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Abstract. We consider a random walk of n steps starting at x0 = 0 with
a double exponential (Laplace) jump distribution. We compute exactly the
distribution pk,n(∆) of the gap dk,n between the kth and (k + 1)th maxima in
the limit of large n and large k, with α = k/n fixed. We show that the typical
fluctuations of the gaps, which are of order O(n−1/2), are described by a universal
α-dependent distribution, which we compute explicitly. Interestingly, this
distribution has an inverse cubic tail, which implies a non-trivial n-dependence
of the moments of the gaps. We also argue, based on numerical simulations, that
this distribution is universal, i.e. it holds for more general jump distributions
(not only the Laplace distribution), which are continuous, symmetric with a well
defined second moment. Finally, we also compute the large deviation form of the
gap distribution pαn,n(∆) for ∆ = O(1), which turns out to be non-universal.
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1. Introduction

During the last decades, extreme value statistics (EVS) have found a lot of
applications in statistical physics, ranging from disordered systems [1, 2, 3, 4], directed
polymers and stochastic growth processes in the Kardar-Parisi-Zhang universality class
[5, 6, 7, 8, 9, 10, 11, 12] to fluctuating interfaces [13, 14, 15, 16], random matrices
[17, 18], random walks and Brownian motions [19, 20, 21] all the way to cold atoms [22].
The basic question concerns the distribution of the maximum xmax (or equivalently
the minium xmin) among a collection of N random variables x1, x2, · · · , xN , and in
particular in the limit N → ∞, i.e. in the thermodynamic limit. This problem is
fully understood in the case of independent and identically distributed (i.i.d.) random
variables xi’s, for which it is well known that there exist three distinct universality
classes (Gumbel, Fréchet and Weibull) depending only on the tail of the parent
distribution of the xi’s [23]. However, in many situations in statistical physics, it
turns out that, often, one has to deal with strongly correlated variables [24]. In fact,
there exist at present very few exact results for the EVS in strongly correlated systems
and it is thus crucial to identify physically relevant models for which the EVS can
be computed exactly. A prototypical example of such models is the discrete-time
random walk (RW), which constitutes a useful laboratory to test the effects of strong
correlations on EVS [25]. Here we are interested in the statistics of the gaps between
the consecutive maxima of a discrete-time RW.

Indeed, the distribution of the global maximum xmax (or the minimum xmin) is
certainly interesting but it gives only a partial information on the system – it concerns
one single variable out of n� 1 – and in some cases it is useful to consider the more
general question of order statistics which concern the joint statistics of the k-th maxima
Mk,n such that xmax = M1,n > M2,n > · · · > Mn+1,n = xmin. Natural observables are
then the gaps between successive maxima, dk,n = Mk,n−Mk+1,n, which are useful, for
instance, to quantify the phenomenon of “crowding” near the extremes [26, 27, 28, 29].
In physics, the statistics of the gaps were studied in the context of branching Brownian
motions [30, 31], as well as for noisy signals with power spectrum in 1/fα [32], with
applications in cosmology [33]. For RWs, such questions related to the k-th maximum
belong to the general realm of “fluctuation theory” [34] and their statistics have been
computed using probabilistic methods [35, 36, 37, 38, 39, 40, 41]. However, much less
is known about the gaps from fluctuation theory (see however [42]).

Rather recently, two of us developed an independent method, based on backward
equations (see below), which allowed us to solve exactly the gap statistics for random
walks with symmetric exponential jumps [20]. From this exact result, the distribution
of the gaps near xmax (i.e., at the “edge”), for long random walks, was obtained
and it was shown to exhibit a very rich behaviour, which was conjectured to be, to
a large extent, universal, i.e. independent of the details of the jump distribution
provided it has a well defined second moment. This conjecture at the “edge” was
partly confirmed by a more recent work where it was shown that, for long RWs, the
same distribution describes the typical fluctuations of the gaps of RWs with symmetric
gamma-distributed jumps [43].

The goal of this paper is to reconsider this problem of the gaps of random walks
and study their statistics in the “bulk”, i.e. far away from xmax ‡, near a quantile of
the random walk, for instance near the median which is at half-way between xmin and

‡ Note that the terms “bulk” and “edge” are borrowed from the terminology used in Random Matrix
Theory [44, 45].



3

0 5 10 15 20 25 30

k

2

0

2

4

6 xk

0 5 10 15 20 25 30

k

2

0

2

4

6 Mk, n

dk=5,n=30

Figure 1. Left: Random walk xi of n = 30 steps starting from x0 = 0 with
a global maximum x16 = M1,30 and a global minimum x8 = M31,30. For this
realisation, one has for instance M3,30 = x30 and M6,30 = x28. Right: Values of
Mk,n as a function of k for this particular realisation.

xmax. We find that the gaps in the bulk also display a very rich behaviour which is
quite different from the one found at the edge. We conjecture that this behaviour is
also universal.

2. Model and main results

Let us thus consider a one-dimensional random walk in continuous space and discrete
time defined by

xi = xi−1 + ηi for i = 1, · · · , n starting from x0 = 0 , (1)

where the ηi’s are i.i.d. random variables with a double exponential (or Laplace)
probability distribution function (PDF)

f(η) =
e−
√

2
|η|
σ√

2σ
, (2)

where σ2 =
∫∞
−∞ η2 f(η) dη is the variance of the jump distribution. Hence in the large

n limit the random walk in (1) converges to the Brownian motion. Note that for a
walk of n steps, there are n + 1 positions {x0, x1, · · · , xn}. We order these positions
and define the random variables Mk,n as the kth maximum among the positions xi’s
of the random walk (see Fig. 1), such that

M1,n = xmax ≥M2,n ≥ · · · ≥Mn,n ≥Mn+1,n = xmin . (3)

Since the jump distribution is symmetric, i.e. f(η) = f(−η), xmax = M1,n has the
same distribution as −xmin = −Mn+1,n. Similarly M2,n has the same distribution as
−Mn,n and more generally Mk,n has the same distribution as −Mn+2−k,n. Therefore
the distribution Pk,n(x) of Mk,n satisfies the relation

Pk,n(x) = Pn+2−k,n(−x) . (4)
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Figure 2. Comparison between the rescaled PDF
√
nσPk,n(

√
nσz) of the

maximum Mk,n for k = 102 and n = 103 as a function of z obtained from
the simulation of 106 random walks with Gaussian jump PDF and the scaling
function Pα(z) in Eq. (5). The numerical data shows a very good agreement with
the analytical results.

Distribution of the kth maximum. We first compute the PDF Pk,n(x) of Mk,n for
a double exponential jump PDF, using the method introduced in [20]. In the limit of
large n, with α = k/n fixed, one finds that Pk=αn,n(x) takes the scaling form

Pk=αn,n(x) ≈ 1√
nσ

Pα

(
x√
nσ

)
(5)

with Pα(z) =



√
2

π
e−

z2

2 erfc

(
z

√
α

2(1− α)

)
, z ≥ 0

√
2

π
e−

z2

2 erfc

(
|z|
√

1− α
2α

)
, z < 0 .

Note that the limiting distribution satisfies the relation Pα(z) = P1−α(−z) which
reflects the symmetry between maxima and minima noted in Eq. (4). In Fig. 2, we
plot the PDF Pα(x) for α = 0.1. We see clearly that it is quite asymmetric, and from

the exact expression (5), it is easy to check that Pα(z) ≈ e−z
2/(2(1−α)) for z → +∞

while Pα(z) ≈ e−z
2/(2α) for z → −∞. Close to z = 0, where Pα(0) =

√
2/π, the

distribution Pα(z) has a cusp. From this result (5), one can easily compute the first
moment 〈Mk,n〉 in the limit of large n and k with k/n = α fixed

〈Mk,n〉 ≈ σ
√
nM

(
α =

k

n

)
, M(α) =

√
2

π

(√
1− α−√α

)
. (6)

Note that M(1 − α) = −M(α), in agreement with the property in (4). In the limit
α→ 0, one recovers that 〈xmax〉 = 〈M1,n〉 ≈ σ

√
nM(0) = σ

√
2n/π, as expected from

the Brownian motion result.
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Incidentally, in this scaling limit where both n and k are large with k/n = α fixed,
Mk,n corresponds exactly to what is called, in the probability literature, the (1− α)-
quantile for Brownian motion [37]. Roughly speaking, Mk=αn,n is such that a fraction
(1− α) of the points of the trajectory of the random walks are below Mk=αn,n, while
a fraction α of the points are above it. Since in the large n limit the RW converges to
Brownian motion, Mk=αn,n/(σ

√
n), converges, in the scaling limit where both n and k

are large with k/n = α fixed, to the (1−α)-quantile q1−α of the Brownian motion, i.e.

Mk=αn,n

σ
√
n

−→
n→∞

q1−α = inf{x :

∫ 1

0

Θ(x(τ)− x)dτ ≥ 1− α} , (7)

where x(τ) is a standard Brownian motion (with diffusion constant D = 1/2) starting
from 0 on the time interval [0, 1] and Θ(x) is the Heaviside theta function. In fact,
one can check that the formula for Pα(z) in Eq. (5), obtained here using a backward-
equation formalism, coincides with the result obtained previously in the mathematics
literature using quite different probabilistic methods for Brownian motion [37, 38, 39].

Distribution of the kth gap. Our main new results concern the gaps

dk,n = Mk,n −Mk+1,n ≥ 0 , k = 1, · · · , n , (8)

between two consecutive maxima. For a double exponential jump distribution (2), the
mean value of the gap 〈dk,n〉 = 〈Mk,n〉 − 〈Mk+1,n〉 can be computed for any finite n
and k, yielding [20]

〈dk,n〉
σ

=
Γ
(
k + 1

2

)
√

2πk!
+

Γ
(
n− k + 3

2

)
√

2π(n− k + 1)!
. (9)

It is straightforward to extract the large n behaviour of this exact expression (9) in
the two scaling regimes corresponding to k = O(1) and k = O(n) as

〈dk,n〉
σ
≈


Γ
(
k + 1

2

)
√

2πk!
, n→∞ , k = O(1)

µ(α)√
n

, n→∞ , α =
k

n
= O(1) ,

(10)

where the scaling function µ(α) reads

µ(α) =
1√
2π

(
1√
α

+
1√

1− α

)
. (11)

Note that one can check that µ(α) = −M′(α), where M(α) is given in Eq. (6), as
expected from Eqs. (8) and (6). This result (10) clearly shows that, for large n,
there are two different scales for the gaps dk,n depending on k = O(1) or k = O(n).
It is useful to think about the values of the k-th maxima of the random walks after
step n as a point process on the line, as illustrated in Fig. 3. Near the edges, i.e.
near the maximum xmax = M1,n and the minimum xmin = Mn+1,n, the gaps are of
order O(1) (see the first line of Eq. (10)) while they are of order O(n−1/2) (see the
second line of Eq. (10)) in the bulk, i.e. far from xmax and xmin. Note that by taking
the large k limit in the first line of Eq. (10) one obtains 〈dk,n〉 ≈ σ/

√
2πk, while

by taking the small α = k/n limit in the second line of Eq. (10) one also obtains
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Figure 3. Sketch of the point process constituted by the k-th maxima Mk,n of
the random walk (1) starting at x0 = 0 after a large number of steps n � 1. At
the edges, i.e. near the maximum M1,n and the minimum Mn+1,n the gaps are
of order O(1), for large n, while in the bulk, i.e. far from the minimum and the
maximum, the gaps are much smaller and of order O(n−1/2) [see Eq. (10)].

〈dk,n〉 ≈ σ/
√

2παn = σ/
√

2πk: this shows that there is a smooth matching between
the edge and the bulk at the level of the first moment 〈dk,n〉.

What about the full PDF pk,n(∆) of the gaps dk,n in the large n limit?
Near the edge, this PDF was computed for jumps with a double exponential jump
distribution in Ref. [20] and subsequently for symmetric gamma-distributed jumps
in Ref. [43]. In particular, it was shown in Ref. [20] that for a double exponential
jump distribution, the PDF pk,n(∆) becomes independent of n in the large n limit, i.e.
limn→∞ pk,n(∆) = pk,∞(∆), consistent with the first line of Eq. (10). In the large k
limit, it turns out [20] that the limiting distribution pk,∞(∆) has two different scaling

behaviours, depending of ∆: (i) a regime of typical fluctuations for ∆ = O(1/
√
k) and

(ii) a large deviation regime for ∆ = O(1). The most interesting result obtained in
[20] concerns the typical fluctuations where pk,n(∆) takes the scaling form [20]

pk,n(∆) ≈
√
k

σ
P

(√
k∆

σ

)
(12)

where the scaling function P (δ) is given by [20]

P (δ) = 4

[√
2

π
(1 + 2δ2)− δ(4δ2 + 3)e2δ2

erfc(
√

2δ)

]
. (13)

Based on numerical simulations, it was conjectured in [20] that the typical distribution
P (δ) is universal, i.e. it does not depend on the jump distribution f(η) as long as
it is symmetric and has a finite variance σ2 < ∞. The validity of this conjecture
was then reinforced by an exact analytical computation for gamma distributed jump

distribution f(η) = |η|p
2p! e

−|η| with p ∈ N [43]. From this expression (13), it is easy to

obtain the asymptotic behaviours of P (δ) for small and large δ

P (δ) ≈


4

√
2

π
, δ → 0 ,

3√
8π

1

δ4
, δ →∞ .

(14)

In particular, it exhibits an interesting power law tail P (δ) ∝ δ−4 for large δ. The
large deviation regime of pk,n(∆), for ∆ = O(1), can also be computed explicitly for
the double exponential jump distribution (2) but, unlike P (δ) in (14), it turns out to
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be non-universal, i.e. it depends explicitly on the jump distribution [20, 43] and, for
this reason, it is somewhat less interesting than the typical fluctuation regime.

In this paper, we derive the full PDF pk,n(∆) of the gap dk,n in the bulk, i.e. for
large n and large k but keeping the ratio α = k/n fixed. We show that the behaviour
in the bulk is rather different from the one found at the edge in [20, 43] recalled above
in Eqs. (13) and (14), which corresponds instead to the limit α→ 0 (i.e. 1� k � n).
We find that this PDF pk,n(∆) again exhibits two different scaling regimes depending
on ∆: a typical regime for ∆ = O(n−1/2), consistent with the second line of Eq. (10),
and a large deviation regime for ∆ = O(1). Our most interesting results concern the
typical regime, for ∆ = O(n−1/2), where pk,n(∆) takes the scaling form

pk=αn,n(∆) ≈
√
n

σ
Pα
(√

n∆

σ

)
, (15)

where the scaling function Pα(δ) depends continuously on the parameter α and is
given explicitly by

Pα(δ) =

∫ ∞
0

y2e−δy

 e−
y2

8α(1−α)

π
√
α(1− α)

+
y e−

y2

8(1−α)

4
√

2π(1− α)
3
2

erfc

(
y

2
√

2α

)

+
y e−

y2

8α

4
√

2πα
3
2

erfc

(
y

2
√

2(1− α)

)]
dy . (16)

For generic α this integral over y can be evaluated in terms of hypergeometric functions
of two variables (namely Humbert series, see Eq. (A.6) in Appendix A). For the special
case α = 1/2, which describes the gaps near the median, P1/2(δ) can be expressed in
terms of elementary functions [see Eq. (A.7)]. One can also show that in the limit
α → 0, our result in Eqs. (15) and (16) yields back the edge result in Eqs. (13) and
(14) – this limit is however a bit subtle and is studied in detail below. Under this
form (16), we notice the relation Pα(δ) = P1−α(δ), which is a direct consequence of
the symmetry observed above for the distribution of the k-th maximum in (4). In
Fig. 4, we show a plot of this scaling function Pα(δ), for α = 1/2, and compare it to
numerical data (appropriately scaled according to Eq. (15)) obtained by simulating
random walks (1) for three different jump distributions: a double exponential PDF (2)
– for which our computation is exact – but also a Gaussian PDF as well as a uniform
PDF, which we can not study analytically. We find that the agreement between our
theoretical results (16) and the numerical simulations are equally good for the three
jump distributions. Based on this observation, we conjecture that this distribution
Pα(δ) is universal, i.e. it is independent of the jump distribution f(η) provided it is
continuous, symmetric and with a well defined variance σ2.

From this integral representation (16) one can rather easily extract the asymptotic
behaviours of the scaling function Pα(δ)

Pα(δ) ≈


4

√
2

π
(
√
α+
√

1− α− 1) , δ → 0 ,

2

π
√
α(1− α)

1

δ3
, δ →∞ .

(17)

Interestingly, we see that the tail Pα(δ) ∝ δ−3, for finite α and in the bulk, is different
from the tail ∝ δ−4 obtained at the edge [see Eq. (14)]. From this inverse cubic tail
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Figure 4. Comparison between the rescaled PDF σ√
n
pk=αn,n(∆) of the gap dk,n

obtained numerically for 106 random walks of n = 103 steps and k = 500, hence
α = k/n = 1/2 with Gaussian (in blue), uniform (in orange) and exponential
(in green) PDF of jumps f(η) and the scaling function Pα=1/2(δ =

√
n∆/σ)

(dashed line) given in Eq. (16), see also Eq. (A.7). The curves for different jumps
PDF all collapse on the same master curve described by P1/2(δ), suggesting the
universality of this result (16).

one would naively conclude that the moments of the gaps (beyond the first one given
in Eqs. (10) and (11)) is not defined. However, this power law behaviour of the gap
distribution pk,n(∆) is cut-off for ∆ � n−1/2 and the higher moments are actually
dominated by the large deviation regime of the PDF pk,n(∆) for ∆ = O(1) � n−1/2

which we can also compute exactly (see below). The latter turns out to be non-
universal. Consequently, the moments of the gaps beyond the first one, that we also
study below, are to a large extent non-universal.

The paper is organised as follows. Section 3 is dedicated to the distribution of
the kth maximum Mk,n. In Section 4 we derive the results for the gap dk,n, which
constitute our main results, before we conclude in Section 5. Some details of the
computations have been relegated in Appendices A, B and C.

3. Distribution of the kth maximum

We first expose a method which allows us to obtain the distribution of Mk,n that we
will generalise in the next section to obtain the distribution of the gaps dk,n. It relies
on the identity for the cumulative distribution function (CDF) of the kth maximum
Mk,n

Fk,n(x) = Prob. [Mk,n ≤ x] = Prob. [Nx ≤ k] , (18)

where Nx is the counting process for the number of steps where the random walk takes
values above x. Indeed, there are exactly k positions among the n + 1 positions xi’s
of the walk such that xi ≤ Mk,n (see Fig. 1 for an example). Note that this identity
remains valid for any discrete time stochastic process. We introduce the probability
qk,n(x) that a random walk of n steps starting at x0 = x has exactly k points on the
negative axis between step 1 and step n, i.e. N0 = n − k for the walk starting from
x0 = x. The CDF Fk,n(x) of Mk,n can then be expressed from an elementary path
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transformation (see Fig. 5) as [20]

Fk,n(x) =



k−1∑
l=0

ql,n(x) , x ≥ 0

k−2∑
l=0

qn−l,n(−x) , x < 0 .

(19)
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Figure 5. Left: Random walk xi of n = 20 steps starting from x0 = 0 with
jump distribution f(η). For this walk, the 4th maximumM4,20 = x10 ≥ 0. Right:
Affine transformation of the random walk yi = x10 − xi starting from y0 = x10.
This walk has the same jump distribution f(η) and has exactly 4 points below
y = 0.

The probability qk,n(x) can be constructed recursively, using the equation [20]

qk,n(x) =

∫ ∞
0

dx′f(x′ − x)qk,n−1(x′) +

∫ 0

−∞
dx′f(x′ − x)qn−k,n−1(−x′) , (20)

together with the initial condition q0,0(x) = 1 and qk,n(x) = 0 for k > n. The
first term of this equation describes the case where the walk has an additional initial
jump from x > 0 to x′ > 0, while the second term describes a jump from x > 0 to
x′ < 0. To solve this equation (20) it is useful [20] to introduce the auxiliary function
rk,n(x) = qn−k,n(x) which is the probability that a RW starting from x0 = x has k
points above 0 between step 1 and step n. One can then write two coupled equations
for qk,n(x) and rk,n(x) [20]

qk,n(x) =

∫ ∞
0

dx′f(x′ − x)qk,n−1(x′) +

∫ ∞
0

dx′f(x+ x′)rk−1,n−1(x′) (21)

rk,n(x) =

∫ ∞
0

dx′f(x′ − x)rk−1,n−1(x′) +

∫ ∞
0

dx′f(x+ x′)qk,n−1(x′) (22)

These integral equations (21) can be solved by generating function techniques. We
introduce

q̃(z, s;x) =

∞∑
n=0

n∑
k=0

snzkqk,n(x) and r̃(z, s;x) =

∞∑
n=0

n∑
k=0

snzkqn−k,n(x) , (23)
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and obtain from (21) the set of coupled integral equations

q̃(z, s;x) = 1 + s

∫ ∞
0

dx′f(x′ − x)q̃(z, s;x′) + zs

∫ ∞
0

dx′f(x′ + x)r̃(z, s;x′) (24)

r̃(z, s;x) = 1 + zs

∫ ∞
0

dx′f(x′ − x)r̃(z, s;x′) + s

∫ ∞
0

dx′f(x′ + x)q̃(z, s;x′) . (25)

These equations, valid for any distribution of jumps f(η), turn out to be very difficult
to solve in general. However, for a double exponential jump distribution (2) they can
be solved exactly using the identity f ′′(η) = 2

σ2 [f(η)− δ(η)]. Differentiating twice
Eqs. (24) and (25) with respect to x, we obtain two decoupled differential equations

σ2

2
∂2
xq̃(z, s;x) = (1− s)q̃(z, s;x)− 1 (26)

σ2

2
∂2
xr̃(z, s;x) = (1− zs)r̃(z, s;x)− 1 . (27)

Discarding the diverging solution for x→ +∞, we obtain

q̃(z, s;x) = a(z, s)e−
√

2(1−s) xσ +
1

1− s , r̃(z, s;x) = b(z, s)e−
√

2(1−zs) xσ +
1

1− zs .
(28)

The values of a(z, s) and b(z, s) are obtained by substituting back these forms in Eqs.
(26) and (27). Finally, the solutions read

q̃(z, s;x) =

(
1√

1− zs −
1√

1− s

)
e−
√

2(1−s) xσ
√

1− s +
1

1− s , (29a)

r̃(z, s;x) =

(
1√

1− s −
1√

1− zs

)
e−
√

2(1−zs) xσ
√

1− zs +
1

1− zs . (29b)

The generating function P̃ (z, s;x) of the PDF Pk,n(x) = F ′k,n(x) can be worked out
explicitly in terms of q̃(z, s;x) and r̃(z, s;x) using Eq. (19)

P̃ (z, s;x) =

∞∑
n=0

n∑
l=0

snzkPk,n(x) =


z

1− z ∂xq̃(z, s;x) , x ≥ 0

z2

1− z ∂xr̃(z, s;−x) , x < 0 .

(30)

To obtain the large n behaviour of Pk,n(x), we perform a change of variables in

the generating function P̃ (z, s;x) and set s = exp(−p) and z = exp(−q) with
p ∼ q � 1. In this limit, the discrete sums over n and k can be replaced by integrals.
The generating function P̃ (z, s;x) therefore converges towards the double Laplace
transform of the PDF Pk,n(x) with respect to n and k,

P̃ (z = e−q, s = e−p;x) ≈ Π̃(q, p;x) =

∫ ∞
0

dn

∫ ∞
0

dk e−pn−kqPk,n(x) , (31)

where the function Π̃(q, p;x) can be computed from Eqs. (29) and (30). It reads, at
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leading order for p ∼ q � 1,

Π̃(q, p;x) ≈



√
2

σ

(
1√
p
− 1√

p+ q

)
e−
√

2p xσ

q
, x ≥ 0

√
2

σ

(
1√
p
− 1√

p+ q

)
e
√

2(p+q) xσ

q
, x < 0 .

(32)

Using the inverse Laplace transforms

L−1
u→τ

(
e−
√

2(u+v)x
)

=
x e−

x2

2τ e−vτ√
2πτ3/2

, L−1
u→τ

(
1√
u+ v

)
=
e−vτ√
πτ

, (33)

we invert the Laplace transform from p to n, yielding

L−1
p→n

(
Π̃(q, p;x)

)
≈



1

σ

∫ n

0

dτ
x e−

x2

2σ2τ

πσ
√
n− ττ3/2

1− e−q(n−τ)

q
, x ≥ 0

1

σ

∫ n

0

dτ
|x| e− x2

2σ2τ

πσ
√
n− ττ3/2

e−qτ − e−qn
q

, x < 0 .

(34)

Finally, using the identity

L−1
v→t

(
e−vτ

v

)
= Θ(t− τ) , (35)

we invert the Laplace transform from q to k, yielding

Pk,n(x) ≈



1

σ

∫ n−k

0

dτ
x e−

x2

2σ2τ

πσ
√
n− ττ3/2

, x ≥ 0

1

σ

∫ k

0

dτ
|x| e− x2

2σ2τ

πσ
√
n− ττ3/2

, x < 0 .

(36)

Changing the variable τ → nτ in this expression, it takes the scaling form described
in the first line of Eq. (5), where the scaling function Pα(z) is given as

Pα(z) ≈



∫ 1−α

0

dτ
z e−

z2

2τ

π
√

1− ττ3/2
, z ≥ 0

∫ α

0

dτ
|z| e− z

2

2τ

π
√

1− ττ3/2
, z < 0 .

(37)

The integral in Eq. (37) can be computed exactly using the identity

∂t

[
erfc

(
z

√
1− t

2t

)]
=

ze−(1−t)z2/2t√
2π(1− t)t3/2

, (38)
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where erfc(x) = 2√
π

∫∞
x
e−u

2

du is the complementary error function, leading to the

final expression of Pα(z) in the second line of Eq. (5).
We conclude this section by mentioning that there is an alternative method to

obtain the PDF of Mk,n for a discrete time random walk. It was obtained in the limit
of large n and for α = k/n = O(1) in Ref. [40], making use of the identity in law
derived in [35] and extended in [36] (see also the more recent work [41])

Mk,n ≡ max
0≤i≤n+1−k

xi + min
0≤j≤k−1

x′j , (39)

where {xi} and {x′i} are two independent random walks with same jump distribution
f(η) starting at x0 = x′0 = 0. This alternative method can be exploited for any
jump distribution f(η), even if σ2 = ∞. The distribution of Mk,n was shown to

take universal scaling forms, depending on the behaviour of f̂(k) =
∫∞
−∞

dk
2π e
−ikηf(η)

for small k. However, to our knowledge, there is no direct extension of this method
to compute the distribution of the gap dk,n. In the next section, we will show how
to extend the method presented in this section to obtain exact results for the PDF
pk,n(∆) of the gap dk,n for a double exponential jump distribution.

4. Distribution of the kth gap

Our starting point is the joint CDF of Mk,n and Mk+1,n,

Sk,n(x, y) = Prob. [Mk,n ≥ y,Mk+1,n ≤ x] , (40)

from which the PDF of the gap dk,n can be obtained as

pk,n(∆) = −
∫
dx

∫
dy∂2

xySk,n(x, y)Θ(y − x)δ(∆− y + x) . (41)

To obtain the joint CDF Sk,n(x, y), we introduce the probability Qk,n(x,∆) that a
random walk of n steps starting at x0 = x has exactly k points below 0 and no point
in the interval [−∆, 0] between step 1 and step n. Using a simple path transformation,
one obtains the relation [20]

Sk,n(x, y) =



Qk,n(x, y − x) , x > 0

0 , x < 0 and y > 0

Qn+1−k,n(−y, y − x) , x < 0 and y < 0 .

(42)

The probability Qk,n(x,∆) can be obtain recursively using the relation

Qk,n(x,∆) =

∫ ∞
0

dx′f(x−x′)Qk,n−1(x′,∆)+

∫ 0

−∞
dx′f(x−x′+∆)Qn−k,n−1(−x′,∆) .

(43)
This is a similar recursion relation as for qk,n(x) in Eq. (20). Therefore, introducing
the generating functions

Q̃(z, s;x,∆) =

∞∑
n=0

n∑
k=0

snzkQk,n(x,∆) , R̃(z, s;x,∆) =

∞∑
n=0

n∑
k=0

snzkQn−k,n(x,∆) ,

(44)
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they satisfy a set of coupled integral equations very similar to Eqs. (24) and (25) [20]

Q̃(z, s;x,∆) = 1 + s

∫ ∞
0

dx′f(x− x′)Q̃(z, s;x′,∆)

+ zs

∫ ∞
0

dx′f(x+ x′ + ∆)R̃(z, s;x′,∆) , (45)

R̃(z, s;x,∆) = 1 + zs

∫ ∞
0

dx′f(x− x′)R̃(z, s;x′,∆)

+ s

∫ ∞
0

dx′f(x+ x′ + ∆)Q̃(z, s;x′,∆) . (46)

For a double exponential jump distribution f(η) as in Eq. (2), these integral equations
can be recast as differential equations [20, 43]: indeed one can easily show that the
generating functions follow the set of differential equations (26) and (27), with the
substitutions q̃ → Q̃ and r̃ → R̃. Solving these equations, we obtain

Q̃(z, s;x,∆) = A1(z, s; ∆)e−
√

2(1−s) xσ +
1

1− s , (47)

R̃(z, s;x,∆) = B1(z, s; ∆)e−
√

2(1−zs) xσ +
1

1− zs . (48)

The coefficients A1 and B1 are then determined by inserting these solutions back in
Eqs. (45) and (46). This yields

A1(z, s; ∆) =

zs√
1−zs −

s
1−s

[√
1− zs cosh

(√
2∆
σ

)
+ sinh

(√
2∆
σ

)]
(
√

(1− zs)(1− s) + 1) sinh
(√

2∆
σ

)
+ (
√

1− zs+
√

1− s) cosh
(√

2∆
σ

) ,
(49)

and B1(z, s; ∆) = A1(z−1, zs; ∆). From Eqs. (41) and (42), we can express the
generating function p̃(z, s; ∆) =

∑∞
n=0

∑n
k=0 s

nzkpk,n(∆), in terms of the coefficients
A1 and B1 (see Appendix A of Ref. [43] for more details). This yields

p̃(z, s; ∆) =∂∆A1(z, s; ∆) +
σ√

2(1− s)
∂2

∆A1(z, s; ∆) (50)

+ ze
√

2(1−zs) ∆
σ

(
∂∆B1(z, s; ∆) +

σ√
2(1− zs)

∂2
∆B1(z, s; ∆)

)
.

As in the case of the PDF of Mk,n, we are interested in the limit n→∞ and k →∞,
which is conveniently obtained by performing the changes of variables z = e−q and
s = e−p and by taking the limit p, q → 0. In this limit, the discrete sums over k and
n can then be replaced by integrals, yielding

p̃(z = e−q, s = e−p; ∆) ≈ π̃(p+q, p; ∆) =

∫ ∞
0

d(n−k)

∫ ∞
0

dk e−p(n−k)−(p+q)kpk,n(∆) ,

(51)
where π̃(p+ q, p; ∆) is the double Laplace transform of the PDF pk,n(∆) with respect
to k and n − k. To simplify the notations, we denote from now on r = p + q.
Note that we anticipate that π̃(r = p + q, p; ∆) is symmetric in p and p + q, since
pk,n(∆) = pn−k,n(∆). We will now analyse the PDF in the large n limit and
treat separately the typical fluctuations for ∆ = O(n−1/2) and the atypically large
fluctuations for ∆ = O(1).
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4.1. Typical regime of fluctuation

To analyse the typical regime, we need to obtain the behaviour of A1(z = e−q, s =
e−p; ∆) (resp. B1) in the regime p ∼ q ∼ ∆2. In this regime, the coefficients take the
scaling form

A1(z = e−q, s = e−p; ∆) ≈ a1(r = p+ q, p; ∆) = − r − p+
√

2r∆
σ

p
√
r
(√

p+
√
r +

√
2∆
σ

) , (52)

B1(z = e−q, s = e−p; ∆) ≈ b1(r = p+ q, p; ∆) = − p− r +
√

2p∆
σ

r
√
p
(√

p+
√
r +

√
2∆
σ

) . (53)

Note that b1(r, p; ∆) = a1(p, r; ∆). Inserting these expressions in Eq. (50), we realise
that the leading terms are the second derivatives with respect to ∆, as ∆ is small and√

1− s ∼ √p� 1. The scaling function π̃(r = p+ q, p; ∆) thus reads in this limit

π̃(r, p; ∆) ≈ σ√
2
∂2

∆

(
a1(r, p; ∆)√

p
+
a1(p, r; ∆)√

r

)
(54)

=
2
√

2

σ
(√

r +
√
p+

√
2∆
σ

)3

(
1√
r

+
1√
p

)2

. (55)

It is symmetric in p and r = p+ q, reflecting the symmetry of the PDF pk,n(∆) in k
and n− k. To invert the Laplace transforms with respect to r and s we first use the
identity

2

(x+ p)3
=

∫ ∞
0

y2e−y(x+p)dy , (56)

to obtain

π̃(r, p; ∆) =
1

2σ

∫ ∞
0

y2e
−y

(
∆
σ +
√
r/2+
√
p/2

)(
1√
r

+
1√
p

)2

dy . (57)

Finally, using the Laplace inversion formulae

L−1
u→τ

(
e−
√
ux
)

=
xe−

x2

4τ

2
√
πτ3/2

, L−1
u→τ

(
e−
√
ux

√
u

)
=
e−

x2

4τ√
πτ

, (58)

L−1
u→τ

(
e−
√
ux

u

)
= erfc

(
x

2
√
τ

)
, (59)

we obtain the PDF

pk,n(∆) ≈
∫ ∞

0

y2e−
∆
σ y

 e−
ny2

8k(n−k)

π
√
k(n− k)

+
ye−

y2

8(n−k)

4
√

2π(n− k)
3
2

erfc

(
y

2
√

2k

)

+
ye−

y2

8k

4
√

2πk
3
2

erfc

(
y

2
√

2(n− k)

)]
dy . (60)
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Performing the change of variable y → y/
√
n in Eq. (60), we eventually obtain that

pk,n(∆) takes the scaling form announced in Eq. (15) with the scaling function given
in Eq. (16) that we reproduce here

Pα(δ) =

∫ ∞
0

y2e−δy

 e−
y2

8α(1−α)

π
√
α(1− α)

+
ye−

y2

8(1−α)

4
√

2π(1− α)
3
2

erfc

(
y

2
√

2α

)

+
ye−

y2

8α

4
√

2πα
3
2

erfc

(
y

2
√

2(1− α)

)]
dy . (61)

For generic α this integral has a rather complicated expression in terms of
hypergeometric functions of two variables (namely Humbert series, see Eq. (A.6) in
Appendix A). However, for α = 1/2 it has an explicit expression in terms of elementary
functions given in (A.7).

From this expression (61), we can compute the mean of the distribution,
recovering the result of Eq. (11) (see Appendix B for details). However, this
distribution has a heavy tail as seen in Eq. (17) and its moments of order p ≥ 2
are infinite. In Fig. 4, we compare the scaling function Pα(δ) to numerical results
obtained for 106 simulations of random walks of n = 103 steps with exponential,
Gaussian and uniform distribution of jump f(η), suggesting the universality of the
result.
The limit α → 0. We first check that in the limit α → 0, this distribution Pα(δ)
yields back the result at the edge obtained in Ref. [20], given in Eqs. (12) and (13).
To recover this edge result, we need to take simultaneously the limit α = k/n → 0
and δ =

√
n∆ → ∞ but keeping

√
α δ =

√
k∆ fixed [see Eq. (13)]. In this scaling

limit, we show that Pα(δ) in Eq. (16) takes the scaling form

Pα(δ) ≈ √αP (
√
αδ) , (62)

where P (δ) is given in Eq. (13). To show this result (62), we demonstrate equivalently,
setting δ = δ′/

√
α with δ′ fixed, that

lim
α→0

1√
α
Pα
(
δ′√
α

)
= P (δ′) . (63)

To show (63) we write Pα(δ′/
√
α) starting from Eq. (61) and perform the change of

variable y → z = y/
√
α to obtain

1√
α
Pα
(
δ′√
α

)
=

∫ ∞
0

z2e−δ
′z

√αe− z2

8(1−α)

π
√

(1− α)
+
zα3/2e−

αz2

8(1−α)

4
√

2π(1− α)
3
2

erfc

(
z

2
√

2α

)
(64)

+
ze−

z2

8

4
√

2π
erfc

(
z
√
α

2
√

2(1− α)

)]
dz ≈

∫ ∞
0

z3e−
z2

8 −δ′z

4
√

2π
dz , α→ 0 ,

since only the last term (in the integrand) survives in the limit α → 0. Finally,
evaluating explicitly the remaining integral over z in Eq. (64) yields back the scaling
function P (δ′) given in Eq. (13). This shows the scaling form in Eq. (62).

The limit α → 0 deserves yet another remark. Indeed, in the limit δ → ∞,
the scaling function Pα(δ), in the bulk, has an inverse cubic tail [see the second line
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Figure 6. Left: Comparison between the rescaled scaling function α−5/2Pα(δ),
where Pα(δ) is given in Eq. (16) for different values of α and the scaling function
F(ξ = αδ) given in Eq. (65). The tail of the PDF interpolates from a ξ−4

behaviour for ξ � 1 to a ξ−3 behaviour for ξ � 1, matching perfectly the scaling
function F(ξ). Right: the two tail behaviours of Pα(δ): if 1 � δ � α−1 then
Pα(δ) ∼ δ−4 while if δ � α−1 then Pα(δ) ∝ δ−3.

of Eq. (17)], i.e. Pα(δ) ∝ δ−3. On the other hand, at the edge (corresponding to
the limit α → 0), the PDF of the gap decays as P (δ) ∝ δ−4 [see Eq. (14)]. This
indicates that the two limits α→ 0 and δ →∞ do not commute. In fact, from the full
expression in (61) it is rather straightforward to show that there exists a scaling regime
corresponding to α→ 0 and δ →∞ but keeping ξ = αδ = O(1) fixed, which smoothly
interpolates between these two different tail behaviours. In this scaling regime, we
find that Pα(δ) takes the scaling form

Pα(δ) ≈ α5/2F(αδ) with F(ξ) =
2

π

1

ξ3
+

3√
8π

1

ξ4
. (65)

A plot of this scaling function F(ξ) together with a comparison of α−5/2Pα(δ)
[evaluated from the exact formula in Eq. (61)] is provided in the left panel of Fig. 6.
This scaling form (65) indicates that, for large δ � 1 and small α � 1, the function
Pα(δ) exhibits two different tail behaviours: if 1� δ � α−1 then Pα(δ) ∼ δ−4 while
if δ � α−1 then Pα(δ) ∝ δ−3. This is summarised in the right panel of Fig. 6.

4.2. Large deviation regime

Since the PDF governing the typical fluctuations of the gaps has a power law tail
Pα(δ) ∝ δ−3, higher order moments of the gaps are dominated by the large deviation
regime of pk,n(∆) for ∆ = O(1). To study this regime, we compute the behaviour of
the coefficients A1(z = e−q, s = e−p; ∆) for p ∼ q � 1 but with ∆ = O(1) fixed. This
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yields

A1(z = e−q, s = e−p; ∆) ≈ −1

p
+ a2

(
p+ q, p;

∆

σ

)
+ a3

(
p+ q, p;

∆

σ

)
(66)

B1(z = e−q, s = e−p; ∆) ≈ − 1

p+ q
+ a2

(
p, p+ q;

∆

σ

)
+ a3

(
p, p+ q;

∆

σ

)
, (67)

where the functions a2(r = p+ q, p; ∆̃) and a3(r = p+ q, p; ∆̃) read

a2(r, p; ∆̃) =
coth(

√
2∆̃)√
p

+
1√

r sinh(
√

2∆̃)
, (68)

a3(r, p; ∆̃) = −
√
r

p

1

sinh2(
√

2∆̃)
− coth2(

√
2∆̃)−

(
1 +

√
p

r

)
cosh(

√
2∆̃)

sinh2(
√

2∆̃)
. (69)

In the limit of small p ∼ q � 1, the leading contribution in the general formula
(50) is again given by the terms involving the second derivatives, yielding

π̃(r, p; ∆) ≈ σ√
2
∂2

∆

(
a2(r, p;

√
2∆
σ ) + a3(r, p;

√
2∆
σ )

√
p

+
a2(p, r;

√
2∆
σ ) + a3(p, r;

√
2∆
σ )√

r

)
.

(70)

In this expression, we need to keep only the terms that depend both on r and p as they
are the only terms giving physical contribution when inverting the Laplace transforms.
These terms read

π̃(r = p+ q, p; ∆) ≈
√

2

σ

 1√
rp

3 + cosh
(

2
√

2∆
σ

)
sinh3

(√
2∆
σ

) − 2

(√
r

p
+

√
p

r

) 1 + cosh
(

2
√

2∆
σ

)
sinh4

(√
2∆
σ

)
+ · · · .

(71)

For this large deviation form, the Laplace transforms are simple to invert, using that

u−a =

∫ ∞
0

e−ux
xa−1

Γ(a)
dx , a > 0 . (72)

For large n and large k we obtain finally for ∆ = O(1)

pk,n(∆) ≈ 1

nσ

Ψ
(

∆
σ

)√
α(1− α)

+
1

σn3/2

(
1

α3/2
+

1

(1− α)3/2

)
ϕ0

(
∆

σ

)
, (73)

where Ψ(∆̃) and ϕ0(∆̃) are given by

Ψ(∆̃) =

√
2

π

3 + cosh(2
√

2∆̃)

sinh3(
√

2∆̃)
, ϕ0(∆̃) =

√
2

π

2 + cosh(2
√

2∆̃)

sinh4(
√

2∆̃)
. (74)

The leading behaviour of this large deviation form (73) will be different in the large n
limit, depending on whether k = O(1) remains fixed or k = O(n). Indeed, taking first
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the limit n → ∞ with k fixed (i.e. α → 0, corresponding to the edge), the dominant
contribution is the term ∝ α−3/2 in Eq. (74), leading to

pk,n(∆) ≈ 1

σk3/2
ϕ0

(
∆

σ

)
, ∆ = O(1) and k = O(1) , (75)

recovering the result of Ref. [20].
On the other hand, in the bulk, with n, k → ∞ with α = k/n fixed, the leading

contribution is given by the term of order O(1/n) in (73). Therefore, in the bulk, the
large deviation form of the PDF of the gap reads

pk,n(∆) ≈ 1

nσ

Ψ
(

∆
σ

)√
α(1− α)

, ∆ = O(1) and k = O(n) . (76)

Note that in the limit ∆̃ → 0, the large deviation function Ψ(∆̃) behaves as
Ψ(∆̃) ≈ (2/π)∆̃−3, which matches smoothly with the tail behaviour of the typical
regime [see the second line of Eq. (17)].

Finally, we end up this section on the large deviations by noting that all the terms
in Eq. (73) become of the same order in the intermediate regime where k = O(

√
n).

Indeed, setting λ = k/
√
n = O(1) one obtains, from (73), that pk,n(∆) takes the

scaling form

pk,n(∆) ≈ 1

σk3/2
G
(
k√
n
,

∆

σ

)
, G(λ, ∆̃) = λΨ(∆̃) + ϕ0(∆̃) , (77)

which smoothly interpolates between (75) in the limit λ → 0 and (76) in the limit
λ→∞.

Let us now investigate the consequences of this behaviour (73) on the moments
of the gaps.

4.3. Computation of the moments

Since the scaling function Pα(δ) that describes the typical gap fluctuations behaves as
Pα(δ) ∼ δ−3 for large δ, the first moment of the gap is indeed completely dominated
by the typical region [see Eq. (B.5)]. This is however not the case for higher order
moments. Indeed, the two non-trivial contributions to the large deviation form in Eq.
(73) will both contribute to the moments of order p ≥ 2. In the case p > 3, we obtain

〈dpk,n〉
σp

≈ Mp√
k(n− k)

+

(
1

k3/2
+

1

(n− k)3/2

)
mp , p > 3 , (78)

where the values of Mp and mp can be computed explicitly (see Appendix C),

Mp =

∫ ∞
0

dxxp Ψ(x) =
2

4−p
2

π
p!(1− 21−p)ζ(p− 1) , (79)

mp =

∫ ∞
0

dxxp ϕ0(x) =
2

4−3p
2√
π
p!ζ(p− 2) , (80)

where ζ(s) =
∑∞
k=1 k

−s is the Riemann Zeta function. The cases p = 2 and p = 3 are
particular since there are logarithmic corrections. For p = 2 we obtain

〈d2
k,n〉
σ2

≈ lnn

π
√
k(n− k)

+
1

2

(
1

k3/2
+

1

(n− k)3/2

)
, (81)
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while, for p = 3 we have

〈d2
k,n〉
σ3

≈ 3π

2
√

2k(n− k)
+

3

4
√

2π

(
ln k

k3/2
+

ln(n− k)

(n− k)3/2

)
. (82)

Finally, these behaviour can be summarised as follows

〈dpk,n〉
σp

≈



1√
2πk

+
1√

2π(n− k)
, p = 1

lnn

π
√
k(n− k)

+
1

2

(
1

k3/2
+

1

(n− k)3/2

)
, p = 2

3π

2
√

2k(n− k)
+

3

4
√

2π

(
ln k

k3/2
+

ln(n− k)

(n− k)3/2

)
, p = 3

Mp√
k(n− k)

+

(
1

k3/2
+

1

(n− k)3/2

)
mp , p > 3 ,

n� 1 , k � 1 ,

(83)
In the regime α = k/n = O(1), the first term in the last three lines of Eq. (83) gives
the leading contribution to the moments. On the other hand, in the regime k = O(1),
it is the term in k−3/2 that is dominant. Finally, in the intermediate regime mentioned
above k = O(

√
n), both of these terms are of the same order for p > 3 while the term

with the logarithmic correction is dominant for p = 2, 3.

5. Conclusion

In this article, we have computed exactly the PDF pk,n(∆) of the gap between two
successive maxima Mk,n and Mk+1,n for a random walk with double exponential
(Laplace) jump distribution. The main focus of the present paper has been the limiting
distribution of the gap dk,n in the scaling limit where both n and k are large, keeping
the ratio α = k/n fixed. This allowed us to study the gaps in the bulk, i.e. far from
the global maximum xmax of the random walk after n steps (see Fig. 3). Our main
result is an explicit expression for the distribution Pα(δ) [see Eq. (16)] which governs
the typical fluctuations of dk,n in this scaling limit, namely for dk,n = O(n−1/2).
We conjecture that this distribution Pα(δ) is universal for all random walks with a
jump distribution f(η) which is continuous, symmetric and possesses a finite second
moment. What happens for heavy tailed jump distributions, i.e. the case of Lévy
flights, remains a challenging open question, in particular because we do not know
how to solve the backward integral equations (45) and (46) in this case. We hope that
the results obtained here will motivate further works to develop alternative methods
to study the gap statistics of Lévy flights.

We found rather useful to think about the different positions of the random walker
after n steps as a point process on a line, as illustrated in Fig. 3. By analogy with
random matrices we naturally identify edge regions, close to the extremal positions of
the random walk, as well as the bulk region, far from the maximum and the minimum.
In particular, we have shown that the gaps behave quite differently in these two regions.
Pursuing this analogy with random matrices, one may wonder whether one can define
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a “density” associated to this point process that would capture the existence of these
edge regions, and would be the equivalent of the Wigner semi-circle in random matrix
theory. This is left for future investigations [46].

A. Explicit expression for Pα(δ)

The integrals in the expression (16) for the PDF Pα(δ) can be expressed in terms of
the following integrals

I2(δ, b) =

∫ ∞
0

y2e−δy−by
2

=

√
π

8b5/2
e
δ2

4b

(
2b+ δ2

)
erfc

(
δ

2
√
b

)
− δ

4b2
(A.1)

I3(δ, b) =

∫ ∞
0

y3e−δy−by
2

=
4b+ δ2

8b3
−
√
πδe

δ2

4b

(
6b+ δ2

)
erfc

(
δ

2
√
b

)
16b7/2

(A.2)

as well as (see formula 4 p. 178 of Ref. [47])

J(δ, b, c) =

∫ ∞
0

e−δye−by
2

erf(cy) =
3 c

4b5/2
Ψ1

(
5

2
,

1

2
;

3

2
,

1

2
;−c

2

b
,
δ2

4b

)
(A.3)

− 2c δ√
π b3

Ψ1

(
3,

1

2
;

3

2
,

3

2
;−c

2

b
,
δ2

4b

)
(A.4)

where Ψ1 is a confluent hypergeometric series of two variables (sometimes called
Humbert series [48]) defined as

Ψ1(a, b; c1, c2;x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n (b)m
(c1)m(c2)n

xm

m!

yn

n!
(A.5)

where (a)m = Γ(a + m)/Γ(a) is the Pochhammer symbol. In terms of I2(δ, b) and
I3(δ, b) in (A.1) and J(δ, b, c) in (A.3), the gap distribution Pα(δ) in (16) reads

Pα(δ) =
1

π
√
α(1− α)

I2

(
δ,

1

8α(1− α)

)
(A.6a)

+
1

4
√

2π

(
1

(1− α)
3
2

I3

(
δ,

1

8(1− α)

)
+

1

α
3
2

I3

(
δ,

1

8α

))
(A.6b)

− 1

4
√

2π

(
1

(1− α)
3
2

J

(
δ,

1

8(1− α)
,

1

2
√

2α

)
+

1

α
3
2

J

(
δ,

1

8α
,

1

2
√

2(1− α)

))
.

(A.6c)

Note that this expression (A.6) is explicitly symmetric under the change α → 1 − α,
as it should, i.e. Pα(δ) = P1−α(δ).

In the special case α = 1/2 (which corresponds to the vicinity of the median),
the integrals in Eq. (A.6) can be performed in terms of elementary functions (using
in particular formula 2 p. 175 of [47]). This yields

Pα=1/2(δ) =2eδ
2 (

2δ2 + 3
)
δ

(
erfc

(
δ√
2

)2

− 2 erfc(δ)

)

− 2

√
2

π
e
δ2

2

(
3δ2 + 2

)
erfc

(
δ√
2

)
+

8√
π

(
δ2 + 1

)
+

4

π
δ , (A.7)
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which is clearly different from the scaling function found at the edge [20]
(corresponding to the limit α → 0), given in Eq. (13). In particular, its asymptotic
behaviours are given by

Pα=1/2(δ) ≈


4(2−

√
2)√

π
, δ → 0

4

π
δ−3 , δ →∞ ,

(A.8)

which is fully consistent with the behaviours given in Eq. (17) specified for α = 1/2.

B. Computation of 〈dk,n〉 from Pα(δ)

From Eq. (61), the mean value of the gap is obtained as
√
n〈dk,n〉
σ

≈
∫ ∞

0

δPα(δ) dδ . (B.1)

Using that
∫∞

0
y2δe−δydδ = 1, we obtain the expression

√
n〈dk,n〉
σ

≈
∫ ∞

0

dy
e−

y2

8α(1−α)

π
√
α(1− α)

+

∫ ∞
0

dy
ye−

y2

8(1−α)

4
√

2π(1− α)
3
2

erfc

(
y

2
√

2α

)

+

∫ ∞
0

dy
ye−

y2

8α

4
√

2πα
3
2

erfc

(
y

2
√

2(1− α)

)
. (B.2)

The second integral is identical to the third under α → 1 − α. It can be computed
using an integration by part,∫ ∞

0

dy y e−
y2

8(1−α)

4
√

2π(1− α)
3
2

erfc

(
y

2
√

2α

)
(B.3)

=

− e−
y2

8(1−α)√
2π(1− α)

erfc

(
y

2
√

2α

)∞
0

−
∫ ∞

0

e−
y2

8α(1−α) dy

2π
√
α(1− α)

, (B.4)

where we used that erfc(x) = 2√
π

∫∞
x
dze−z

2

. Note that the last term of this equation

allows to simplify half of the first term of Eq. (B.2). As there are two such terms
(coming from the integrals with α and 1− α), the final result reads

√
n〈dk,n〉
σ

≈ 1√
2π

(
1√
α

+
1√

1− α

)
= µ(α) , (B.5)

where we used that erfc(0) = 1 and erfc(x→∞) = 0.

C. Computations of Mp and mp

To obtain the value of Mp, we compute the moment of order p of the large deviation

scaling function of the PDF Ψ(∆̃). Using that Ψ(x) = (
√

2/π)∂2
x(sinh−1(

√
2x)), Mp

reads after integration by part

Mp =

∫ ∞
0

dxxp Ψ(x) =

√
2

π
p(p− 1)

∫ ∞
0

dx
xp−2

sinh(
√

2x)
. (C.1)
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Changing variable from x→ z =
√

2x, we obtain

Mp =
p(p− 1)2

2−p
2

π

∫ ∞
0

dz
zp−2

sinh(z)
. (C.2)

Finally, using the integral representation of the Riemann Zeta function [49],

ζ(s) =
1

2(1− 2−s)Γ(s+ 1)

∫ ∞
0

dx
xs−1

sinh(s)
, (C.3)

we obtain the final result in Eq. (79).
To obtain the value of mp, we proceed similarly, computing the moment of

order p of the large deviation scaling function of the PDF ϕ0(∆̃). Using that
ϕ0(x) = (8π)−1/2∂2

x(sinh−2(x)), mp reads after integration by part

mp =

∫ ∞
0

dxxp ϕ0(x) =
p(p− 1)√

8π

∫ ∞
0

dx
xp−2

sinh2(
√

2x)
. (C.4)

Changing variable x→ z =
√

2x, we obtain

mp =
p(p− 1)

2
p+2

2
√
π

∫ ∞
0

dz
zp−2

sinh2(z)
. (C.5)

Finally, using the integral representation [50] of the Riemann Zeta function,

ζ(s) =
2s−1

Γ(s+ 1)

∫ ∞
0

dx
xs

sinh2(s)
, (C.6)

we obtain the final expression in Eq. (80).
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