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A B S T R A C T

Research on rosemary antioxidant activity and its potential use in human health and food applications is focused
on rosemary leaves and two main bioactive compounds carnosic acid and carnosol. However, many other, not-
yet identified molecules could be present, especially in rosemary by-products. In this study, we first showed that
rosemary stem extract was the most efficient in protecting human skeletal muscle cells against oxidation. Then,
using bioassay-guided fractionation, we identified taxodione, an abietane diterpene, as the main bioactive
molecule in the rosemary stem extract. We demonstrated that taxodione protects skeletal muscle cells from
hydrogen peroxide-induced cytotoxic damage (by monitoring ROS production, H2AX phosphorylation and
CHOP gene expression). Moreover, we showed that taxodione reduces lipid and protein oxidation in post-
mortem mice and beef muscles during refrigerated storage. In conclusion, our results indicate that taxodione
extracted from rosemary stems, a cheap and unused resource of natural antioxidants, limits oxidation in muscle
tissue.

1. Introduction

Oxidative processes cause damage to biomolecules and are asso-
ciated with muscle wasting diseases in humans, and undesirable
changes in food systems (Canton, Menazza, & Di Lisa, 2014; Choi, Ow,
Yang, & Taneja, 2016; Papuc, Goran, Predescu, & Nicorescu, 2017). In
human and animal diseases, accumulation of pro-oxidant molecules
derived from reactive oxygen species (ROS) can affect the balance be-
tween protein synthesis and degradation, induces muscle fatigue, cell
death and skeletal muscle repair dysfunction, resulting in extensive
muscle loss over time (Canton et al., 2014; Choi et al., 2016).

Antioxidant compounds can be used to prevent or delay these oxidative
processes. However, evidences on their efficacy are very limited
(Passerieux et al., 2015), and the antioxidant capacity to delay, prevent,
or reverse loss of muscle mass is unclear (Steinhubl, 2008). During
animal meat oxidation, changes in a large number of compounds, such
as lipid peroxidation and discoloration (myoglobin oxidation), ad-
versely affect meat products and limit their shelf life (Papuc et al.,
2017). Synthetic antioxidants, e.g., butylated hydroxyanisole (BHA) and
butylated hydroxytoluene (BHT) have been added to meat and meat
products with success, but their use has been discouraged because of
their toxic effects and recent consumer interest in natural products.
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Therefore, the meat industry is promoting research to identify new
inexpensive and effective natural antioxidants (Shah, Bosco, & Mir,
2014). In conclusion, it is of great interest to identify effective and safe
antioxidant molecules for human health and food application.

Plants are an important source of bioactive molecules (Newman &
Cragg, 2012). Rosemary (Rosmarinus officinalis L., Lamiaceae) leaf ex-
tracts contain many different phenolic compounds, including flavo-
noids and phenolic diterpenes and triterpenes (Borras-Linares et al.,
2014), with many major biological properties (antidiabetic, anti-in-
flammatory, antioxidant and anticancer) (Altinier et al., 2007; Bakirel,
Bakirel, Keles, Ulgen, & Yardibi, 2008; Lo, Liang, Lin-Shiau, Ho, & Lin,
2002; Perez-Fons, Garzon, & Micol, 2010). The antioxidant activities of
rosemary leaf extracts can mainly be attributed to phenolic diterpenes
carnosic acid (CA) and carnosol (CO), and to a lesser extent to other
phenolic compounds, such as rosmarinic acid (Birtic, Dussort, Pierre,
Bily, & Roller, 2015; Srancikova, Horvathova, & Kozics, 2013). Ros-
marinus officinalis extracts have been added as preservatives in pro-
cessed meat, in fish oil enriched milk, to replace chemical antioxidants
and protect from oxidation (Qiu, Jacobsen, & Sorensen, 2018; Shah
et al., 2014; Xiong, 2017). Moreover, rosemary-based diets and its ac-
tive molecules, essentially carnosic acid, can enhance the antioxidant
status of animal skeletal muscle (Ortuno, Serrano, Jordan, & Banon,
2016). In 2008, Rosemary leaf extracts have been approved for use in
the European Union as food additive E932 under the Regulation 1333/
2008 of the European Parliament and Council.

The aim of this study was to identify bioactive molecules from ro-
semary by-products, by bioassay-guided fractionation approach, to
prevent the deleterious effects of oxidation in muscle cells. Firstly, to
screen antioxidant properties of putative bioactive molecules, we used a
cellular model of H2O2-treated human skeletal muscle cells. In a second
step, the identified biomolecule was tested on post-mortem muscles to
point out its potential application in protecting meat products against
oxidation.

2. Materials and methods

2.1. General experimental procedure

Flash column chromatography was performed using a Spot Liquid
Chromatography Flash instrument (Armen Instrument, Saint-Avé,
France) equipped with an UV/visible spectrophotometer, a quaternary
pump and a fraction collector. 1H NMR, 13C NMR and 2D NMR spectra
were recorded in the appropriate deuterated solvent on a BRUKER
Avance III – 600MHz NMR spectrometer. HR-ESI-MS was recorded on a
Synapt G2-S (Waters) HDMS-Q-TOF mass spectrometer.

2.2. Reagent and standards

DPPH radical (97%), cyclohexane (99.8%), chloroform (99%), di-
chloromethane (99.9%), deuterated chloroform (99.8%), DMSO
(99.9%) and Tempol were purchased from Sigma-Aldrich (Steinheim,
Germany). Acetonitrile (99.9%) was purchased from Chromasolv
(Seelze, Germany). Formic acid (98%), ethyl acetate (99%) and acetone
(99.5%) were from Panreac (Barcelona, Spain). Trolox (98%) was
purchased from Fluka Chemicals (Steinheim, Switzerland), and ethanol
(99.9%) from VWR BDH Prolabo (Pennsylvania, USA). Carnosic acid
(99%) and carnosol (99%) were purchased from Phytolab (Germany).

2.3. Plant material

Rosmarinus officinalis was collected in the North of Montpellier
(France) in February 2015. Dry stems and leaves were ground and di-
rectly extracted. Voucher specimens were deposited as no 05515O RL
and RS.

2.4. Extraction

150 g of ground rosemary stems were macerated in the dark at room
temperature with 900 g of absolute ethanol and 450 g of distilled water,
with agitation every 24 h. After 7 days, the stem extract was filtered.
Evaporation under reduced pressure to dryness yielded 12.2 g of hydro-
ethanolic extract, named RS (Rosemary Stems). The same procedure
was used for 150 g of ground leaves and allowed obtaining 69 g of
hydro-ethanolic extract, named RL (Rosemary Leaves). The same pro-
cedure was used for 150 g of ground leaves and stems, named RW
(Rosemary Whole). The dry extracts were kept at−20 °C until analysis
and purification.

2.5. Bioassay-guided isolation of taxodione from the rosemary stem extract

At each purification step, fractions were tested using the assay de-
scribed below (part 2.9). The RS extract (12.2 g) was partitioned in
CH2Cl2 soluble fraction and aqueous fraction. After evaporation under
reduced pressure to dryness, these two fractions yielded 4.41 g of CH2Cl2
soluble extract and 7.79 g of aqueous soluble extract. The CH2Cl2 soluble
extract was separated on normal-phase flash column chromatography
(Merck Chimie SVF D26-SI60, 15–40 µm-30 g, flow rate 6.5mL/min,
25mL/fraction). Elution was completed with mixtures of cyclohex-
ane:ethyl acetate (100:0 to 0:100), and then chloroform:methanol (100:0
to 80:20 in 1% then 5% stepwise). After thin-layer chromatography
(TLC) analysis, the first fractions eluted with 100% cyclohexane (frac-
tions 1–69) were combined and concentrated under reduced pressure,
yielding fraction F1 (370mg). F1 was purified on LH-20 Sephadex gel
(2.4× 38 cm, 40 g LH-20, elution: 100% CH2Cl2 to 100% methanol in
50% stepwise, then 100% acetone, 3mL/fraction). Fractions 17 to 33
eluted with 100% CH2Cl2 were combined and concentrated under re-
duced pressure, yielding fraction F1-2 (160mg). F1-2 was finally purified
on reverse-phase flash column chromatography (Chromabond® Flash,
RS4 C18, 4.3 g, flow rate: 5mL/min, 25mL/fraction). Elution was com-
pleted with a mixture of acetonitrile/water (50:50 to 100:0) and gave
111 fractions. Fractions 17 to 29 eluted with acetonitrile/water (60:40)
were combined (F1-2–3) to give 50mg of pure compound 1 determined
by NMR as taxodione. 1H NMR (CDCl3, 600MHz), 13C NMR (CDCl3,
150MHz) and HMBC data were shown in Table 1. 1H and 13C spectra
were presented in supplementary data (Supplementary Fig. s1 A and B).

2.6. High-performance liquid chromatography (HPLC) analysis

Chromatographic separation and detection for quantitative analysis
were performed on a SpectroSYSTEM® instrument that included a
P4000 pump, a SCM1000 degasser, an AS3000 automatic sampler and
an UV6000LP DAD detector (Thermo Fisher Scientific Inc., San José,
USA). The system was operated using the ChromQuest software, version
5.0. Chromatographic separation was achieved on an ODS Hypersyl C18
column (250mm× 4.6 mm, 5 μm, Thermo Fisher Scientific Inc., San
José, USA), with a column temperature maintained at 30 °C. Fractions
were eluted at a flow rate of 1mL/min (initial back pressure of ap-
proximately 105 bar), using solvent A (water/formic acid 99.9:0.1 v/v)
and solvent B (acetonitrile). The gradient used for the analysis of
standards and rosemary extracts was: 0–10min, 85% A; 10–20min,
85–65% A; 20–25min, 65–30% A; 25–30min, 30% A; 30–50min,
30–20% A; 50–60min, 20–10% A; 60–70min, 10–85%; 70–80min 85%
A. The UV/vis spectra were recorded in the 200–400 nm range and
chromatograms were acquired at 230, 280 and 330 nm. RS extract was
analysed at 5mg/mL (acetonitrile/water 60:40), RW and RL extracts
were analysed at 20mg/mL for quantification of TX.

2.7. Quantification of taxodione (TX) by HPLC

Linearity/work range: Standard curves were generated with in-
creasing amounts of TX corresponding to a concentration range of
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0.029 to 1mg/mL (n=3). Peak areas of taxodione were integrated and
a calibration curve constructed. In regression analysis, curve fitting was
deemed acceptable if the regression coefficient r was greater than 0.99.

Limit of detection/Limit of quantification (LOD/LOQ): The LOD
was defined as the sample concentration resulting in a response three
times higher than the noise level. The LOQ was defined as the sample
concentration resulting in a response ten times higher than the noise
level.

Taxodione recovery was assessed by sample analysis at three dif-
ferent concentrations (0.05, 0.4 and 0.8mg/mL). Accuracy was ex-
pressed as percent error [(mean of measured)/mean of ex-
pected]× 100, while precision was the determined coefficient of
variation (CV, in %).

Recovery in extract samples after addition of standard known
amounts of taxodione: the RS extract was analysed by HPLC to quantify
TX concentration and compared with the same extract spiked with
known concentrations of pure TX. Recoveries were determined as
[(mean value in the spiked extract – mean value in the blank extract)/
(expected concentration)× 100].

2.8. Primary cultures of human myoblasts

The quadriceps muscle biopsy was from one healthy adult (AFM-
BTR “Banque de tissus pour la recherche”). Myoblasts were purified
from the muscle biopsy and were cultured on collagen-coated dishes in
DMEM/F12 medium with 10% foetal bovine serum (FBS), 0.1%
Ultroser G and 1 ng/ml of human basic fibroblast growth factor (pro-
liferation medium), as previously described (Kitzmann et al., 2006). For
cell differentiation, confluent cells were cultured in DMEM with 4% FBS
for 3–5 days (differentiation medium).

2.9. Cell death and ROS quantification

Myoblasts: Myoblasts were seeded in 35mm collagen-coated dishes,
cultured in proliferation medium, pre-incubated or not with the tested
compounds for 24 h and then incubated or not with a lethal con-
centration of hydrogen peroxide (H2O2), a strong pro-oxidant/pro-

apoptotic compound, for 24 h. The optimal H2O2 concentration was the
concentration required to kill between 30% and 50% of total cells and
was established before each experiment. In general, myoblasts were
incubated with 120 μM H2O2. Dead myoblasts were identified by
staining with the Muse® Count and Viability Kit, and ROS was quanti-
fied with the Muse® Oxidative Stress Kit, followed by analysis with a
Fluorescence Activated Cell Sorting (FACS) Muse apparatus (Millipore,
France).

Myotubes: Myoblasts were seeded in 35mm collagen-coated dishes,
cultured in proliferation medium until confluence, and then switched to
differentiation medium for 4 days. At day 2, cells were incubated with
TX for 24 h prior to incubation with H2O2 for 24 h. The H2O2 con-
centration used in myotube cultures (550 μM) was higher than that
used for myoblasts, suggesting that myotubes are resistant to apoptosis
inducers (Salucci et al., 2013). As myotubes were too big for FACS
analysis, H2O2 effect was determined by quantifying lactate dehy-
drogenase (LDH) activity, which is increased in the culture medium
during tissue damage, using the LDH Cytotoxic Kit (ThermoFisher,
France). In parallel, myotube cultures were loaded with a ROS-fluor-
escent probe (CellRox) followed by fluorescence quantification using a
TECAN spectrophotometer.

2.10. RT-qPCR assays

Myoblasts were seeded in 35mm collagen-coated dishes, cultured in
proliferation medium, pre-incubated or not with TX for 24 h, and then
incubated or not with a sub-lethal concentration of H2O2 (80 μM; to
avoid interference with dead cells) for 24 h. Then, total RNA was iso-
lated from muscle cells using the NucleoSpin RNA II Kit (Macherey-
Nagel, Hoerdt, France). The RNA concentration of each sample was
measured with an Eppendorf BioPhotometer. cDNA was prepared using
the Verso cDNA Synthesis Kit (Thermo Scientific, Ilkirch, France). The
expression of the CHOP (target) and RPLPO (control) genes was ana-
lysed by quantitative polymerase chain reaction (qPCR) on a
LightCycler apparatus (Roche Diagnostics, Meylan, France), as pre-
viously described (El Haddad et al., 2017), using the following primers:

RPLPO (F-TCATCCAGCAGGTGTTCG; R-AGCAAGTGGGAAGGTG
TAA)

CHOP (F-AAGGAAAGTGGCACAGC; R-ATTCACCATTCGGTCAATC
AGA).

2.11. Western blotting

Myoblasts were seeded in 35mm collagen-coated dishes, cultured in
proliferation medium, pre-incubated or not with TX for 24 h and then
incubated or not with 80 μM H2O2 for 24 h. Protein extracts were se-
parated by SDS-PAGE gel electrophoresis and transferred to ni-
trocellulose membranes, blocked at room temperature with Odyssey
blocking buffer (Eurobio, France) and probed with the rabbit polyclonal
anti-Histone H1.4 (Sigma-Aldrich; 1/5000) and rabbit polyclonal anti-
gamma H2AX (Cell signalling; 1/3000) antibodies followed by IRDye®
680RD and IRDye® 800RD secondary antibodies (Eurobio, France).
Fluorescence was quantified with the Odyssey software. Data were
normalized to Histone H1.4 expression.

2.12. Muscle sampling and preparation

The experimental protocol of the mice study was in strict ac-
cordance with the European directives (86/609/CEE) and was ap-
proved by the Ethical Committee of the Occitanie Region.
Gastrocnemius muscles from six-month-old C57BL/6 male mice were
removed and immediately placed on ice. Muscles were then minced
with sterile scissors for 5min and divided in 600mg batches. Each
batch of minced muscle was mixed with different amounts of butylated
hydroxytoluene (BHT) (0.010%, 0.005%, 0.0025% w/w minced
muscle), carnosic acid (CA) (0.015%, 0.0075%, 0.00375% w/w minced

Table 1
NMR data of Taxodione in CDCl3 (at 600MHz for 1H NMR and 150MHz for 13C
NMR).
Position δH (J in Hz) δC HMBC

1α 1.73 dd (2.4, 10.6)a 37.1 C-2, C-9
1β 2.92 br d (10.6) C-2, C-5, C-6 (low), C-10, C-20
2α 1.58m 18.7 C-3, C-4
2β 1.71 q5t (13.6, 2.4)a C-3
3α 1.20 dd (3.5, 13.0) 42.7 C-4
3β 1.40 q (13.2) –
4 33.0
5α 2.58 s 63.1 C-4, C-6, C-9, C-10,
6 – 201.1
7 6.19 s 134.01 C-5, C-9, C-14
8 140.1
9 125.8
10 – 43.0
11 145.1
12 181.8
13 145.45
14 6.87 s 136.3 C-7, C-8, C-9, C-12, C-15
15 3.06 sept (6.8) 27.3 C-12, C-13, C-14, C-16b and/or C-17b
16 1.17 d (7.0) 21.3b C-13, C-15, C-16b and/or C-17b
17 1.15 d (7.0) 21.8b C-13, C-15C-16b and/or C-17b
18 1.10 s 33.4 C-3, C-4, C-5, C-19,
19 1.26 s 22.2 C-1, C-4, C-5, C-9, C-10
20 1.26 s 22.0
11-OH 7.57 s
a Partially overlapped signal.
b These assignments are interchangeable.
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muscle) or taxodione (TX) (0.015%, 0.0075%, 0.00375% w/w minced
muscle) dissolved in ethanol (50 μL/600mg). A control batch was
mixed only with ethanol (50 μL/600mg). Different percentages of the
three antioxidants were used to correct for the molecular weight dif-
ferences. Each batch of minced muscle was divided in four portions
(150mg) using a weighing cup, and individually packaged in poly-
propylene film bags. Three portions were stored at 4 ± 1 °C in the dark
for 7 days. The fourth (0 day) was immediately homogenized in 50mM
phosphate buffer (pH 7.0) (1:9) with an Ultra-Turrax homogenizer. The
fraction of homogenate needed for thiobarbituric acid reactive sub-
stances (TBARS) measurement was quickly frozen, and the rest of
homogenate was centrifuged at 1000 g at 4 °C for 15min before storage
at −20 °C for total thiols measurements. The same procedure was
adopted for beef meat (“entrecote”). The pieces of meat came from
animals slaughtered 1 week before.

2.13. TBARS measurement

The lipid peroxidation index was determined in muscle homo-
genates by measuring TBARS (Sunderman, Marzouk, Hopfer, Zaharia, &
Reid, 1985). Briefly, muscle homogenates were mixed with 154mM
KCl, phosphoric acid (1% v/v) and 30mM thiobarbituric acid (TBA).
The mixture was boiled at 100 °C for 1 h. After cooling, it was extracted
with n-butanol and centrifuged at 1000g at room temperature for
15min. The fluorescence intensity of the organic phase was measured
with a spectrofluorometer (Ex: 515 nm; Em: 553 nm). A standard was
prepared from 1,1,3,3-tetraethoxypropane (TEP), and results were ex-
pressed as nanomoles of TBARS per gram of tissue and were the
mean ± SD of three experiments.

2.14. Protein oxidation assay or sulfhydryl group measurement

Total thiol quantification (Faure & Lafond, 1995) was based on the
reaction of 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) with the samples
that produces thionitrobenzoic acid (TNB), a yellow product that can be
quantified spectrophotometrically at 412 nm. Results were expressed as
nanomoles of total thiols per milligram of protein and were the
mean ± SD of three experiments. Protein concentrations were de-
termined using the BioRad Protein Assay (BioRad, Hercules, CA, USA)
and bovine serum albumin as standard.

2.15. Statistical analysis

Statistical analysis was done with the GraphPad Prism 6.0 software
(GraphPad Software Inc., San Diego, CA, USA). All experiments were
performed in triplicate. Error bars represent the SD of the mean.
Statistical significance was determined using one-way ANOVA;
p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p < 0.0001 (****)
were considered significant.

3. Results and discussion

3.1. Rosemary stem extract has a strong antioxidant activity

To screen the antioxidant activity of rosemary extract, we used an ex
vivo cell model based on primary human myoblasts (skeletal muscle
precursor cells). We previously showed that H2O2, a strong pro-oxidant
molecule, increases the percentage of apoptotic cells in adherent cul-
tures of human myoblasts (skeletal muscle precursors) (Jean et al.,
2011). We tested the effect of pre-incubating human myoblasts with
increasing concentrations of Rosmarinus officinalis extract from a mix-
ture of leaves and stems (whole rosemary extract, RW) or Tempol, a
powerful synthetic antioxidant, for 24 h prior to incubation with a le-
thal concentration of H2O2. As expected, Tempol protected human
myoblasts efficiently against H2O2-induced cell death. RW also effi-
ciently reduced cell death at all tested concentrations (Fig. 1A). Then,

we prepared Rosmarinus officinalis leaf (RL) or stem (RS) extracts and
determined their toxicity by incubating myoblasts with increasing
concentrations of these extracts for 24 h. Only the concentration of
10 µg/mL RS extract was significantly cytotoxic (Fig. 1B). Therefore, we
chose to incubate myoblasts with increasing concentrations of RL or RS
extracts below 10 μg/mL for 24 h before addition of H2O2 and cell death
quantification. RS was the most efficient in protecting myoblasts
against H2O2-induced cell death at 1, 2 and 4 µg/mL (Fig. 1C). This
result was quite surprising because the two main rosemary antioxidants
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Fig. 1. Rosemary stem extract protects human myoblasts from induced
oxidative stress. Cell death quantification (percentage of all cells) in human
myoblasts that were incubated with (A) Rosmarinus officinalis whole extracts
(RW) at indicated concentrations or tempol (50 μM as control) or with (B, C)
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not incubated with H2O2. Cell death was quantified using the Cell Count and
Viability Kit and the Muse Cell Analyzer; p < 0.001 (***) and p < 0.0001
(****) compared with H2O2 (A, C) and CTRL (B) (one-way ANOVA).
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carnosic acid (CA) and carnosol (CO) are mainly extracted from leaves
and are present at very low levels in the woody parts of the plant, such
as stems (del Bano et al., 2003). This suggested that other molecule(s)
might contribute to RS antioxidant activity.

3.2. Bioassay-guided isolation of the antioxidant compound from the RS
extract

To isolate the compound(s) responsible for the antioxidant activity
of the RS extract, we used a bioassay-guided fractionation approach. At
each purification step, we evaluated the ability of the obtained fractions
to protect myoblasts against H2O2-induced cell death. The RS extract
(12.2 g) was partitioned between water and CH2Cl2 (Fig. 2). The CH2Cl2
soluble fraction (4.41 g) was responsible for RS antioxidant activity
(data not shown). Therefore, we further purified this CH2Cl2 fraction on
normal-phase flash chromatography (elution with cyclohexane/ethyl
acetate then chloroform/methanol) to obtain three fractions. Only the
first fraction (370mg) was active and was chromatographed on Se-
phadex LH-20 gel eluted with CH2Cl2 then methanol yielding three
fractions. The second fraction (160mg) was finally purified on C18
flash-chromatography eluted with acetonitrile/water (see Fig. 2) to
obtain 50mg of pure compound. The compound was obtained as an
orange powder, and its molecular formula was deduced as C20H26O3
from the analysis of its NMR and HRMS data (m/z 315.1959 [M+H]+,

calculated for C20H27O3 315.1960). Analyses of 1H-, 13C- and 2D-NMR
experiments (Table 1) identified this compound as taxodione (TX)
(Rodríguez, 2003; Tezuka et al., 1998), first isolated from the leaves of
Taxodium distichum (Kupchan, Karim, & Marcks, 1968). We obtained a
purification yield of 0.33mg of taxodione (TX)/g of dry stems or
4.1 mg/g dry extract with purity of 94.8% determined in 1H NMR
spectrum.

3.3. Quantification of taxodione in rosemary extracts

To quantify taxodione (TX) in rosemary stem (RS), rosemary leaf
(RL) and rosemary leaves and stems extracts (RW), an HPLC-based
method was developed and validated. All analyses were performed at
330 nm. The method selectivity was assessed by analysis of the RS, RL
and RW chromatograms. No peak of interfering compounds was ob-
served within the intervals of TX retention time (tR= 43.1min). The
specificity of the method has been attested by the use of DAD detector
and confirmation of UV spectra of all detected peaks (UV spectrum of
TX was characteristic with λmax= 322 and 333 nm). Furthermore, no
degradation interfering compound was observed after 24 h in solution.
The samples were analysed in the day following their preparation to
avoid degradation. Linearity was evaluated from the calibration curves
by triplicate analysis of TX at five concentrations (0.029, 0.125, 0.250,
0.5 and 1mg/mL). Linearity was expressed as the coefficient of linear

Fig. 2. Different steps of taxodione purification from rosemary stem extract.
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correlation (r) from the slope of the calibration curve. The linearity of
the analytical response across the studied range (0.029–1mg/mL) was
excellent, with a correlation coefficient of 0.9985. The signal to noise
(S/N) ratio was evaluated for the time window in which taxodione was
expected, by injecting ten blank samples. The LOD was evaluated to be
three times higher than the S/N ratio, corresponding to 8 μg/mL. The
standard deviation (SD) of 10 known low concentrations of taxodione
(6× estimated LOD, 50 μg/mL) was calculated. Then, the limit of de-
tection (LOD) value was calculated as 3× SD, and the limit of quan-
tification (LOQ) as 10× SD. At 330 nm, the LOD for taxodione was
8.73 μg/mL and the LOQ was 29.1 μg/mL. Accuracy and precision were
assessed by sample analysis of taxodione at three different concentra-
tions (0.05, 0.4 and 0.8mg/mL, n= 5). The TX recovery was in the
acceptable range: 85.6–101.6% (Table 2). Rosemary extract samples
(5 mg/mL) were spiked with known amount of taxodione (0.4 mg/mL)
to evaluate the matrix effect. Recovery, calculated in 15 extract sam-
ples, was in the accepted range: 90.4–99.9% (mean: 96.4%).

This method indicated that in the RS extract, TX concentration was
11.7 mg/g dry extract. Quantification by HPLC suggested that TX
concentration in the RS extract was higher than what suggested by the
purification yield (4.1mg/g dry extract), implying that the conditions
of extraction and purification could be improved. The analysis of RL
and RW extracts shows the absence of TX in these extracts (< LOD).

The abietane terpene taxodione (TX) was previously isolated from
Rosmarinus officinalis roots with a purification yield of 0.14mg/g of dry
roots (Abou-Donia, Assaad, Ghazy, Tempesta, & Sanson, 1989) and
isolated in stems (purification unspecified) (El-Lakany, 2004). Tax-
odione was also detected in mixture with [9]-shogaol in leaves (Borras-
Linares et al., 2015). However, no precise information is giving re-
garding to content of TX in the crude extract obtained. Indeed, TX was
only detected in an enriched fraction. In addition, TX was undetectable
in our RL extracts (< LOD).

TX was also described in different plants: Taxodium distichum,
Taxodium ascendens, Cupressus sempervirens, Volkameria eriophylla (sy-
nonym: Clerodendrum eriophyllum), Plectranthus barbatus, Premna obtusi-
folia, and several Salvia sp.Most of these studies reported TX enrichments
lower than the 0.33mg/g dry stem isolated in the RS extract. Few studies
have focused on obtaining large TX quantities: from Taxodium distichum
seeds and cones (3–3.4mg/g of dry matter) (Hirasawa et al., 2007;
Kupchan et al., 1968), from Salvia phlomoides roots (3.72mg/g of dry
roots) (Hueso-Rodríguez, Jimeno, Rodríguez, Savona, & Bruno, 1983)
and from transformed Salvia austriaca hairy roots (0.43mg/g of dry roots
and 1.15mg/g) (Kuzma, Kaiser, & Wysokinska, 2017; Kuzma et al.,
2016). However, the seeds of Taxodium distichum or the roots of Salvia sp.
are not easily exploitable plant by-products on an industrial scale.

3.4. Taxodione protects human myoblasts and myotubes against H2O2
induced stress

Before assessing TX antioxidant activity, we tested its toxicity by
incubating myoblasts with increasing concentrations of TX for 24 h. We
quantified dead cells (Fig. 3A) and accumulation of ROS (Fig. 3B),
highly reactive molecules associated with apoptotic cells. Based on both
parameters, TX was significantly toxic starting from 1 μg/mL (Fig. 3A
and B). Therefore, to avoid cytotoxicity, we chose to incubate myoblasts
with 0.125 μg/mL, 0.250 μg/mL and 0.5 μg/mL of TX for 24 h before
H2O2 addition. All three concentrations had similar and strong

protective effect against H2O2-induced cell death (Fig. 3C). We then
compared TX antioxidant activity with that of the main bioactive
compounds of rosemary: carnosic acid (CA) and carnosol (CO)
(Fig. 3D). TX was significantly more efficient at all tested concentra-
tions. The antioxidant activity of a molecule could be the result of free
radical scavenging. Indeed, Kolak et al. showed an important anti-
oxidant capacity of TX derived from Salvia barrelieri using different
assays (β-carotene bleaching, DPPH and ABTS free radical scavenging
activity, and cupric reducing antioxidant capacity) (Kolak et al., 2009).

In many cases, transient exposure to H2O2 triggers apoptosis
through the mitochondrial pathway involving, sequential loss of mi-
tochondrial membrane potential, ROS accumulation, endoplasmic re-
ticulum (ER) stress, cytochrome C release, effector caspase-3 activation,
and DNA damages (Redza-Dutordoir & Averill-Bates, 2016)). Therefore,
we assessed TX capacity to efficiently protect myoblasts against H2O2-
induced damages. To measure H2O2-induced cellular damages, we
quantified the level of ROS (Fig. 4A), of γH2AX, a protein phosphory-
lated upon DNA double-strand break formation (Fig. 4B), and of the
CHOP gene, a marker of endoplasmic reticulum stress (Fig. 4C). After
pre-incubation with TX for 24 h and exposure to H2O2 for 24 h, as ex-
pected, H2O2 treatment increased the levels of ROS, γH2AX proteins
and CHOPmRNA. Pre-treatment with TX reduced H2O2 effects, whereas
TX alone did not have any effect. During muscle cell differentiation,
myoblasts, the progeny of satellite stem cells, exit the cell cycle and
spontaneously differentiate into myotubes that are quiescent multi-
nucleated cells expressing muscle-specific structural proteins. To de-
termine whether TX displayed antioxidant activity also in more mature
skeletal muscle cells, we switched confluent human primary myoblasts
to differentiation medium for 4 days. At day 2, we incubated cells with
TX for 24 h, followed by H2O2 for another 24 h. LDH activity and ROS
level were increased in myotubes incubated only with H2O2 (Fig. 4D,
E). Conversely, pre-incubation with TX significantly reduced H2O2 ef-
fects. In the literature, only one manuscript described TX antioxidant
activity ex vivo. Specifically, TX presented antioxidant and protective
effects against serum/glucose deprivation-induced ischemic injury in a
dose dependent manner in PC12 cells (Shafaei-Bajestani, Emami, Asili,
& Tayarani-Najaran, 2014).

We reported that high concentrations of rosemary stem extract
(Fig. 1B) or taxodione (Fig. 3A, B) induce cell cytotoxicity. It is now
well accepted that, although the antioxidant activity of phytochemicals
is proven, they can also display pro-oxidant activities under certain
conditions. In most cases, the pro-oxidant or antioxidant activity in-
timately depends on their concentrations (Bouayed & Bohn, 2010).
Uchihara and collaborators (2018) have shown that taxodione induces
cell toxicity at concentrations above 5 μM (Uchihara et al., 2018). This
cytotoxicity has been already reported by Tayarani and collaborators in
2013. Their results demonstrated that taxodione exhibited high cyto-
toxic activity against apoptosis-proficient HL-60 and apoptosis-resistant
K562 cells, at concentrations above 3 µM (Tayarani-Najaran et al.,
2013). We have performed experiments showing that high doses of
rosemary stem extract (data not shown) or taxodione at concentrations
greater than 3 µM (Fig. 3B) induce ROS accumulation in muscle cells.
Therefore, high concentrations of taxodione induced apoptosis through
ROS accumulation in skeletal muscle cells as previously demonstrated
in cancer cells (Uchihara et al., 2018). In the RS extract, the taxodione
concentration is below the cytotoxic threshold. This suggests that the
toxicity of the rosemary stem extract is also due to other compounds
present in the extract.

Here, we demonstrated that at low concentrations (from 0.4 to
1.6 μM), taxodione exhibits antioxidant activities in human skeletal
muscle cells. Taxodione has an antioxidant activity at similar con-
centrations (0.2–1.5 µM) in PC12 cells (Shafaei-Bajestani et al., 2014).
We postulate that such low concentrations of taxodione could be con-
sidered as “physiological” with beneficial effects as opposed to dele-
terious effects at high doses.

Besides its antioxidant property, TX was reported to have various

Table 2
Taxodione recovery measurements at 330 nm.
Level Observed concentration (CV in %) Range of recovery (%)

0.8mg/mL 0.72 (7.3) 85.6–101.6
0.4mg/mL 0.39 (1.4) 94.6–98.2
0.05mg/mL 0.049 (3.1) 89.8–93.0
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bioactivities: Tumor inhibitor, human cholinesterase inhibitor, anti-
bacterial, DNA binding, anti-termitic, anti-fungal, anti-protozoal, and
anti-leishmanial (Bufalo et al., 2016; Hanson, Lardy, & Kupchan, 1970;
Kupchan et al., 1968; Kusumoto et al., 2009; Kusumoto, Ashitani,
Murayama, Ogiyama, & Takahashi, 2010; Mothana et al., 2014; Yang
et al., 2001; Zaghloul, Gohar, Naiem, & Abdel Bar, 2008). Recently,
using in silico and in vitro screening methods, TX was identified as a
candidate farnesyl synthase inhibitor, potentially useful in patients with
Hutchinson-Gilford progeria syndrome (Liu et al., 2014). However,
using a more complex biological system, we found that TX had no
farnesyl transferase inhibitor activity (Supplementary Fig. s2).

Our results suggest that TX could be helpful in human pathologies
associated with oxidative stress and skeletal muscle wasting, such as
aging, Duchenne muscular dystrophy, FacioScapuloHumeral dystrophy,
laminopathies, dystrophies caused by mutations in the collagen VI and
dysferlin genes (Choi et al., 2016; Passerieux et al., 2015). TX could also
improve the efficacy of therapeutic approaches in skeletal muscle dis-
eases by reducing the strong oxidative stress associated with these
conditions.

3.5. Taxodione limits lipid and protein oxidation in minced meat.

In processed meat, lipids and proteins undergo oxidation over time,
but this can be delayed by addition of antioxidants (Shah et al., 2014).
We have developed pilot experiments on mouse post-mortem muscles
to characterize the antioxidant potential of TX. Despite the physical and
physiological differences between species, mouse post-mortem muscle
exhibits similar patterns of protein degradation (Ehrenfellner, Zissler,
Steinbacher, Monticelli, & Pittner, 2017). In addition, rodents are in-
expensive, available in the majority of laboratories thus allowing better
controls of post-mortem muscle experiments. As described in meat for
food, the lipid oxidation quantified by TBARS gradually increases in
mouse post-mortem muscles from the second day of storage at 4 °C
while the thiol levels decrease sharply indicating a high level of protein
oxidation (data not shown). To determine TX antioxidant potential, we
compared the efficacy in decreasing lipid and protein oxidation of TX,
CA and of the synthetic phenolic antioxidant BHT (Fig. 5). In minced
mouse muscles (CTRL), lipid oxidation, quantified by TBARS analysis,
strongly increased after 7 days of storage at 4 °C. Conversely, thiol le-
vels dropped markedly, indicating a high level of protein oxidation

Fig. 3. Taxodione has a strong anti-
oxidant activity on human muscle cells.
Cell death (A, C, D) and ROS (B) quantifi-
cations (percentage of all cells) in human
myoblasts upon incubation with (A, B, C)
the indicated concentrations of taxodione
(TX) or (D) of the main bioactive com-
pounds of rosemary, carnosic acid (CA) and
carnosol (CO), prior to exposure to (C, D)
120 μM H2O2 (lethal concentration). CTRL:
cells not incubated with H2O2. Cell death
was quantified using the “Cell Count and
Viability Kit” and the Muse Cell Analyzer;
ROS was quantified with the “oxidative
stress kit” and the Muse Cell Analyser.
p < 0.05 (*), p < 0.01 (**) and
p < 0.001 (***) compared with H2O2 (B,
C) and CTRL (A) (one-way ANOVA).
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(Fig. 5A and B). In post-mortem muscle samples containing BHT, CA or
TX, TBARS values were already significantly lower at day 0 (Fig. 5A)
and remained lower than in control (CTRL; non-treated samples) even
at day 7 (Fig. 5A). At day 0, thiol levels were comparable in control and
samples with BHT, CA or TX, but not for the sample with the highest TX
concentration (0.015%) where total thiol level was significantly lower
(Fig. 5B). This could be explained by a potential TX pro-oxidant effect
on proteins, or a consequence of its sulfhydryl activity (Hanson et al.,
1970). After 7 days of storage, thiol level in muscles was significantly
lower in control than in the samples with antioxidants, but not for
0.01% BHT (Fig. 5B). To validate these results on meat for human
consumption, minced beef meat was treated with BHT, CA and TX for
7 days at 4 °C (Fig. 6). As expected, lipid oxidation greatly increased
after 7 days of storage (Fig. 6A). As demonstrated in mouse muscle,
lipid oxidation remained low in BHT, CA and TX treated minced beef

(Fig. 6A). Similarly, thiol concentrations in beef meat were significantly
lower in the BHT, CA and TX samples than in the controls (Fig. 6B). Our
results confirm a protective effect of TX on the oxidation of lipids and
proteins during storage of meat. These results from beef meat assays are
similar with what we observed from post-mortem mice muscles. Thus,
our experiments validate rodent as an animal model useful for pre-
dicting skeletal muscle post-mortem changes and establishing biolo-
gical tests to preserve the integrity of the meat.

4. Conclusion

There is growing interest for cheap and abundant source of natural
antioxidants, thus the large-scale availability of agricultural and in-
dustrial plant waste materials and their low-cost makes them attractive
sources of these bioactive compounds. Rosemary is marketed as dried

Fig. 4. Taxodione decreases oxidative damage
in human muscles cells. Myoblasts were in-
cubated with taxodione (TX) (0.5 μg/mL) for 24 h
prior to exposure to H2O2. (A) Reactive oxygen
species (ROS) production was quantified with the
“Muse oxidative stress Kit” and Fluorescence
Activated Cell Sorting (FACS). (B) Western blot
analysis of phosphorylated γH2AX protein level;
histone H1.4 was used as loading control (left
panel). Quantification of the Western blot data
using the Odyssey software (right panel). (C) RT-
qPCR analysis showing the relative expression
levels (compared with untreated control) of the
CHOP gene; RPLPO was used as reference gene.
(D, E) Confluent human primary myoblasts were
switched to differentiation medium for 4 days. At
day 2, cells were incubated with TX (0.5 μg/mL)
for 24 h and then exposed to H2O2 for 24 h. (D)
H2O2 toxicity was determined by quantifying
lactate dehydrogenase (LDH) activity; (E) CellRox
(ROS activity probe) was loaded in myotubes and
fluorescence was quantified using a TECAN spec-
trophotometer; p < 0.01 (**) and p < 0.001
(***) compared with H2O2 (one-way ANOVA).
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leaves for cooking, and as extracts for food and cosmetic industries.
Research on rosemary antioxidant activity is primarily focused on ro-
semary leaves and its bioactive compounds carnosic acid and carnosol.
Therefore, leaves are collected for essential oil production or compound
extraction, whereas stems are not valorised. Our findings indicate that
rosemary stems are a cheap source of the antioxidant taxodione. In this
manuscript, we showed that taxodione efficiently protects immature
(myoblasts) and mature (myotubes) skeletal muscle cells from H2O2-
induced oxidative stress damage. Furthermore, addition of taxodione to
post-mortem muscles delayed lipid and protein oxidation during re-
frigerated storage. Thus, taxodione or rosemary stem extracts, in ad-
dition to carnosic acid and carnosol, could prevent or limit skeletal
muscle oxidation in human health and food applications.
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