whether there is an expansion of « that can be homomorphically mapped to G,,. A, is
the automaton recognizing the complement language.
Since the complement of a 2AFA can be constructed as a NFA with a single exponential
blowup in the statespace [8, Theorem 8], it follows that the resulting NFA A,/ is of size
0(2‘7/‘+|V|C'bwm). Consequently, it is of single exponential size whenever the bridgewidth
is bounded, and thus its emptiness can be checked using polynomial space. We invite the
curious reader to read [6, §4.2] for more details on the two reductions R1 and R2 above.
The sole contribution of this paper on the proof above lies in the definition of A, of item
(iii). In [6], A, was defined for the case of v being acyclic, and shown to be exponential in
the “width of the acyclic query” (meaning the maximum number of edges between any two
distinct vertices), and hence polynomial if the width is bounded. Here we lift this result
to all queries with respect to the bridgewidth of the query, without assuming any further
restriction (such as acyclicity). Bridgewidth is a generalization of their width measure, in the
sense that for all acyclic queries, bridgewidth coincides with [6]’s width notion. The price to
pay for this generalization is that now the definition of A, is considerably more involved.
The rest of this section will be devoted to defining A, in such a way that it is exponential
only in the bridgewidth of 7, and that satisfies the property described in item (jii).

5.2 Definition of A,

For a UC2RPQ v = 71 U --- U7y, we define A, to be the union A, U---U A, , this is
why for simplicity we will henceforth assume that v is a C2RPQ (i.e., no unions). Let
~v=(V,E,n,Q,0,I,F, @) (remember, by R1 ~ is Boolean), and let M = (V, E,n) be the
underlying graph of . If M is not connected —say =y is equivalent to 1 A- - - Ay, for connected
C2RPQ’s— A, is defined as A,, N---N A, , which can be done in polynomial time since
we are working with alternating automata. Therefore, let us also suppose, without loss of

10

Containment of UC2RPQ: the hard and easy cases

generality, that M is connected. For any word w = Loai L1 - - - a, L, € Loops- (AT - Loops)*,
let G,, denote the semipath for aj - - - ay,.

Let us first refresh what A, is supposed to do. Remember that property (iii) concerns the
case where the input is a word of the form w = Lgai L1 - - - a, L, in which each L; contains
the loop information of 5 on position i of the word a; ---a, € (A%)*. Since v is Boolean
(i.e., a property of graph db’s), upon reading such a word, A, must check whether v is true
on G, possibly using the information contained in the labels L;’s. Further, A, must use a

3

small” set of states (polynomial if bw(7y) is bounded).

A detour through non-Boolean queries. The definition of 4, will make use of non-
Boolean subqueries of 7. Suppose B C E is a bridge separating Y from V' \' Y in M, and let
X ={v eY : B[v] # 0} be the Y-side of B. For any given a state assignment f : B — Q we
define the query «v[B, X, f] as the result of modifying ~ by:

removing all edges internal to X;

removing all vertices from Y \ X (and the incident edges);

defining X as output vertices?; and

for every e € B redefining I(e) [resp. F'(e)] as f(e) if ni(e) € X [resp. if n2(e) € X].
See Figure 5 for an example.

I(e13) = {aq1}
I(es2) = {q2}
Flezs) = {as}

(otherwise, I(e), F(e) as in)

Y B = {e13,e52, €25} 7[X, B, {e13 = q1, €52 = q2, €25 — g3}]

Figure 5 Highlighted vertices are output vertices and edges e adorned with a state ¢ means that
I(e) is replaced with {¢} if the edge is outgoing from an output vertex, and that F'(e) is replaced
with {q} if e is incoming to an output vertex.

How many distinct v[B, X, f]’s are there? The number of such queries is bounded by
(1Q] + 1)Pv() . 2. |E|**() | hence a polynomial number if the bridgewidth is bounded by a
constant.

For every such non-Boolean v[B, X, f] we define a 2AFA automaton A, (g, x,] with the
property that, for every 0 <7 <n and w € Ajpop,

2i € Ay x,p(w) if and only if (vi,...,v;) € v[B, X, f](Guw), (1)
—_—

| X | times

where v; is the i-th vertex of G,,. That is, the automaton A, (g x s} checks whether there is
an expansion of y[B, X, f] that can map to G,, via a homomorphism that assigns the i-th
vertex of G, to every vertex of X.

Once we know how to define the A,z x s ’s, the definition of A, follows easily: Choose
any vertex v of v such that E[v] is a bridge (it exists due to Lemma 6), and guess a
function f : E[v] — @ such that f(e) € I(e) if n1(e) = v, and f(e) € F(e) if na(e) = v.
Then, move non-deterministically to an even position, and run A, (g (2},5)- Note that,
assuming A, g[a),{2},f] Satisfies (f), property (iii) holds on a word w if and only if there is
an even position 2¢ of w and a function f with the aforementioned properties such that

2i € Ay[Ela], {2}, (W).

2 That is, defining any vector (v1,...,vs) as output if X = {v1,...,v,}, the order is inconsequential.

Diego Figueira

Why do we want to define A, in terms of A, x,s ¢ Because in this way A, g x s can
be defined in an recursive way: each A, x,s is defined using other A,(p/ x/ y1’s; which is
arguably simpler to define and understand, and it has an explicit invariant.

5.3 Definition of A, x j

We will show how to construct A, (g x s satisfying property (f) by possibly ‘calling’, as
subroutines, other automata A, g/ x7 f’s. Of course, we adopt this way of defining A,z x 1
just to simplify the description —the formal definition of A, (g x) Will contain one separate
statespace for each distinct A, g/ x/ 1.

As an example, suppose we have y[B, X, f] with v is as in Figure 5 (left picture), but with
X ={®} and B = E[X] (also depicted in Figure 8-a). And suppose we have a semipath G,
for a word a; - - -a,, € (AT)*. What does a mapping from an expansion of v to G,, look like?
For example, if the word is abb~aab™a~bb and the expansion is obtained by choosing words
as in the left of Figure 6, we could obtain a mapping as shown on the right. Note that the

‘ : ‘ ‘) ‘
a % b % b % a % a % b % a % b % b %
g’(l} v

i

Figure 6 An expansion of v[B, X, f] and its homomorphic mapping into G.,.

automaton has to somehow guess both the expansion and the mapping. Of course, already
guessing the order of appearance of the homomorphic images of the vertices of v (in our
case, from left to right: ®, @, {®, @}, {®,®},®, {®,@}) would already yield an exponential
automaton, regardless of bounded bridgewidth, and we therefore need to avoid this kind of
brute-force guessing. Nevertheless, the automaton can first guess the non-output vertices
that will appear to the left and to the right, as in Figure 7, and then, based on this guessing,

find a way of decomposing the query into other, simpler, queries (as shown to the right).

While there are exponentially many ways of guessing, the statespace remains polynomial if
the bridgewidth is bounded. In the concrete case of the query of Figure 7, the automaton

Figure 7 The automaton guesses the vertices mapped to the left (Xr) and to the right (Xr) of
the current position v; as well as a state ¢, and it decomposes the query into a conjunction of the
two smaller queries on the right.

decomposes it by guessing a state ¢ € @ (intuitively, the state of the automaton for the edge
@ — @ at the position where ® is mapped) and running the conjunction of the two smaller

11

12

Containment of UC2RPQ: the hard and easy cases

queries on the right. There may be many ways of decomposing them, but not too many,
since the simpler queries will still be of the form [B, X, f].

Suppose that A, g x] guesses a set of vertices Xr that will be mapped to the right of
v;, and a set of vertices Xy that will be mapped to the left® of v; (i.e., the gray blobs of
Figure 7). For any such given partition X, X, Xg of the vertices of v[B, X, f], A5, x]
proceeds in different ways according to whether some of these sets are empty. In particular,
if both X and X are non-empty, it will need to guess what is the state of some edges that
‘fly’ across the current position, that is, edges with one endpoint in X and one endpoint in
Xr (in Figure 7, the edge from @ to ®). This is indeed an exponential operation (and hence
the construction may take exponential time) but it will not be reflected in the statespace of
the automaton if bw(v) is bounded, nor in the space needed to perform this operation.

Now more concretely. Once X, Xg are fixed, applying the decomposition of Lemma 7
on the bridge B of M with X = V\(XpUXg), X; and Xg, we obtain a set of bridges
{B;}; and a partition {X;}; of X1, U Xg. We divide these bridges into left and right bridges:
By = {B; : BN B[Xr] # 0} and Bg = {B; : B; N B[Xg] # 0}. We guess any function
g : UBL UBR) — Q so that g(e) = f(e) for every e € B. For each left-bridge B € By,
we consider v[B,Xg,gB] where X% is the (X U Xp)-side of B, and gy is g restricted to
B. Similarly, for each right-bridge B € Br we consider W[B,Xg,gg] where Xg is the
(X U Xp)-side of B, and gp is g restricted to B. Let Z be the (V' \ X)-side of B (i.e., the
side which is not X). Note that if X;, N Z = 0, then B, = 0 and Bg = {B}; and similarly
for XpNZ = 0.

Thus, if we guess X, Xg as in our example of Figure 7, and if g is guessed so that
for the edge e13 from @ to @ we have g(e13) = ¢, we generate the two queries on the right
picture. Note that there is an expansion and homomorphism in accordance with the guessing
X1, XRr,g and sending ® to v; if and only if there are homomorphisms from some expansions
of the two smaller queries on the right, mapping @ and ® [resp. ® and ®] to v;. This
describes the idea of the most interesting case: how to cover homomorphisms that map some
vertices of Z to the left of v; and some to the right of v; (i.e., By #) and Br # 0). There
are, however, two other remaining cases that need to be treated as well: (1) homomorphisms
that map every vertex of Z to the right of v; (i.e., Z C Xg), which corresponds to simply
moving to the ‘next position’ 2(i + 1) of w (representing v,y in G,,) updating the function f
accordingly; (2) symmetrically, when all vertices of Z are mapped to the left of v;; and (3)
homomorphisms where at least one vertex of Z is mapped to the current vertex v;, in which
case the query must also be updated. We now describe all these cases formally.

1 |BL UBg| > 1. This is the case in our example. In this case, using alternation the
automaton verifies that 2i € (Npep, Ayip,x% .95 N pesy AvB,xE g5) (W). For example,
this is the first kind of transition in our example of Figure 8, both in the transitions a — b
and ¢ — d.

2 |Br UBg| = 1. In this case we have necessarily that either X;, N Z or X N Z is empty.
Further, By, U Bg = {B}. The automaton proceeds as follows: first it reads the loop
information updating the states (case A below) and then it either moves right or left to
the 2(i + 1) or 2(¢ — 1) position updating the states in f (cases B1, B2), or it guesses that
there is a vertex that is mapped to vertex v; of G,, and produces a new decomposition
into bridges generating the alternation of smaller queries (B3). Here are the details:

The vertices not in X that are mapped at the same position as those in X could be placed either in X,
or Xr (e.g., in the picture @ is in Xp).

Diego Figueira

(A;B1)*;A;B3

Figure 8 Schematic idea of a branch of an accepting run of A,[p x 5 as witnessed by the
homomorphism of Figure 6, and how the decomposition is done in terms of the y[B’, X', f']’s.
Arrows are labelled by the type of transitions according to the cases 1, 2, A, B1, B2, B3; double-
arrows stand for a succession of (non-alternating) transitions being applied.

A The automaton first reads L; to the right (i.e., the letter at position 2i in w) updating,
nondeterministically, the states of f according to the loop type; that is, we replace f with
f’ for any f': B — Q satisfying (f(e), f'(e)) € L; for every e € B. Then, it goes back
left to the original position 2i.

B Then it performs one of the three following actions, non-deterministically chosen:

B1 It checks ZNXg # () and moves right to position 2(i+1). That is, it reads L; and then
a;+1 to the right to end up at position 2(i + 1) of w. It now updates the states of f’
according to the label a;y1; that is, it guesses some f” where for every e € B we have
f"(e) = q for some (+1,a;41,q) in 5(f'(e)). It finally verifies 2(i +1) € Ay s,x, pr(w).
For example, this is one of the actions implicit in the arrow b—c of Figure 8.

B2 Tt checks Z N X, # 0 and moves left to position 2(i — 1). That is, it reads a; and then
L;_ to the left to end up in position 2(i — 1) of w. It now updates the states of f’
accordingly; that is, it guesses some f” where for every e € B we have f”(e) = ¢ for
some (—1,a;,q) in g(f’(e)). It finally verifies 2(i — 1) € A, g x5 (w).

B3 It guesses that there is a vertex v in the (X U Xg)-side of B that will be mapped
to position ¢. That is, it non-deterministically chooses some v € X U Xgr and
verifies I(e) N F(e) # 0 for every edge e € B[v]. Consider now the separator S =
(BUE][v])\ Blv]. The automaton chooses, non-deterministically, a state assignment for
all new edges S\ B. That is, it picks some assignment g : S — @ so that: g(e) = f(e)
for every e € B; g(e) € I(e) if m1(e) = v; and g(e) € F(e) if na(e) = v. Now, using
Lemma 5, S can be decomposed into a disjoint union of bridges S = |J;c; B; so that
each bridge will cover an independent part of the remaining graph of v[B, X, f']. Thus,
using alternation, the automaton finally verifies 2i € ((;c; Ay(B; x5, .g5,]1) (W), Where
Xp, is the (X U {v})-side of B;, and g¢p, is g restricted to B; (in Figure 8, this case
corresponds to transitions b—c¢ and d—e). In particular, if I = (), the automaton
simply accepts the word (in Figure 8, transition e— f).

Figure 8 contains an example of how these cases interact in a run. Summing up, the automaton
A, (B,x,f) can be implemented using 4 states qégl’X/’f/,qfl,’Xl’f/,qul’X,’f/, qg/’X/’f/ for each
possible v[B’, X', f'], plus one global final state F' = {gs}. The initial set of states is
1= {qég Xof }. For every possible By, Bg, if condition 1 holds, it uses alternation on states

13

14

Containment of UC2RPQ: the hard and easy cases

qég/’X,’f/ for suitable B’, X', f’. Otherwise, it uses: states qfl’x’f,,qféx’f/ to perform the
transitions described in A (i.e., move to 2i + 1 with state qfl’X’f for some f’, and then
back to 2¢ with state qABQ’X’f); states qg’X’f ,qOB’X’f to move finally to position 2(i + 1) or

2(i — 1) as in B1 or B2 with the updated f”; and states qég/’xl’f/’s to perform B3 if possible.
Whenever it accepts, it shifts to state ¢y, from which it moves to the rightmost position to

accept the word.

5.4 Correctness

For any subquery 7[B, X, f] we prove, by induction on the size of v[B, X, f], that the
automaton A,p x y satisfies (t). Suppose B separates X and V \ X in M, for X C X.

The base case is when [V \ X| = 1. Note that in this case, by construction, Ay B, x,f]
works as a non-deterministic two-way automaton (that is, there is no alternation).
=) Suppose 2i € A, x, f1(w). An accepting run consists basically on a number of applic-
ations of: the pair of back-and-forth transitions described in A, plus a transition from B1
or B2, until by B3 the automaton accepts. Assuming the word w is correctly labeled (i.e.,
w € Ajpop), such a run induces a homomorphism from an expansion of v[B, X, f] (given by
the letters and loops read along) into G,, that maps every z € X to v;. Notice that the last
step in the accepting run is a collapse of the vertex of V'\ X by condition B3 where I = (.
<) On the other hand, if there is an expansion of y[B, X, f] with a homomorphism mapping
every x € X to v;, then the sole vertex of V'\ X is mapped either to the right or to the left
of 4. In the former case the automaton can perform a number of A,B2 steps until reaching
the desired position and finishing with an application of A ;B3 steps accepting, and in the
latter case it performs A,B1 a number of times and then accepting with A;B3. Observe that
all the loops can be “factored away” by using the information in the L;’s. Hence, if there is
such a homomorphism, the automaton has an accepting run from position 2i on w.

The inductive case is when [V \ X| > 1.
=) Suppose 2i € A, x,f(w). If the first transition of the accepting run comes from 1, then
by the inductive hypothesis we obtain (v;,...,v;) € v[B, X, f](Gw) using the following claim.

> Claim. If there are expansions of v[B, X%, gp] and v[B, X &, g5] with homomorphisms
to G,, mapping every vertex of UBGBLUBR XL U XE to v;, then there is an expansion of
v[B, X, g] mapping every vertex of X to v;. In fact, the desired homomorphism and expansion
is simply obtained as the union of the homomorphisms and expansions. This is because
Lemma 7 partitions the graph of y[B, X, f] using pairwise disjoint sets of bridges Bz, and Bg.

Otherwise, the accepting run of the automaton consists of a number of applications of steps
A.B1 or A B2, followed by the application of steps A;B3 (this last one using alternation).
Again, since the alternation is performed on disjoint sets of bridges and graph connected
components by Lemma 5, once we have expansions and homomorphisms for these by inductive
hypothesis, we can build an expansion of y[B, X, f] using the information on the applications
of A,B1 or A B2 that preceded this last B3 step.

<) If there is an expansion of v[B, X, f] with a homomorphism h mapping every x € X
to v;, then the accepting run will depend on how the vertices are mapped to G,,. If the
(V'\ X)-side of B has vertices that map through h both to the left and to the right of v;
in G, then we follow 1 and we decompose into the conjunction of some y[B’, X', f']’s as
directed by Lemma 7. Again, since the existence of h implies the existence of homomorphisms
from expansions of the simpler v[B’, X', f']’s, it follows, by inductive hypothesis, that there
are accepting runs for each A,[p/ x/ /) starting in 2i, which in turns means that there is

Diego Figueira

an accepting run of A,[p x s starting in 2i. If, on the other hand, all vertices from the
(V '\ X)-side of B are mapped through h to the right of v; (or all to the left) in G, we
follow the strategy to either go right (or left) by repeated applications of the transitions
A,B1 (or A,B2) until we arrive at some position 2(i + £) (or 2(i — £)) to which some other
vertex is mapped, and by A,B3 we use alternation on some v[B’, X', f'] as directed by
Lemma 5. Similarly as before, the homomorphism h and expansion implies the existence of
homomorphisms from expansions of the v[B’, X', f']’s from 2(i + ¢), which in turns means
that there is an accepting run from 2i for A, g x -

6 Lower bounds

The lower bounds of Theorem 1 are straightforward from known results. We give the proof
ideas here.

The PSpACE-hardness of point 1 of Theorem 1 is a consequence of a straightforward
reduction from the containment problem for regular languages. Given two regular languages
L1, Ly over an alphabet A, given any two distinct symbols #, | not in A, and given a graph
M € ¥ with some edge e between two vertices ui, us, consider the Boolean queries 1,72 €
CRPQ(%) whose underlying graph is M over the alphabet AU{L,#}, where ; has the
language # - L; - # at edge e and the language { L} at every other edge. It follows that ~; is
contained in 7y, if and only if L1 C Ls.

The ExpPSPACE-hardness of point 2 follows from a reduction from the following contain-
ment problem restricted to two-vertex Boolean CRPQ, which is EXPSPACE-hard.

» Lemma 8. The problem of deciding, given a Boolean CRPQ v, with two vertices and one
edge and another Boolean CRPQ ~2 with two vertices and arbitrarily many edges in the same
direction, whether vy is contained in v2, is EXPSPACE-hard.

We show this lemma by an easy adaptation of the proofs of [7, Theorem 6] and [5, Lemma 14].

Proof. We reduce from the following 2"-tiling problem, which is EXPSPACE-complete (see,
e.g., [10, Theorem 6.1]). An input instance consists of a number n € N written in unary, a
finite set A of tiles, two relations H,V C A x A specifying constraints on how tiles should be
placed horizontally and vertically, and the starting and final tiles tg,tr € A. A solution to
the input instance is a ‘consistent’ assignment of tiles to a finite rectangle having 2™ columns.
Concretely, a solution is a function f:{1,...,2"} x {1,...,k} — A, for some k € N, such
that f(1,1) = ts, f(2" k) = tp, and f((i,7), f(i +1,7)) € H and f((i,j), f(i,j+ 1)) € V
for every 4,7 in range. We now show the following.

> Claim 9. For every 2"-tiling problem T there are Boolean CRPQ 71, 2, computable in
polynomial time from 7', such that ~; C 79 if, and only if, T" has no solution. Further, v, is
of the form dz,y = L, y and 72 is of the form 3z, y A<, (¢ Ly y), where each L; is given
as a regular expression. o

For any tiling instance as above, we show how to define the two CRPQ over the alphabet
A :=AU{0,1,#} so that containment fails if and only if there is a solution to 7. We will
encode a solution of a tiling as a word of #((0 4+ 1) - A)*#, where the rectangle of tiles
is read left-to-right and top-to-bottom, and each block (i.e., each element of (04 1) A)
represents the column number (in binary) and the tile. The symbols # at the beginning and
end of the word are used for technical reasons.

For enforcing this encoding, we define regular languages E, F, Fiy and G; for each i < n
over A.

15

16

Containment of UC2RPQ: the hard and easy cases

The language E gives the general shape of the encoding of solutions,
E=#0"ts (0+1)"A)" 1" tp #,

in particular it enforces that it starts and ends with the correct tiles. The language F¢
detects adjacent blocks with an error in the column number bit, which can be easily defined
with a polynomial size NFA (e.g., if n = 3 in particular Fo contains every word having
‘001¢011°, ‘0000’ or ‘tt" as factor, for t,t' € A). The language Fy checks that there are
adjacent blocks in which the tiles do not respect the horizontal adjacency relation H,

Fu= |J 607t
(tl,t2)€A2\H

where 0" = (0 + 1) \ {0"}. Finally, G, ..., G, are used to check that there are two blocks
at distance 2" which do not respect the vertical adjacency relation V; in other words, there
is a factor of the word whose first and last blocks have the same column number, it contains
not more than one block with column number 1™ (otherwise we would be skipping a row),
and its first and last tiles are not V-related. First, Gy checks that the first and last blocks of
the factor we are interested in do not conform to V', and furthermore that there is exactly
one column number 1" in between

Go= | 0+t (@A) 1" (AT 1,
(t1,t2)EAZ\V

where 17 = (0+1)"\ {1"}. For each b € {0,1} and i € {1,...,n} we define G? to check that
the i-th bit of the address of both the first and last tile is set to b,

GY=0+1)"bO0+ D" A0+ 1)"A) (0+ 1) b0+ 1)" P A,

and we define G; as GY + G}. For each one of these languages one can produce a regular
expression recognizing the language in polynomial time. Finally, the Boolean CRPQ are

n=3ny 5y v=3y N g GioUn,

0<i<n

Observe that 73 C 79 iff every word of F contains an error in the encoding (i.e., it
contains a word from F¢ as factor), or it contains a pair of horizontally adjacent tiles which
do not respect the horizontal constraints (i.e., it contains a word from Fy as factor) or,
otherwise, it contains a pair of vertically adjacent tiles which do not respect the vertical
constraints (i.e., it contains a word from (1),,.,, G; as factor). Thus, 71 C 72 if, and only if,
T has no solution. o |

Now, in view of Lemma 8, suppose 1 reads language L C A* at its only edge, and s
has ¢ edges with languages Ly, ..., Ly C A*. By the characterization of Lemma 3, it follows
that for every k, € contains a graph M with a minor from &,. Hence, there is some graph
M € € and two sets of vertices Vi, V5 therein so that M|y, and M|y, are connected and M
has ¢ distinct edges eq, ..., ey with source in V7 and target in V5. Consider the following two
Boolean CRPQ(%¥) 7}, 4 having M as underlying graph over the alphabet A U{L}, where
L is some symbol not in A. First, 7] is defined as follows: every edge in M|y, or M|y, is
labelled with {e}; every edge e; is labelled with L; and every other edge is labelled with {L}.
Second, 74 is defined as follows: every edge in M|y, or M|y, is labelled with {e}; every edge
e; is labelled with L;; and every other edge is labelled with (AU {L})*. It is not hard to
see that v/ C ~4 if and only if v; C 2. See Figure 9 for an example. It then follows that
containment of Boolean CRPQ(%’) is EXPSPACE-hard.

Diego Figueira

oty (UL

L {1} T e o

L (Lo 4 ,‘

OL-0Cc IED « c =D e ,
i

Figure 9 Reduction from two vertices Boolean CRPQ containment (left) to Boolean CRPQ(%)
containment (right).

7 Final remarks

Observe that the following graph measures are all lower bounds for bridgewidth: maximum
vertex degree, maximum number of pairwise edge-independent paths between two vertices
(and hence also the size of a minimum cut set by Menger’s theorem), and the graph’s
treewidth.* In particular, bounded bridgewidth implies bounded treewidth, and thus classes
of UC2RPQ of bounded bridgewidth can be evaluated in polynomial time. Classes of UC2RPQ
of bounded bridgewidth are somewhat more robust than those of bounded treewidth, in the
sense that both the evaluation and containment problems are ‘efficient’. This is what happens
for classes of Conjunctive Queries of bounded treewidth, where both these problems —which
in this case are essentially the same— are polynomial-time computable [13, 12]. On the other
hand, bounded treewidth does not imply bounded bridgewidth (take for instance J, &;). As
for treewidth [3], the problem of whether a graph has bridgewidth & (where both the graph
and k are input) is NP-complete, by a simple reduction from the MAX-CUT problem (see,
e.g., [1]).

What about boundedness? We conjecture that an adaptation of the bridgewidth measure
may also yield a similar result for the boundedness problem for UCRPQ (note: no 2-wayness).
More concretely, let the scc-minor of a graph M be the result of contracting all edges
belonging to the same strongly connected component (scc). Note that the resulting graph
is a directed acyclic graph (possibly with self-loops). The scc-bridgewidth of M is the
bridgewidth of the scc-minor of M.

> Conjecture. For every class € of graphs,
1. if ¥ has bounded scc-bridgewidth, the UCRPQ(%)-boundedness problem is in PSPACE;

2. if € has unbounded scc-bridgewidth, the UCRPQ(%’)-boundedness problem is EXPSPACE-
complete.

—— References

1 Max cut problem between two connected subgraphs. Stack Exchange. Version: 2018-07-26
21:13. URL: https://cstheory.stackexchange.com/q/41267/49964.

2 Renzo Angles, Marcelo Arenas, Pablo Barcel$, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgo¢. Foundations of modern query languages for graph databases. ACM Computing Surveys,
50(5):68:1-68:40, 2017. doi:10.1145/3104031.

3 Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings
in a k-tree. STAM Journal on Algebraic Discrete Methods, 8(2):277—-284, 1987.

4 Pablo Barcelé. Querying graph databases. In ACM Symposium on Principles of Database
Systems (PODS), pages 175-188, 2013. doi:10.1145/2463664.2465216.

4 For treewidth, the root of the tree decomposition is a bag containing a vertex whose set of incident
edges is a bridge (it exists due to Lemma 6), together with all its neighbors. We then apply iteratively
Lemma 4 to decompose the remaining graph into subtrees.

17

https://cstheory.stackexchange.com/q/41267/49964
http://dx.doi.org/10.1145/3104031
http://dx.doi.org/10.1145/2463664.2465216

18

Containment of UC2RPQ: the hard and easy cases

10

11

12

13

14

Pablo Barceld, Diego Figueira, and Miguel Romero. Boundedness of conjunctive regular path
queries. In International Colloguium on Automata, Languages and Programming (ICALP),
volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 104:1-104:15.
Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.104.

Pablo Barcel, Miguel Romero, and Moshe Y. Vardi. Semantic acyclicity on graph databases.
SIAM J. Comput., 45(4):1339-1376, 2016. doi:10.1137/15M1034714.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Containment
of conjunctive regular path queries with inverse. In Principles of Knowledge Representation
and Reasoning (KR), pages 176-185, 2000.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based
query answering and query containment over semistructured data. In International Symposium
on Database Programming Languages (DBPL), volume 2397 of Lecture Notes in Computer
Science, pages 40-61. Springer, 2001. doi:10.1007/3-540-46093-4_3.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting
of regular expressions and regular path queries. Journal of Computer and System Sciences
(JCSS), 64(3):443-465, 2002. doi:10.1006/jcss.2001.1805.

Bogdan S. Chlebus. Domino-tiling games. Journal of Computer and System Sciences (JCSS),
32(3):374-392, 1986. doi:10.1016/0022-0000(86)90036-X.

Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive queries with
regular expressions. In ACM Symposium on Principles of Database Systems (PODS), pages
139-148. ACM Press, 1998. doi:10.1145/275487.275503.

Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1:1-1:24, 2007. doi:10.1145/1206035.1206036.
Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable? In Symposium on Theory of Computing (STOC), pages 657-666. ACM
Press, 2001. doi:10.1145/380752.380867.

Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
Theoretical Computer Science, 61(1):31-83, 2017. doi:10.1007/s00224-016-9676-2.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.104
http://dx.doi.org/10.1137/15M1034714
http://dx.doi.org/10.1007/3-540-46093-4_3
http://dx.doi.org/10.1006/jcss.2001.1805
http://dx.doi.org/10.1016/0022-0000(86)90036-X
http://dx.doi.org/10.1145/275487.275503
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/380752.380867
http://dx.doi.org/10.1007/s00224-016-9676-2

	Introduction
	Preliminaries
	Main result
	A bridge maintenance toolkit
	Upper bounds
	Proof strategy
	Definition of A
	Definition of A[B,X,f]
	Correctness

	Lower bounds
	Final remarks

