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New analysis of the free energy cost of interfaces in spin

glasses

Valerio Astuti, Silvio Franz, Giorgio Parisi

Abstract

In this work we want to enhance the calculation performed by Franz, Parisi and Vira-
soro (FPV) [1, 2] to estimate the free energy cost of interfaces in spin glasses and evaluate
the lower critical dimension at which replica symmetry is restored. In particular we eval-
uate the free energy cost for a general class of effective Hamiltonians showing full replica
symmetry breaking, and study the dependence of this cost on the order parameter and
on the temperature. We confirm the findings of the FPV papers for the scaling of the
free energy, recovering a value for the lower critical dimension of Dlc = 2.5. In addition
to their results we find a non-trivial dependence of the free energy density cost on the
order parameter and the temperature. Apart from the case of a restricted class of effec-
tive Hamiltonians this dependence cannot be expressed in terms of functions with a clear
physical interpretation, as is the case in hierarchical models [3]. In addition we connect
the results on the lower critical dimension with recent simulations [4].

1 Introduction

A very powerful tool to study spontaneous symmetry breaking is the evaluation of the free
energy cost of interfaces between different ordered phases of a system. The stability of the
ordered phase is in fact strictly linked to the probabilistic cost of fluctuations transforming one
ordered phase into another. If the probability of creating bubbles of a different ordered phase
inside a given one is not zero the ordered phase will be unstable under this kind of fluctuations,
so in the end no ordered phase can exist [5]. The free energy cost of interfaces between different
phases will usually have a strong dependence on the number of space dimensions, so if we are
able to evaluate this cost for a generic number of dimensions we can in turn determine if a
low-temperature ordered phase is to be expected for a given dimensionality of space.

This technique can be used to easily determine the so called lower critical dimension of
systems composed of Ising and continuous (Heisenberg) spins. As the name suggests the
lower critical dimension is the number of spatial dimensions for which the free energy cost
of fluctuations cease to be infinite in the thermodynamic limit, such that in this number of
dimension spontaneous symmetry breaking is not possible.

The formalization of these concepts is the Mermin-Wagner-Hohenberg theorem [5], which
links the existence of spontaneous symmetry breaking with the number of dimensions and the
symmetries of the system under study. The theorem states that if a continuous symmetry is
present in the Hamiltonian of the system then no ordered phase can exist in dimension D = 2
or lower. The continuous symmetry implies the absence of an energy gap in the fluctuations
around the ordered phase, and the presence of Goldstone modes in the spontaneously broken
phase. These modes will be strong enough to destroy the ordered phase as long as the number of
spatial dimension is equal or lower than two, as can be easily seen even by dimensional analysis.
By virtue of this theorem the Heisenberg spin system, for which a rotational symmetry is valid,
must have lower critical dimension Dlc = 2.

This result can be easily sketched by considering a D−dimensional cube of side L with
periodic boundary conditions in the first D − 1 directions, and boundary conditions in the
D-th direction given by spins displaced by an angle θ. The difference in free energy at low
temperature between this setting and the one with only periodic boundary conditions will
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be given by the interaction energy between neighbouring spins, which in turn are forced to be
different by the different boundary conditions. The least energy will be used when every couple
of neighbouring spins along the D-th direction is displaced by an angle θ

L . This displacement

implies an energy density proportional to θ2

L2 , and so the free energy difference with respect
to the periodic boundary conditions system is proportional to θ2LD−2. We have to deal with
a different situation in systems with only discrete symmetries. In such cases we indeed have
an energy gap between two different ordered phases, so no cheap fluctuations will be present.
In the situation presented above the least energy configurations are not the ones in which the
spin difference is distributed over the whole system, but the ones in which the interface is
concentrated on a single hypersurface (in this case there is a lower bound in the interaction
energy, such that there is no point in distributing it over larger regions of the system). This
implies a free energy cost proportional to LD−1, and a lower critical dimension Dlc = 1.

The system of interest in this paper is the Ising spin glass, or Edwards-Anderson model,
and as we will see it will escape both the situations described above. The Hamiltonian of
this system contains a quenched disorder - unknown variables which however do not change
from one configuration to another - in addition to Ising spin variables. For a fixed quenched
disorder the only symmetry of this Hamiltonian is the one of the Ising spins, but in the end we
will have to average out the disorder variables, introducing the so-called replicas of the system
[6]. They are copies of the system in which the quenched disorder is identical but the spins
configurations are different, and by construction they ought to be equivalent once we average
over the spins configuration. The order parameter of the replicated system is the overlap
between replicas, and this treatment implies a new symmetry for the effective Hamiltonian
of this system: the symmmetry under exchange of replicas. This symmetry can be described
as continuous, and the zero modes associated with it are even more pervasive than the ones
described by the Mermin-Wagner-Hohenberg theorem. These modes are powerful enough to
destroy the ordered phase at dimension higher than two, and the value of the lower critical
dimension for this system - though still debated - is greater than the one for Heisenberg spins.

While the presence of a stable phase in three spatial dimensions is strongly supported by
experiments and numerical simulations [4, 7, 8, 9] there is still no definitive theoretical result
[10, 11]. In two related works [1, 2] Franz, Parisi and Virasoro managed to derive a value
for the lower critical dimension based on the replica mean field formulation of the problem.
Their calculation is done for the so-called truncated model [6, 12, 13, 14], an expansion of
the mean field effective Hamiltonian for temperatures close to the critical one. They impose
a difference ∆q in the overlap order parameter over a distance L in one spatial direction,
keeping free boundary conditions in the other directions. The main result of their papers is
a free energy cost which scales as δF ∝ LD−

5
2 where L is the linear dimension of the system.

This implies a lower critical dimension Dlc = 5
2 , as for this dimension and below we obtain

a finite probability for the coexistence of different phases. In addition the free energy cost is
proportional to |∆q| 52 , which implies typical fluctuations of length ` with magnitude of order

|∆q (`) |typ ∼ `1−
2D
5 . These results, though confirmed even by recent simulations [4], suffers

from two major shortcomings: the first is that it is based on mean field theory; the second
is the limitation to the truncated model. Mean field theory is a correct description of the
Edwards-Anderson model when the number of spatial dimension D is equal or greater than
6, but its validity is debated in lower dimensions. It is obviously exact in the fully connected
version of the Edwards-Anderson model, also called Sherrington-Kirkpatrick model. The exact
solution for this model was found at the beginning of the eighties by one of the authors, and it
first unveiled the existence of the spin glass phase, in which the symmetry under exchange of
replicas is broken in a hierarchical pattern [6, 14]. In ordered systems we can reliably extend
our knowledge outside the domain of mean field theory by means of the renormalization group.
In spin glass systems with full replica symmetry breaking however a renormalization group
treatment is much more cumbersome due to the complex nature of the order parameter. In
addition in an ε expansion we find strongly divergent series, which render any result unreliable
even in dimension D = 5. In this situation we don’t have strong evidence that mean field theory
results are valid down to the lower critical dimension, and we have to rely heavily on simulation
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and experiments for confirmation of our results. The use of the truncated model imposes less
severe limitations than the mean field theory approximation. In the evaluation of the free
energy cost it implies we are retaining only the lowest order approximation in the difference
between the temperature T and the critical temperature Tc, also called the reduced temperature
and denoted by τ . In particular we cannot have any dependence on the order parameter at this
order of approximation, and in the FPV paper the free energy cost is constant as a function
of the overlap. An interface calculation similar to the one in FPV was performed in [3] for
hierarchical spin-glass models, a slightly simpler system. In this models the spatial structure
of the Edwards-Anderson model is replaced with a binary tree of which the leaves are occupied
by spins. The distance between two such spins is 2k, where k is the number of branching from a
common node. The Hamiltonian is costructed iteratively following the law (here the Jij follow
as usual the normal distribution with zero average and unit variance and σ is a parameter
tuning the strength of the interaction):

HJ
k+1 [S1, ..., S2k+1 ] = HJ1

k [S1, ..., S2k ] +HJ2
k [S2k+1, ..., S2k+1 ]− 1

2(k+1)σ

2k+1∑

i<j

JijSiSj (1)

and the starting condition:

HJ
1 (S1, S2) = − J

2σ
S1S2 (2)

For this system it was possible to study the dependence of the free energy cost on the order
parameter. The simple proportionality δf (q) ∝ P (q) was found, where δf(q) is the free energy
density cost as a function of the order parameter q and P (q) is its probability distribution.
More precisely one can evaluate the probability of a fluctuation bringing a state having the
same boundary overlap p1 to a different state, having different boundary overlaps p1 and p2.
The probability one obtains has the form:

ρk+1 (p1, p2) ∝ e−P( p1+p2
2 )22(1−σ)(k+1)|p1−p2|3 (3)

One might wonder if this kind of dependence from p1 and p2 is general or just a peculiarity of
hierarchical spin glasses, but to study the problem in the Edwards-Anderson model we have to
go past the approximations used in the FPV papers. With these approximations the quantity
P (q) is a constant, so that the free energy cost is trivially proportional to it, but when the
probability is non-trivial the proportionality could be broken.

In addition a recent work [4] simulated the cost in energy of interfaces in the Edwards-
Anderson model as a function of the number of space dimensions. Also for the comparison
with this result we need to go past the approximation of the truncated model, in order to be
able to describe the temperature dependence of the free energy.

The main purpouse of this paper is to address the last two issues, extending the FPV
calculation in order to describe the dependence of the free energy cost on the temperature and
the order parameter, in addition to the number of space dimensions. The paper is organized
in this way: in section 2 we give the basic definition of the model, mostly borrowing from
the original paper [2]. In section 3 we present the variational approach to evaluate the free
energy cost, and in section 4.1 we show how the previously obtained result is essentially stable
in the space of possible variations of the solution. In the remaining sections of the paper we
generalize the model to evaluate the effect of non-linearities in the solution of the equations of
motion on the free energy cost of the interface.

2 The FPV computation

The starting model of the FPV paper was the D-dimensional Edwards-Anderson spin-glass
Hamiltonian in a box of volume V and side L� 1:

H ({s}) = −
∑

<i,j>

Jijsisj − h
∑

i

si (4)
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where < i, j > are nearest neighbour sites and the spins si are of the Ising type, si = ±1. The
variables Jij are independent Gaussian variables such that1 Jij = 0 and J2

ij = J2 = 1. The
model is studied close to the critical temperature Tc, with a mean field approach.

Taking the continuum limit and considering the system close to the critical temperature
we obtain the expression for the mean field free energy:

−2nF =

∫
dDx

[
Tr(|∇Q(x)|2)+τTrQ2(x)+

1

3
TrQ3(x)+

y

4

∑

ab

Qab(x)4 +h2
∑

ab

Qab(x)

]
(5)

Here Qab(x) is the overlap matrix, the order parameter of the replica theory. Considering two
replicas of the system - having the same disorder but in general different configurations - we
can define the overlap matrix as Qiab = 〈siasib〉, where a and b are the replica indices, and i is
the site index. In the continuum limit , fixing a small region of space Vx centered in x and
having volume |Vx|, this becomes Qab(x) = 1

|Vx|
∑
i∈Vx Q

i
ab. In all the paper τ = Tc − T , y

is the coupling constant of the replica symmetry breaking interaction (it is equal to 2
3 in the

original model), Tr is the trace in replica space, and n is the number of replicas. In the FPV
computation the only quartic term retained was the one responsible for the replica symmetry
breaking. The Edwards-Anderson model to which the above approximations are applied is also
called the reduced model.

The reduced model with free boundary conditions can be solved by the mean field solution
found by Parisi [6]. In this solution the symmetry between replicas - present in the effective
Hamiltonian by construction - is broken in an infinite, hierarchical way. To describe this
solution a limit for the number of replicas n → 0 is needed, and the pair of replica indices ab
is replaced by a continuous codistance in replica space. At the saddle point the solution is an
order parameter constant in space, with a replica space dependence of the form:

Qab(x)→ q (x, u) = q (u) =





qmin u ≤ u0
u
3y u0 ≤ u ≤ u1
qmax u ≥ u1

(6)

with u0 = 3yqmin and u1 = 3yqmax. Here and in the rest of the paper we use the letter x for
space coordinates, and u for the replica coordinates.

For the breaking points we have the relations:

2yq3min = h2 (7)

qmax

(
1− 3y

2
qmax

)
= τ (8)

The solution found predicts many overlapping pure states, with an overlap constant in space.
From this starting point we want to force a dishomogeneity in the order parameter by imposing
different boundary conditions over a distance L in a particular direction of the lattice. We
cannot directly impose particular values for q(0, u) and q(L, u) because the functional form
q(x, u) is obtained from the saddle point equations, so any modification of it would bring us
out of the saddle point approximation. Instead the method of real replicas is used [1, 2].
Two copies of the system are considered, with the same disordered couplings Jij , the same
temperature and magnetic field, but different thermal configurations {sia} and {sib}. Being the
two boundaries on which we force different conditions B1 (on which x = 0) and B2 (on which
x = L), the partition function of the constrained system can be written as:

Zp1,p2 =
∑

{sia,sib}

e−βHJ [sia]−βHJ [sib]
∏

x∈B1

δ (Qab(x)− p1)
∏

x∈B2

δ (Qab(x)− p2) (9)

As it can be seen from the above definition the overlap boundary conditions are constrained
only in one spatial direction, the other ones remaining free. The overlap will thus be a constant

1We indicate with · the average over the disorder and with 〈·〉 termodynamic averages.
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in all directions but the constrained one. The quantity we are interested in is the free energy
difference corresponding to the ratio between this partition function and the one without
constraints. We have to remember that the replicas used to obtain the mean field solution of
the problem are conceptually different from the replicas we are using to evaluate the free energy
cost of the constraint. For this reason the latter are called real replicas, and when applying the
usual replica method to the coupled system we have two different replica indices, one for each
real replica. In this setting a generalized order parameter is used, in that we have to consider
the overlaps between both two copies of the first (or the second) real replica, and the overlap
between the first and the second real replicas. Thus we have three different types of overlaps:
Qab11(x) between states of the first real replica, Qab22(x) between states of the second real replica,
and Qab12(x) = Qba21(x) between states of the first and states of the second real replica. In the
original work the ansatz taken is Qab11(x) = Qab22(x) = Qab(x), Qab12(x) = Qab21(x) = Pab(x) and
Qaa12 (x) = p̃(x) (Qaa(x) = 0 is taken by convention). Here p̃(x) is an unknown function we have
to recover from the saddle point equations with boundary conditions p̃(0) = p1 and p̃(L) = p2.

This generalized order parameter can be written as Qαβ(x), α and β being double indices:
α = {a, r}, β = {b, s} for r, s = 1, 2. We will consider different boundary conditions only
in one spatial direction, so here the coordinate x will denote the only direction in which a
non-trivial behaviour of the system is present.

Near the critical temperature a Landau expansion of the free energy as a function of this
extended order parameter can be performed, and in the case p1 = p2 a saddle point solution
can be found with similar methods as in the single real replica problem. The solution has the
form:

Qab(x)→ q(x, u) = q(u) =





qmin 0 ≤ u ≤ u0

2
2u
3y

u0

2 < u ≤ up
2

p̃
up
2 < u ≤ up

u
3y up < u ≤ u1
qmax u1 < u ≤ 1

(10)

Pab(x)→ p(x, u) = p(u) =





qmin 0 ≤ u ≤ u0

2
2u
3y

u0

2 < u ≤ up
2

p̃
up
2 < u ≤ 1

(11)

p̃(x) = p̃ = p1 = p2 (12)

The parameters are the same as in the unconstrained solution, except for up = 3yp̃. The
solution of the unconstrained problem being Qf (u) = u

3y , we see that in the region u < up
the solution can be written as Qf (2u). This is a general fact, not based on the particular
model but on ultrametric symmetry. We can now perturb this solution of the problem with
p1 = p2 to study the case p1 6= p2. The free energy density is modified by the gradient squared
|∇Q|2, and the parameter of the perturbation will be proportional to some positive power
of |p1 − p2|/L (the perturbation in density must go to zero for fixed overlap difference and
infinitely far away boundaries). The gradient term is the one responsible for the value of the
lower critical dimension Dlc = 2 in the presence of a continuous symmetry. It is easy to see that
it gives a contribution to the free energy cost proportional to LD−2, which would guarantee
the stability of ordered phase down to D = 2. In a spin glass system however this dominant
contribution vanishes due to replica symmetry. In fact for the gradient term evaluated on the
unperturbed saddle point we obtain:
∫
dDx Tr(|∇Q(x)|2) =

= LD−1
∫
dx

(
dp̃

dx

)2 [
1−

∫
du θ

(
u− up

2

)
θ (up − u)−

∫
du θ

(
u− up

2

)]
= 0 (13)

The vanishing of the gradient term at the leading order is a signal of the fact that breaking
the replica symmetry is associated with zero modes which are much more powerful than the
ones of a standard continuous symmetry breaking.
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Given that the gradient on the unperturbed solution vanishes we can conclude that the
lower critical dimension will be higher than D = 2. To estimate it an assumption on the
functional form of the order parameter can be made, and an approximation of the saddle point
can be found in the functional class selected. If we assume the function p̃(x) to interpolate
linearly between the two boundary condition, the saddle point equations evaluated on the
unperturbed solution become:

∂2q(x, u)

∂x2
= 3y

(
dp̃

dx

)2 [
δ(u− up)−

1

2
δ
(
u− up

2

)]
(14)

∂2p(x, u)

∂x2
= −3y

2

(
dp̃

dx

)2

δ
(
u− up

2

)
(15)

Given the form of these equations the assumption is made that the effect of the gradient is
to enforce a small smoothing of the overlap function around the points

up
2 and up in replica

space. This assumption can be taken as the starting point of a variational problem, in which a
polynomial function is chosen to smooth the unperturbed solution around the breaking points
up
2 and up.

1

0 1

Qf (2u)

p̃

Qf (u)

qmax

(up

2 , p̃
)

(up, p̃)

q(
u
)

u

Figure 1: Unperturbed same real-replicas overlap q(u).

Before going to the variational problem in the next section, we mention a useful result about
the dependence of the free energy density variation on the temperature and the magnetic field.
In particular we can prove that as long as the unperturbed solutions q(x, u) and p(x, u) do
not depend on the temperature and magnetic field in the region u0 < u < u1, the free energy
variation δF = F (p1, p2) − F (p1, p1) does not depend on these parameters either. In fact we
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1

0 1

Qf (2u)

p̃
(up

2 , p̃
)

p
(u
)

u

Figure 2: Unperturbed different real-replicas overlap p(u).

can expand the free energy variation as:

− 2nδF =

∫
dDx

[
Tr
(
|∇δQ(x)|2

)
+ 2Tr

(
∇Q(x)∇δQ(x)

)
+ τTr

(
δQ2(x)

)
+

+
1

3
Tr
(
δQ3(x)

)
+ Tr

(
Q(x)δQ2(x)

)
+
y

4

∑

ab

((
Qab(x) + δQab(x)

)4
−Q4

ab(x)
)]

(16)

with δQ being a small perturbation localized around the points in which q(u) = p̃. The only
part of δF which could depend on the temperature is

δFτ = τTr
(
δQ2(x)

)
+ Tr

(
Q(x)δQ2(x)

)
(17)

because all other terms in which Q(x) is coupled with δQ(x) are null when Q(x) depend on τ .
It is however easy to show that also the temperature dependence of the two terms in δFτ is such
that the total dependence vanish. Similarly the only term in which we can find a dependence on

the magnetic field is Tr
(
Q(x)δQ2(x)

)
, but in all the points in which Q(x) shows a dependence

on the magnetic field δQ2(x) vanish, so also this term is field-independent.

3 Variational approach

In this section we show how a variational approach can be used to find an approximate solution
to the saddle point equations (14). To avoid singularities in the equation of motion we want a
solution which is derivable at the breaking points

up
2 , up. We smooth the unperturbed solution

interpolating it with a quadratic polynomial on each of the breaking points, and maximize
the free energy - and thus the free energy variation - varying the interval over which the
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unperturbed solution is smoothed. The family of solutions proposed in the FPV calculation
has the form:

q(x, u) =





qmin 0 ≤ u ≤ u0
2u
3y u0 < u ≤ u1
p̃(x)− (u−u2)

2

3yδ u1 < u ≤ u2
p̃(x) u2 < u ≤ u3
p̃(x) + (u−u3)

2

6yδ′ u3 < u ≤ u4
u
3y u4 < u ≤ u5
qmax u5 < u ≤ 1

(18)

p(x, u) =





qmin 0 ≤ u ≤ u0
2u
3y u0 < u ≤ u1
p̃(x)− (u−u2)

2

3yδ u1 < u ≤ u2
p̃(x) u2 < u ≤ 1

(19)

p1 ≤ p̃(x) ≤ p2 (20)

where the intervals are defined by the points:

u0 =
3yqmin

2
u1 =

up − δ
2

u2 =
up + δ

2

u3 = up −
δ′

2
u4 = up +

δ′

2
u5 = 3yqmax

(21)

1

0 1

Qf (2u)

p̃

Qf (u)

qmax

(up

2 , p̃
)

(up, p̃)

q(
u
)

u

Figure 3: Perturbation of the same real-replicas overlap q(u).

The variational parameters in the above formula are δ and δ′, the intervals over which
we interpolate the unperturbed solution with the second order polynomial. The constraint

8



1

0 1

Qf (2u)

p̃
(up

2 , p̃
)

p
(u
)

u

Figure 4: Perturbation of the different real-replicas overlap p(u).

imposed on the solution is to have different values of p̃(x) at the boundaries of the system.
This in turn forces a non-vanishing derivative dp̃

dx at least in some regions of the block. This
derivative takes the place of |p1 − p2|/L as the perturbative parameter.

The free energy density variation as a function of δ and δ′ takes the form:

δf =
31δ5

10260y3
− δ4p̃

324y2
+
χδ

9y
+
χδ′

18y
− δ3δ′2

9720y3
+
δ2δ′2p̃

648y2
− p̃δ′4

5184y2
− 11δ′5

3265920y3
(22)

where it was introduced the variable χ = 3y
(
dp̃
dx

)2
. Maximizing over the variational parameters

we find the free energy density cost:

δf = 0.673659 y−
1
2χ

5
4 = 0.673659 y

3
4

(
dp̃

dx

) 5
2

(23)

The solution of this variational problem is obtained for parameters:

δ =
δ′

2
= 3.78933 y

1
2χ

1
4 (24)

Finally maximizing the free energy density variation with respect to the functional form of
p̃(x) we obtain a linear variation of the overlap (and thus a constant free energy density) over
the whole block:

p̃(x) = p1

(
1− x

L

)
+ p2

x

L

dp̃

dx
=
p2 − p1
L

(25)

δf = 0.673659 y
3
4

(
p2 − p1
L

) 5
2

(26)
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With this free energy density cost we finally obtain the free energy variation over a volume
V = Ld:

δF = 0.673659 y
3
4 |p2 − p1|

5
2 Ld−

5
2 (27)

and we see that the free energy cost does not grow with the volume for dimensions d ≤ 5
2 ,

indicating that the fluctuations destroy replica symmetry breaking under the critical dimension
DLC = 5

2 .

4 New results

4.1 Higher order continuity

We modified the original calculation to check its stability changing the function space over
which the free energy is maximized. The maximization process in the original paper was
constrained to variations contained in the space of quadratic polynomials. We improved the
smoothness of the solution and changed the space of variations to higher degree polynomials
by imposing continuity of the first k-derivatives at the insertion points of the polynomial. Our
family of perturbed solutions takes the form:

qk(x, u) =





qmin 0 ≤ u ≤ u0
2u
3y u0 < u ≤ u1
pkδ (x, u) u1 < u ≤ u2
p̃(x) u2 < u ≤ u3
pkδ′(x, u) u3 < u ≤ u4
u
3y u4 < u ≤ u5
qmax u5 < u ≤ 1

(28)

pk(x, u) =





qmin 0 ≤ u ≤ u0
2u
3y u0 < u ≤ u1
pkδ (x, u) u1 < u ≤ u2
p̃(x) u2 < u ≤ 1

(29)

p1 ≤ p̃(x) ≤ p2 (30)

Now pkδ (x, u) and pkδ′(x, u) are the lowest degree polynomials in u ensuring the continuity of
the solutions up to the k-th order derivative. In the original solution interpolating with second
order polynomials we had a discontinuity of the second derivative at the insertion points; here
we can impose continuity to arbitrary order. To check the stability of the solution we variated
the solution imposing continuity of second order derivatives, obtaining for the free energy
density cost the result:

δf2 = 0.673328 y
3
4

(
p2 − p1
L

) 5
2

(31)

As we see the functional form of the expression is completely unchanged, the only difference
being a small reduction in the numerical coefficient. Finally evaluating the free energy cost on
a solution with continuous third order derivatives at the insertion points we obtain:

δf3 = 0.671176 y
3
4

(
p2 − p1
L

) 5
2

(32)

It can be noted that with continuity of the second and third order derivatives of the solution
at the insertion points the change in the free energy cost is negative, so we are slightly moving
away from the real maximum2.

2We checked the result also for linear polynomials, obtaining the free energy density cost δf0 =

0.549271 y
3
4

(
p2−p1

L

) 5
2

, the same functional form but lower coefficient than for the second order polynomials,

as expected.
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4.2 Extended model with local perturbations

After a careful review of the effect of different boundary conditions on the free energy (5) we
want to generalize the result to different systems. The saddle point associated to the previous
free energy is a solution linear in replica space, which thus implies a constant probability for
the overlap. this fact makes it impossible to study the dependence of the free energy cost on
the overlap. In [3] it was shown that in a hierarchical spin-glass model the same calculation as
above can be done, bringing for small |p2 − p1| the free energy density cost:

δfhier ∝ P (p) |p2 − p1|3 (33)

where P (q) is the overlap probability and p = p1+p2
2 is the average overlap.

The free energy density obtained in the previous section trivially satisfies a similar relation
(though with different exponents), but given that the probability P (q) is itself a constant it
is difficult to establish the significance of this result. We want to consider an extension of the
truncated model which generates a non-linear solution q(u), and as a consequence a non-trivial
overlap probability P (q). In this section we extend the model by adding to the free energy
density a generic polynomial function local in replica space; relabeling the free energy (5) F0

we want to study the system specified by:

− 2nFloc = −2nF0 + 2z

∫
dDx

∑

ab

g (Qab(x)) (34)

with
g(q) = g6q

6 + g8q
8 + g10q

10 + ... (35)

and only even terms are included in order to preserve the Z2 symmetry of the original Hamil-
tonian. With “local in replica space” we mean that there are no terms proportional to z which
couple overlap matrix elements Qab for different values of the codistance between replica in-
dices ab (in the continuum limit this would translate to a different codistance index u). This
peculiarity of the new “interaction terms” allows us to extend to this free energy many of the
results derived in the FPV calculation.

As a first step it is easy to show that the saddle point equations derived from such a free
energy (with only one real replica) are algebraic and local in the matrix elements Qab, as in
the truncated model. This implies that the solution cannot depend on the temperature and
magnetic field for any u ∈ (u0, u1), where q(u0) = qmin and q(u1) = qmax. This directly implies
that there can be no dependence of the free energy cost on the temperature and magnetic
field, for the same argument given in section 2: no term in F0 is temperature or magnetic
field-dependent, and given that all the terms in g (Qab) have only one set of replica indices
their variations have the form:

δgm(Qab) ∝ Qm−jab δQjab (36)

They are different from zero only when δQab is different from zero, where there is no dependence
on temperature and magnetic field in Qab.

Given the algebraic nature of the saddle point equations they are easy to solve for any poly-
nomial g(Qab). As an example the exact solution for the lowest order non-trivial polynomial,
g(Qab) = z

6!Q
6
ab, has the form:

Qab(x)→ q (x, u) = q (u) =





qmin u ≤ u0
q̃(u) u0 ≤ u ≤ u1
qmax u ≥ u1

(37)

q̃(u) =
1.44

(√
zwu+

√
zw2u2 + 24y3

)2/3
− 4.16y

(
z2wu+ z3/2

√
zw2u2 + 24y3

)1/3 (38)

11



The last expression as a power series in u becomes:

q̃(u) =
u

3y
− zu3

486y4
+

z2u5

26244y7
+O(u7) (39)

The inverse function u(q) and the associated bulk overlap probability have the simpler form:

u(q) = 3yq +
z

12
q3 P (q) = u̇(q) = 3y +

z

4
q2 (40)

Finally we can evaluate the free energy cost with this extended free energy using the same
variational approach as in the previous section. We can simplify the calculation performing it
perturbatively in the coupling constant z; at the first perturbative order we obtain:

δfQ6(x) = 0.673659 y
3
4

(
dp̃

dx

) 5
2
(

1 +
z

16y
p̃2(x) +O

(
z2, L−1

))
(41)

We see that at this order of approximation the free energy density cost is indeed proportional
to P (q)

3
4 . We verified this proportionality for polynomials of order up to 24, and derived it

analytically in section 5.
The last step is to maximize the free energy over the functional form of p̃(x). We find a

functional form different from the linear one of FPV; in particular we obtain:

dp̃(x)

dx
= γ

(
1− z

40y
p̃2
)

+O
(
z2
)
, γ =

p2 − p1
L

+
z

120y

p32 − p31
L

(42)

This functional form implies a homogeneous distribution of the free energy cost over the block:

δfQ6 = 0.673659 y
3
4

(
p2 − p1
L

) 5
2
[
1 +

z

48y

(
p22 + p1p2 + p21

)
+O

(
z2, L−1

)]
(43)

4.3 Extended model for the Edwards-Anderson free energy

In this section we want to perform the calculation for a system with a free energy closer to the
real Edwards-Anderson one. We can obtain the truncated model of section 2 expanding the
Edwards-Anderson effective Hamiltonian up to order four in powers of the field, and retaining
only the fourth order term responsible for the replica symmetry breaking. This is the minimal
model to describe a system with replica symmetry breaking, and the solution for it is the linear
overlap function we met in section 2. If we want to study what happens when the solution of
the system becomes non-linear it is sufficient to add the remaining fourth order terms to the
free energy. The free energy including all the fourth order terms has the form3:

− 2nF =

∫
dDx

[
− Tr(|∇Q(x)|2) + τTrQ2(x) +

1

3
TrQ3(x)+

+
y

4

∑

ab

Qab(x)4 +
z

12
TrQ4(x)− t

2

∑

abc

Q2
ab(x)Q2

bc(x) + h2
∑

ab

Qab(x)

]
(44)

We call the two additional terms respectively Fz and Ft (denoting as in the previous sections
densities with lower case letters). Their contribution to the saddle point equations is given by:

− n δFz
δQab(x)

∣∣∣∣∣
δQab=0

=
z

6
Q3
ab(x) (45)

3In the Edwards-Anderson effective Hamiltonian the coupling constant are fixed to values of order one, but
in most of this section we keep them as free parameters.
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− n δFt
δQab(x)

∣∣∣∣∣
δQab=0

= − t
n
Qab(x)TrQ2(x) (46)

The new saddle point equations for a solution homogeneous in space are thus:

(
τ − t

n
TrQ2

)
Qab +

(
Q2
)
ab

2
+
y

2
Q3
ab +

z

6

(
Q3
)
ab

+ h2 = 0 (47)

The only contribution of the Ft term is to effectively increase (or reduce, for negative t)
the reduced temperature of the system. This can be seen by the fact that in the saddle point
equations the reduced temperature appears only in the combination τ ′ =

(
τ − t

nTrQ
2(x)

)
. The

term Fz, on the other hand, deforms the functional form of the solution making it non linear
(and giving it an explicit dependence on the effective temperature τ ′). Solving the equation
with z = 0 we would have the same linear solution as section 2, dependent on the temperature
only in q(u) = qmax and on the magnetic field only in q(u) = qmin. The value of qmax however
would depend on the effective temperature τ ′ instead of τ ; τ ′ has a dependence both on the
temperature and magnetic field through the term TrQ2, but given that q(u) ≤ qmax ≈ τ ′ the
corrections will always be smaller than τ if t is of order one.

Solving the saddle point equations with the Fz term the situation changes more radically;
the solution becomes non linear and acquires a dependence on the effective temperature for
every value of the overlap q(u). We have the explicit form:

q̃(u) =
u

3y

√
1− 2zτ ′

1 + z u
2

3y

(48)

We want now to study the dependence of the free energy cost on the temperature and magnetic
field. Given the explicit dependence of the solution of the saddle point equations on the effective
temperature τ ′ we expect a similar dependence also in the free energy cost. We already saw
that the free energy cost of the reduced model F0 cannot depend explicitly on the temperature
or the magnetic field; the only dependence can be trough q(u), and thus trough τ ′. We can
check that the same happens for the two additional terms Fz and Ft. On the saddle point
solution we have:

− nδfz =
z

12
Tr
(
4QδQ3 + 6Q2δQ2 + δQ4

)
(49)

− nδft = − t
2

∑

abc

(
2Q2

abδQ
2
bc + 4QabδQabδQ

2
bc + δQ2

abδQ
2
bc

)
(50)

Taking the derivative of the right hand side of the the first equation with respect to Qab we
obtain:

− n ∂δfz
∂Qab

= z

[(
δQ3

)
ab

3
+
(
QδQ2

)
ab

]
(51)

It is easy to show that both terms vanish when ab is such that4 Qab = qmin. The same is not
true when ab is such that Qab = qmax, but the only temperature entering the equation for qmax

is the effective temperature, so the dependence is on τ ′. As for the terms in δft they can be
rewritten as:

− nδft = − t

2n

(
2TrQ2TrδQ2 + 4TrQδQTrδQ2 +

(
TrδQ2

)2)
(52)

and we already showed that for terms of this kind there is no coupling between values of the
overlap for different values of the index ab. As a consequence there can be no dependence on
qmin or qmax when δQab is different from zero - the only possible dependence is trough q(u).

The previously examined terms thus cannot depend explicitly on the temperature and
magnetic field; the only dependence on these parameters is trough τ ′. In addition we expect
an explicit dependence on τ ′, not only trough q(u), only from the term δfz.

4We use the fact that TrδQ = 0 from the equation for qmax evaluated in ab = 0.
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From the saddle point solution we obtain the overlap probability:

P (q) =
3y (1− 2zτ ′)

(1− 3yzq2 − 2zτ ′)
3/2

(53)

We proceed to evaluate the free energy cost perturbing the reduced model at the first order
in the coupling constant z. The correction given by the term ft to the temperature can be
found solving a self-consistency equation for TrQ2, and all other contributions proportional to
t vanish. We obtain the free energy cost:

δfTrQ4(x) = 0.673659 y
3
4

(
dp̃

dx

) 5
2
(

1 +
15zy

4
p̃2(x) + zτ ′ +O

(
z2, L−1

))
(54)

The overlap probability expanded at this order of approximation in z is:

P (q) = 3y

(
1 +

9zy

2
p̃2(x) + zτ ′ +O

(
z2
))

(55)

We can see that in this case the free energy cost is not proportional to any power of P (q);
we have the same functional dependence on p̃ and the effective temperature, but slightly
different numerical coefficients. The other difference with the previously analyzed cases is the
dependence on the effective temperature that we already saw. These differences can be traced
back to the different nature of the saddle point equations: while in the previous cases they
reduced to “local”, algebraic equations, in this case they are differential equations, the solutions
of which depend on boundary conditions. We note also that the only effect of ft has been to
modify the temperature, all the other terms being subleading in L−1.

Having recovered the free energy density cost as a function of the overlap and temperature
we can maximize over the functional form of the overlap, to find the free energy as a function
of the temperature:

δfTrQ4 = 0.673659 y
3
4

(
p2 − p1
L

) 5
2
[
1 + zτ ′ +

5

4
zy
(
p21 + p1p2 + p22

)
+O

(
z2, L−1

)]
(56)

This result can be compared to the one recently reported in [4]. There the authors study the
variation of the interface energy as a function of the number of dimensions. At the order of
approximation of the calculation in [2] the energy of the interface would be zero, being no
dependence of the free energy on the temperature. At lowest non trivial order we find for the
internal energy the value:

δETrQ4 = 0.673659 y
3
4 z (p2 − p1)

5/2
LD−

5
2 +O

(
z2, τ, LD−

7
2

)
(57)

This value is in agreement with the findings of [4].
The results of this section can be confirmed adopting a different approximation scheme. The

reduced model on which the calculations are based is valid only for a system close to the critical
temperature. We can then limit the perturbations to the same regime, and approximate the
free energy cost using the temperature as small parameter. Using this approximation scheme
the results are valid for all values of the coupling constants, so we can substitute their values
to obtain the Edwards-Anderson model (in which they are of order unity). The free energy
density cost in this approximation (here up to second order in the temperature) is:

δfTrQ4 = 0.673659 y
3
4

(
p2 − p1
L

) 5
2
[
1 + zτ ′ +

5

4
zy

(
p32 − p31
p2 − p1

)
+

3

2
z2τ ′2 +O

(
τ3, L−1

)]
(58)

As we can see the result is perfectly equivalent to the previous one at the first order in z,
higher orders in z being connected to higher orders in τ . The last expression allows us also to
evaluate the variation of the internal energy as a function of the temperature:

δETrQ4 = 0.673659 y
3
4 z (p2 − p1)

5/2
LD−

5
2κ(τ) +O

(
τ2, LD−

7
2

)
(59)
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with κ(τ) = d
dτ

(
1 + zτ ′ + 3

2z
2τ ′2

)
. We obtain the exact value for the Edwards-Anderson model

(at this order of approximation in the temperature) substituting the values z = 3, y = 2/3.

Finally we note that the scaling LD−
5
2 is stable in all approximation schemes and valid for

any value of the ovelap difference |p2 − p1|. In particular the scaling shows no singularities
when the overlap goes to zero.

5 Analytic results and general models

In this section we show a number of analytic results generalizing the calculations of the previous
sections. The analytic derivation allows us to consider what happens in a general model having
the same structure of the two previously analyzed and in which the same variational procedure
is applied. In addition the model described in this section describes accurately the Edwards-
Anderson free energy up to order six in the overlap field. This general free energy can be
written as:

L(x) =

[
− 1

2
Tr(|∇Q(x)|2) +

∞∑

j=1

∞∑

i=2

tij
(
TrQi(x)

)j
+

∞∑

k=1

yk
∑

ab

Qab(x)k

]
(60)

the models previously analyzed can be recovered from the general one keeping different from
zero only the coupling constants:

(t21, t31) =

(
τ

2
,

1

6

)
, (y1, y4, y6) =

(
h2

2
,
y

8
,
z

6!

)
(61)

for the sixth-order polynomial model and:

(t21, t31, t41, t22) =

(
τ

2
,

1

6
,
z

4!
,− t

4n

)
, (y1, y4) =

(
h2

2
,
y

8

)
(62)

for the Edwards-Anderson model5.
To solve the general saddle point when there are no constraints on the boundary conditions

we use the standard methods, but here we outline the different steps because they will be useful
in exploiting all the symmetries of the theory. For the saddle point we have:

∞∑

j=1

∞∑

i=2

i j tij
(
TrQi

)j−1 (
Qi−1

)
ab

+

∞∑

k=1

k ykQ
k−1
ab = 0 (63)

We can see that the terms proportional to tij with j > 1 give the only contribution of rescal-
ing the coupling constants of Qi−1. This is a generalization of what we saw in the case of∑
abcQ

2
abQ

2
bc, and in the same way we can consider effective coupling constants to absorb

these contributions. Using this strategy the last equation becomes:

∞∑

i=2

i t′i
(
Qi−1

)
ab

+

∞∑

k=1

k ykQ
k−1
ab = 0 (64)

t′i =

∞∑

j=1

j tij
(
TrQi

)j−1
(65)

Now taking the continuum limit and deriving with respect to Qu we obtain:

∞∑

i=2

i(i− 1)t′i Λi−2Qu
+

∞∑

k=2

k(k − 1)yk Q
k−2
u = 0 (66)

5It can be easily proved that the term
∑

abcQ
2
abQ

2
bc is proportional to

(
TrQ2

)2
.
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ΛQu being the eigenvalues of the matrix Qab in the continuum limit6. Deriving again:

− u
∞∑

i=3

i!

(i− 3)!
t′i Λi−3Qu

+

∞∑

k=3

k!

(k − 3)!
yk Q

k−3
u = 0 (67)

From the last formula we can obtain the replica coordinate u as a functional of Qu (ΛQu is not
a function of Qu):

u =

∑∞
k=3

k!
(k−3)!yk Q

k−3
u∑∞

i=3
i!

(i−3)! t
′
i Λi−3Qu

(68)

The last equation becomes a definition of the function u(Q) if t′i = 0 for every i > 3. In this
case except for the term TrQ3 we have only local interactions in the effective Hamiltonian, i.e.
we don’t have couplings of matrices Qu with different replica index. This is obviously the case
of polynomial interactions we analyzed above, and we will see why in this case the free energy
cost is proportional to a power of the overlap probability P (Q). For now we can notice that
when this simplification occurs we have:

P (Q) = u̇(Q) =
1

6 t′3

∞∑

k=4

k!

(k − 4)!
yk Q

k−4 (69)

When we have some non-local terms on the other hand we have to solve equation (66) to find
ΛQu as a function of Qu, but even when the equation can be solved ΛQu will depend also on
the parameters t′i, among which we find for example the temperature (but not the magnetic
field, which can appear only trough the t′is).

For the Edwards-Anderson model we have from (68):

u =
3yQ

1 + zΛQu
(70)

and from (66):
2τ ′ + 2ΛQu + zΛ2

Qu + 3yQ2
u = 0 (71)

The last equation gives us:

ΛQu = −1

z
+

√
1

z2
− 3yQ2

u + 2τ ′

z
= −1

z
+

√
1

z2
−

(ΛQu)z=0

z
(72)

Substituting this expression in (70) we readily obtain, to the first order in z, the same results
we saw in section 4.3:

u(Q) ≈ 3yQ
(

1− z

2
(ΛQu)z=0

)
= 3yQ

(
1 + z

3yQ2

2
+ zτ ′

)
(73)

P (Q) ≈ 3y

(
1 +

9yz

2
Q2 + zτ ′

)
(74)

If we now impose boundary conditions p1 = p2 = p̃ to a set of coupled real replicas of this
general model the solution will have the same structure we saw in the FPV calculation [15]:

Qab(x)→ q0(x, u) = q0(u) =





qmin 0 ≤ u ≤ u0

2

Qf (2u) u0

2 < u ≤ up
2

p̃
up
2 < u ≤ up

Qf (u) up < u ≤ u1
qmax u1 < u ≤ 1

(75)

6A short review of hierarchical matrices diagonalization in the continuum limit is given in the appendix.
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Pab(x)→ p0(x, u) = p0(u) =





qmin 0 ≤ u ≤ u0

2

Qf (2u) u0

2 < u ≤ up
2

p̃
up
2 < u ≤ 1

(76)

p̃(x) = p̃ = p1 = p2 (77)

where Qf (u) is the inverse of the function u(Q) we derived in the beginning of the section,
up = u (p̃) and the rest of the parameters have the same meaning as in the FPV calculation.

The solution of the problem with equal boundary conditions can be used as a basis for a
variational problem when p1 6= p2, and as in the rest of the paper we assume the variations to
be localized in two small neighborhoods of the breaking points in replica space.

q(x, u) =





qmin 0 ≤ u ≤ u0
Qf (2u) u0 < u ≤ u1
Pδ(x, u) u1 < u ≤ u2
p̃(x) u2 < u ≤ u3
Pδ′(x, u) u3 < u ≤ u4
Qf (u) u4 < u ≤ u5
qmax u5 < u ≤ 1

(78)

p(x, u) =





qmin 0 ≤ u ≤ u0
Qf (2u) u0 < u ≤ u1
Pδ(x, u) u1 < u ≤ u2
p̃(x) u2 < u ≤ 1

(79)

p1 ≤ p̃(x) ≤ p2 (80)

where Pδ, Pδ′ are interpolating polynomials, the solution has continuous first derivatives at
the breaking points and again the parameters have the same meaning of the FPV ones. In
the FPV calculation and in sections 4.2, 4.3 the two variational parameters δ, δ′ were varied
independently, and the maximum of the free energy was found for δ′ = 2δ. This can be shown
to be a consequence of the ultrametric structure of the solution, and in addition it implies the
identities: ∫ 1

0

[
δq(x, u)(2m+1) + δp(x, u)(2m+1)

]
du = 0 ∀ m ∈ N (81)

with δq(x, u) = [q(x, u)− q0(u)], δp(x, u) = [p(x, u)− p0(u)] are functions localized around the
breaking points

up
2 , up.

We want now to derive analytically the free energy density cost for the variational problem
associated to this model. The free energy to be maximized can be written as:

− nF =

∫
dx

[
− 1

2
Tr|∇Q(x)|2 + TrA(Q(x)) +

∑

ab

B (Qab(x))

]
(82)

where

A(Q)ab =

∞∑

i=1

t′i
(
Qi
)
ab

B(Qab) =

∞∑

k=1

yk Q
k
ab (83)

The variations of the different terms are:

1

2
δTr|∇Q(x)|2 =

1

2
Tr|∇δQ(x)|2 + Tr∇δQ(x)∇Q(x) (84)

δTrA(Q(x)) =

∞∑

k=2

1

k!
Tr
(
A(k)(Q(x))δQk(x)

)
(85)
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∑

ab

δB (Qab(x)) =

∞∑

k=2

1

k!

∑

ab

B(k) (Qab(x)) δQkab(x) (86)

Assuming that Pδ and Pδ′ are polynomials with the same derivative as Qf (u) at the breaking
points, and given the cancellations implied by equation (81) it is easy to derive the contribution
of the kinetic and local terms (84), (86):

δTr|∇Q(x)|2 = α

(
dp̃

dx

)2

δ (87)

∑

ab

δB (Qab(x)) =
1

2
B(2) (p̃) Tr

(
δQ2

)
+ β

B(4) (p̃)

u̇ (p̃)
4 δ5 +O

(
δ6
)

(88)

With α = 4
3 and β = − 1

540 . The evaluation of the expression (85) is more convoluted; using
equation (66) we can write the first, second and third term7 as:

Tr
(
A(2)(Q)δQ2

)
= −B(2) (p̃) Tr

(
δQ2

)
+

(
γ
B(3) (p̃)

up
+ ζ

B(4) (p̃)

u̇ (p̃)

)
δ5

u̇ (p̃)
3 +O

(
δ6
)

(89)

Tr
(
A(3)(Q)δQ3

)
=

(
η
B(3) (p̃)

up
+ θ

up σ (up)

u̇ (p̃)

)
δ5

u̇ (p̃)
3 +O

(
δ6
)

(90)

Tr
(
A(4)(Q)δQ4

)
= ϑ

up σ (up)

u̇ (p̃)

δ5

u̇ (p̃)
3 +O

(
δ6
)

(91)

Where we defined the function σ(u) =
(
d
dq
B(3)(q)
u(q)

)
q=Qf (u)

. All the higher order terms are

negligible if the terms of order δ5 do not cancel out. The value of the numerical coefficients γ,
ζ, η, θ and ϑ is reported in the appedix.

Summing up all the previous contributions we obtain the expression for the free energy
density cost as a function of δ:

δf = α

(
dp̃

dx

)2

δ −
[
Φ
B(4) (p̃)

u̇ (p̃)
+ Ψ

B(3) (p̃)

up
+ Ω

up σ (up)

u̇ (p̃)

]
δ5

u̇ (p̃)
3 +O

(
δ6
)

(92)

with Φ =
(
β + ζ

2

)
, Ψ =

(
γ
2 + η

6

)
and Ω =

(
θ
6 + ϑ

24

)
.

When A(4) (Q) = 0 the terms in square brackets collapse to a numerical factor independent
of p̃ and the maximization over δ implies:

δ = Υ u̇ (p̃)
3
4

(
dp̃

dx

) 1
2

+ o
(
L−

1
2

)
(93)

Finally substituting this value in the free energy cost we recover its proportionality with P (p̃)
3
4

and the scaling found in the previous sections.
If on the other hand A(4) (Q) 6= 0 we find the same scaling of the free energy cost with

the number of spatial dimensions, but its dependence on p̃ does not reduce to a power of the
overlap probability function.

6 Conclusions

In this work we extended the original FPV calculation in various directions, and at the same
time checked the robustness of the original results. In the original works the scaling of the free
energy density cost was obtained restricting the maximization procedure on a finite dimensional

7The derivation can be found in the appendix.
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space of the whole solution space. The solution for different boundary conditions was assumed
to be a small perturbation of the solution with free boundary conditions, the perturbations
being second order polynomials in order to smooth discontinuities generated by the different
boundary conditions. Here we extended the solution space over which the maximization is
performed to include higher order polynomials and continuity of higher order derivatives of
the solution. The space of solution thus explored is much larger than the original one, but still
the solution originally found is robust: the scaling of the free energy cost as a function of the
overlap difference and the number of spatial dimensions is independent of the smoothing we
adopt for the discontinuities.

We performed the same calculation in two extensions of the original model, to study the
dependence of the free energy density cost on the overlap q with different type of interactions.
We found very different scenarios between an Hamiltonian with polynomial interactions and
the one of the Edwards-Anderson model, characterized by interactions of the form Tr (Qn). In
the case of interactions of the form

∑
abQ

n
ab we found a similar behaviour to the one of the

hierarchical models of [3] and of the reduced model originally analyzed in the FPV calculation:
the free energy density cost depends on the overlap q only through the function P (q), and
in particular it is proportional to P (q)3/4. In the Edwards-Anderson model truncated to the
fourth order, on the other hand, we found a much more complicated dependence on the overlap,
not easily expressed in terms of physically meaningful functions.

To try and explain the different behaviours we evaluated analytically the free energy density
cost for the generic Hamiltonian with interactions of the form

∑
abQ

n
ab and Tr (Qn). The main

difference between the two classes of models is the “locality” of the interactions of order higher
than three in replica space: while in the case of polynomial interactions all terms of order four
and higher depend only on one value of the replica index, terms like Tr

(
Q4
)

connect different
replica indices. This has the effect of making the function u (Q) explicitly dependent on qmax
and introducing more convoluted factors in the free energy cost dependence on the overlap.
The scaling of the free energy cost as a function of spatial dimensions is however not altered by
these complications, which confirm the robustness of the FPV original calculation regarding
the value of the lower critical dimension Dlc = 2.5.
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Appendix A Eigenvalues

One of the most useful tools used in the paper is the diagonalization of ultrametric matrices,
sometimes called - in the continuum limit - Replica Fourier Transform [16]. It is easy to prove
that any n-dimensional hierarchical matrix of the form (here n = 8):

Q =




qd q2 q1 q1 q0 q0 q0 q0
q2 qd q1 q1 q0 q0 q0 q0
q1 q1 qd q2 q0 q0 q0 q0
q1 q1 q2 qd q0 q0 q0 q0
q0 q0 q0 q0 qd q2 q1 q1
q0 q0 q0 q0 q2 qd q1 q1
q0 q0 q0 q0 q1 q1 qd q2
q0 q0 q0 q0 q1 q1 q2 qd




(94)
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can be written as Q = UΛQU
−1 with U a unitary matrix and

ΛQ = qd 1−




− (4q0 + 2q1 + q2) 0 0 0 0 0 0 0
0 4q0 − (2q1 + q2) 0 0 0 0 0 0
0 0 2q1 − q2 0 0 0 0 0
0 0 0 2q1 − q2 0 0 0 0
0 0 0 0 q2 0 0 0
0 0 0 0 0 q2 0 0
0 0 0 0 0 0 q2 0
0 0 0 0 0 0 0 q2




(95)
This can be obviously generalized for any matrix dimension n, and when taking the continuum
limit n → 0 [6] - denoting as usual the matrix elements Q(u) - the matrix eigenvalues can be
written as:

ΛQ(u) = qd −
(
uQ(u) +

∫ 1

u

dy Q (y)

)
(96)

In the paper we are interested mainly in two ultrametric matrices: Qab and Pab. In the
following we list a number of algebraic properties of these matrices in the continuum limit, in
their diagonal basis. In addition we are interested in the matrix Qαβ defined at the beginning
of the paper. Being this matrix constructed in a hierarchical way from Qab and Pab it is easy
to write the eigenvalues of the former in terms of ΛQ and ΛP . In particular we have:

Qαβ =

(
Qab Pab
Pab Qab

)
(97)

and being Q and P commuting matrices we obtain:

ΛQαβ =

(
(ΛQ + ΛP )ab 0

0 (ΛQ − ΛP )ab

)
(98)

While the matrix Pab has diagonal element p̃ the matrix Qab has null diagonal by construction,
so summing the eigenvalues of the two matrices we obtain (for the extrema of integration we
use the same notation as in the paper):

ΛQ+P (u) = p̃−
[
u(q + p)u +

∫ 1

u

dy(q + p)y

]
(99)

ΛQ+P (u) =





−
[
2u qu + 2

∫ up
2

u
dy qy +

∫ 1

up
dy qy

]
0 ≤ u ≤ up

2

−
[
up p̃+

∫ 1

up
dy qy

]
up
2 < u ≤ up

−
[
u qu +

∫ 1

u
dy qy

]
up < u ≤ 1

(100)

For their difference instead we have:

ΛQ−P (u) = −p̃−
[
u(q − p)u +

∫ 1

u

dy(q − p)y
]

(101)

ΛQ−P (u) =




−
[
upp̃+

∫ 1

up
dy qy

]
0 ≤ u ≤ up

−
[
u qu +

∫ 1

u
dy qy

]
up < u ≤ 1

(102)

The same derivations performed for the matrices Qαβ , Qab and Pab can be carried over for
their perturbations δQαβ , δQab and δPab:

ΛδQ+δP (u) = −
[
u(δq + δp)u +

∫ 1

u

dy(δq + δp)y

]
(103)
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ΛδQ+δP (u) =





0 0 < u ≤ u1
−
[
2u δqu + 2

∫ u2

u
dy δqy +

∫ u4

u3
dy δqy

]
u1 < u ≤ u2

−
∫ u4

u3
dy δqy u2 < u ≤ u3

−
[
u δqu +

∫ u4

u
dy δqy

]
u3 < u ≤ u4

0 u4 < u ≤ 1

(104)

ΛδQ−δP (u) = −
[
u(δq − δp)u +

∫ 1

u

dy(δq − δp)y
]

(105)

ΛδQ−δP (u) =





−
∫ u4

u3
dy δqy 0 ≤ u ≤ u3

−
[
u δqu +

∫ u4

u
dy δqy

]
u3 < u ≤ u4

0 u4 < u ≤ 1

(106)

Often we will also use the notation ΛQu,±, ΛδQu,± to indicate ΛQ±P (u), ΛδQ±δP (u) in order to
simplify the notation. In addition to the eigenvalues of the matrices Qαβ and δQαβ for the
evaluation of equation (85) we need to compute integrals of the function δq (u). It is however
enough to compute these integrals at the leading order in δ, so it is useful to express the
function δqu up to the first order in δ:

δq(u) =
δ

4 u̇ (p̃)





0 0 ≤ u < u1

−
(

2u−up
δ + 1

)2
u1 ≤ u < up

2

−
(

2u−up
δ − 1

)2
up
2 ≤ u < u2

0 u2 ≤ u < u3(
u−up
δ + 1

)2
u3 ≤ u < up(

u−up
δ − 1

)2
up ≤ u < u5

0 u5 ≤ u ≤ 1

(107)

Finally we want to prove a set of useful identities for the integrals of perturbations in replica
space, which will be widely used in the next appendix. The quantities of interest are:

I2,k =

∫ 1

0

du

u2
(qu − p̃)2k−1

[
Λ2
δQu,+ + Λ2

δQu,−Θ(u− up)
]

(108)

Which, expanding the eigenvalues, become:

I2,k = 4

∫ up
2

up−δ
2

du (qu − p̃)2k−1
[
δqu −

1

u

∫ u

up−δ
2

dy δqy

]2
+ (109)

+ 2

∫ up+δ

up

du (qu − p̃)2k−1
[
δqu +

1

u

∫ up+δ

u

dy δqy

]2

Without cancellations the leading order terms in the last expression would be proportional to
δ2(k+1), but we have:

4

∫ up
2

up−δ
2

du (qu − p̃)2k−1 δq2u + 2

∫ up+δ

up

du (qu − p̃)2k−1 δq2u = 0 (110)

so in the end we obtain:

I2,k =
Γk δ

2k+3

up u̇ (p̃)
2k+1

+ o
(
δ2(k+2)

)
(111)

where Γk are proportionality factors which will have to be evaluated performing the integrals.
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Appendix B Traces

In this section we write in more details the derivation of the trace terms evaluated in section
5. For the first term we have:

Tr
(
A(2)(Q)δQ2

)
= −

∑

r={+,−}

∫ 1

0

du

u

d

du

(
A(2)(ΛQu,r)Λ

2
δQu,r

)
(112)

= lim
n→0

1

n
A(2)(ΛQn,−)Λ2

δQn,− +
∑

r={+,−}

∫ 1

0

du

u2
A(2)(ΛQu,r)Λ

2
δQu,r

with ΛQu,± = Λ(q±p)u and ΛδQu,± = Λ(δq±δp)u . Using the equations of motion we can write:

A(2)
(
Λ(q+p)u

)
+B(2) (qu) = 0 (113)

In addition we have:

A(2)
(
Λ(q−p)u

)
=

{
−B(2) (p̃) qu ≤ p̃
−B(2) (qu) qu > p̃

(114)

Using the last identities equation (112) becomes:

Tr
(
A(2)(Q)δQ2

)
= −B(2) (p̃)


 lim
n→0

Λ2
δQn,−

n
+

∑

r={+,−}

∫ 1

0

du

u2
Λ2
δQu,r


+ (115)

−
∞∑

j=1

B(j+2) (p̃)

j!

∫ 1

0

du

u2
(qu − p̃)j

[
Λ2
δQu,+ + Λ2

δQu,−Θ(u− up)
]

=

= −B(2) (p̃) Tr
(
δQ2

)
+ Ires,2

with

Ires,2 = −
∞∑

j=1

B(j+2) (p̃)

j!

∫ 1

0

du

u2
(qu − p̃)j

[
Λ2
δQu,+ + Λ2

δQu,−Θ(u− up)
]

(116)

Barring accidental cancellations at order δ5 the only non-negligible terms in the last expression
will be the ones proportional to B(3) (p̃) and B(4) (p̃). The contributions of both of them will
be of order δ5, due to the cancellations proved in (111).

We have for the dominant contributions:

Ires,2 =
4B(3) (p̃)

up

[∫ up
2

up−δ
2

du (qu − p̃) δqu

(∫ u

up−δ
2

dz δqz

)
−
∫ up+δ

up

du (qu − p̃) δqu

(∫ up+δ

u

dz δqz

)]
+

−B(4) (p̃)

[
2

∫ up
2

up−δ
2

du (qu − p̃)2 δq2u +

∫ up+δ

up

du (qu − p̃)2 δq2u

]
+O

(
δ6
)

(117)

We will thus have (using (111) again) the result:

Ires,2 =

(
γ
B(3) (p̃)

up
+ ζ

B(4) (p̃)

u̇ (p̃)

)
δ5

u̇ (p̃)
3 +O

(
δ6
)

(118)

with γ = 27
2520 and ζ = − 1

2520 . This term is proportional to u̇ (p̃)
−3

if and only if A(4) (Q) = 0,
so we see a difference between the “local” theories, in which the highest order trace term is
Tr
(
Q3
)
, and theories like the Edwards-Anderson model.

The second trace term is given by:

Tr
(
A(3)(Q)δQ3

)
= −

∑

r={+,−}

∫ 1

0

du

u

d

du

(
A(3)(ΛQu,r)Λ

3
δQu,r

)
(119)

= lim
n→0

1

n
A(3)(ΛQn,−)Λ3

δQn,− +
∑

r={+,−}

∫ 1

0

du

u2
A(3)(ΛQu,r)Λ

3
δQu,r
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For the third derivative of A (ΛQ) we have the identities:

A(3)
(
Λ(q+p)u

)
=





1
2uB

(3) (qu) qu < p̃
1
up
B(3) (p̃) qu = p̃

1
uB

(3) (qu) qu > p̃

(120)

A(3)
(
Λ(q−p)u

)
=

{
1
up
B(3) (p̃) qu ≤ p̃

1
uB

(3) (qu) qu > p̃
(121)

As in the first trace term using these identities we obtain:

Tr
(
A(3)(Q)δQ3

)
=
B(3) (p̃)

up
Tr
(
δQ3

)
+ Ires,3 (122)

with

Ires,3 =

∞∑

j=1

1

j!

[(
d

dq

)j
B(3) (q)

u (q)

]

q=p̃

× (123)

×
∫ 1

0

du

u2
(qu − p̃)j

[
Λ3
δQu,+Θ(up − u) +

(
Λ3
δQu,+ + Λ3

δQu,−
)

Θ(u− up)
]

(124)

where as usual u (q) is the inverse function of Qf (u). The only terms to analyze are Tr
(
δQ3

)

and the one in Ires,3 with j = 1, the others giving subleading corrections. We find:

Tr
(
δQ3

)
= 6

[∫ up+δ

up−δ
du δq2u

(∫ up+δ

u

dz δqz

)
− 4

∫ up+δ

2

up−δ
2

du δq2u

(∫ u

up−δ
2

dz δqz

)]
+

+ 2

[
2

∫ up+δ

2

up−δ
2

du (2 u− up) δq3u +

∫ up+δ

up−δ
du (u− up) δq3u

]
+O

(
δ6
)

=

= η
δ5

u̇ (p̃)
3 +O

(
δ6
)

(125)

Ires,3 = σ (up)

∫ 1

0

du

u2
(qu − p̃)

[
Λ3
δQu,+Θ(up − u) +

(
Λ3
δQu,+ + Λ3

δQu,−
)

Θ(u− up)
]

=

= −2up σ (up)

[
4

∫ up
2

up−δ
2

du (qu − p̃) δq3u +

∫ up+δ

up

du (qu − p̃) δq3u

]
+O

(
δ6
)

=

= θ
up σ (up)

u̇ (p̃)
4 δ5 +O

(
δ6
)

(126)

with σ(u) =
(
d
dq
B(3)(q)
u(q)

)
q=Qf (u)

, η = 1
20 and θ = − 3

1792 . Finally for the trace we obtain:

Tr
(
A(3)(Q)δQ3

)
=

(
η
B(3) (p̃)

up
+ θ

up σ (up)

u̇ (p̃)

)
δ5

u̇ (p̃)
3 +O

(
δ6
)

(127)

As we noted previously the proportionality to u̇ (p̃)
−3

is attained if and only if A(4) (Q) = 0.
The last significant term is the trace of fourth order, Tr

(
A(4)(Q)δQ4

)
. To evaluate it we can

use the identities:

A(4)
(
Λ(q+p)u

)
= −





σ(u)
2u qu < p̃
σ(up)
up

qu = p̃
σ(u)
u qu > p̃

(128)
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A(4)
(
Λ(q−p)u

)
= −

{
σ(up)
up

qu ≤ p̃
σ(u)
u qu > p̃

(129)

The trace can then be expressed as:

Tr
(
A(4)(Q)δQ4

)
= −σ (up)

up


 lim
n→0

Λ4
δQn,−

n
+

∑

r={+,−}

∫ 1

0

du

u2
Λ4
δQu,r


 = (130)

= −2up σ (up)

[
4

∫ up+δ

2

up−δ
2

du δq4u +

∫ up+δ

up−δ
du δq4u

]
+O

(
δ6
)

=

= ϑ
up σ (up)

u̇ (p̃)
4 δ5 +O

(
δ6
)

with ϑ = − 1
192 .
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