
MAD-EEG

an EEG dataset for decoding auditory attention to a target

instrument in polyphonic music

Giorgia Cantisani, Gabriel Trégoat, Slim Essid, Gaël Richard
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Introduction



Auditory Attention Decoding

Auditory attention decoding aims at determining, from the brain’s activity, which

sound source a subject is “focusing on” while listening to a complex auditory scene.

State of the Art

• Previous works to decode the attended speaker in multi-speaker environments

[Mesgarani and Chang, 2012, O’sullivan et al., 2014, Crosse et al., 2016];

• the neural activity tracks dynamic changes in the speech stimulus;

• a feature representation (amplitude envelope, magnitude spectrogram, ...) of the

attended speech stimulus is reconstructed from the unaveraged EEG response.

How can we transpose this problem to music?
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Auditory Attention Decoding

Study Case:

Detect and characterize auditory attention to an instrument in polyphonic music.

Useful for

improving MIR tasks such as music transcription, score following, source separation...

However...

• musical stimuli are complex;

• musical stimuli are intrinsically different from speech;

• there is a lack of data.

• no previous works (except [Treder et al., 2014] using averaging techniques).
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MAD-EEG



Dataset

MAD-EEG1: 20-channel surface electroencephalographic (EEG) signals recorded from

8 subjects while they were attending to a particular instrument in polyphonic music.

Features

• well-synchronized musical stimuli and EEG responses;

• additional physiological signals: EOG, EMG, ECG;

• self-assessment of attention, stress and fatigue.
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Stimuli

Stimuli

Real music compositions.

Variants

• number and type of instruments in the mixture;

• melody/rhythmical pattern that is played;

• music genre;

• spatial rendering.

PIECE 1

THEME 1 THEME 2

PIECE 2

THEME 1 THEME 2

GENRE
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Recording protocol

...

RECORDING SESSION

SEQUENCE 1 SEQUENCE 2 SEQUENCE N

SECTION 1 SECTION 2 SECTION M

TRAIN TEST TRAIN TRAINTEST TEST

...

SECTION

SEQUENCE

TRIAL 1 TRIAL 2 TRIAL 2 TRIAL 3

• long-enough stimuli sequences to study single-trial techniques;

• stimuli repetitions to study averaging techniques;
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Data Validation



Goal & Pipeline
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For each of the 8 subjects train on 14 solos, test on 40 duets.
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Stimulus Reconstruction

A stimulus representation ŝ is estimated from multi-channel neural data r through a

model g which behaves like a multi-channel Wiener filter :

ŝ(t, f ) =
∑
n

∑
τ

g(τ, f , n)r(t − τ, n)

The filter is learned by solving a linear regression problem:
∑

t

∑
f [s(t, f ) − ŝ(t, f )]2
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Research questions

• Are we tracking attention or a general music entertainment?

• Are we tracking the target instrument?

• Attended-mixture: the

two distributions are

significantly different

(p < 10−14, Wilcoxon test)

• Attended-unattended:

the two distributions are

significantly different

(p < 10−27, Wilcoxon test)
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Research questions

• Correlation ranges are

comparable with the ones

reported for speech by

[Mesgarani and Chang, 2012].

• Accuracy rate of 78%

(p < 10−15, randomization

test over 10000 repetitions).

• F1 score of 74% (p < 10−,

randomization test over

10000 repetitions).
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Conclusions



Conclusions

Outcomes

• the neural activity is correlated with musically relevant features of the attended

source.

• even this simple linear model is capable tracking attention and not a general

entertainment to the music;

Future works:

• extend the number of recordings;

• add more variants in the stimuli;

• include more behavioural data.

Data soon available on our lab’s web page

https://www.tsi.telecom-paristech.fr/aao/en/2019/07/19/mad-eeg/
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Thank you for the attention!
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